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Abstract

This paper addresses the nature of the temporary storage buVer used in implicit or statistical
learning. Kuhn and Dienes [Kuhn, G., & Dienes, Z. (2005). Implicit learning of nonlocal musical
rules: implicitly learning more than chunks. Journal of Experimental Psychology-Learning Memory
and Cognition, 31(6) 1417–1432] showed that people could implicitly learn a musical rule that was
solely based on non-local dependencies. These results seriously challenge models of implicit learn-
ing that assume knowledge merely takes the form of linking adjacent elements (chunking). We
compare two models that use a buVer to allow learning of long distance dependencies, the Simple
Recurrent Network (SRN) and the memory buVer model. We argue that these models – as models
of the mind – should not be evaluated simply by Wtting them to human data but by determining
the characteristic behaviour of each model. Simulations showed for the Wrst time that the SRN
could rapidly learn non-local dependencies. However, the characteristic performance of the mem-
ory buVer model rather than SRN more closely matched how people came to like diVerent musical
structures. We conclude that the SRN is more powerful than previous demonstrations have
shown, but it’s Xexible learned buVer does not explain people’s implicit learning (at least, the aVec-
tive learning of musical structures) as well as Wxed memory buVer models do.
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1. Introduction

Implicit or statistical learning is an incidental learning process in which people
become sensitive towards structures and regularities without needing to be aware of
the knowledge acquired (Cleeremans, Destrebecqz, & Boyer, 1998). A basic question
concerning how such knowledge is learned is whether the learning mechanism uses a
temporary storage buVer, and, if so, what the nature of the buVer is. Though funda-
mental, this question has been scarcely addressed in an explicit way; its answer is inti-
mately related to specifying what contents can be implicitly learned.

Implicit learning historically has been most vigorously investigated using the arti-
Wcial grammar learning paradigm (Reber, 1989), in which participants are asked to
memorize a set of letter strings that have all been generated using a Wnite state gram-
mar. Following this memorization phase, participants are presented with a new set of
test items, half of which obey the rule used to create the training items and the other
half of which violate the rule in some way. Even though participants are usually
unable to describe the rules used for their decisions, their classiWcation performance
is above chance. Similar statistical learning eVects have been shown in many other
paradigms (see Perruchet & Pacteau, 2006, for a review), but there remains contro-
versy over what participants have learnt, and the computational mechanism respon-
sible for this type of learning.

To date, most results from artiWcial grammar learning experiments using Wnite
state grammars can be accounted for by postulating people learn chunks of adjacent
elements (e.g. Dulany, Carlson, & Dewey, 1984; Perruchet & Pacteau, 1990). This
acquisition of chunks is explicitly captured by chunking models of implicit learning
(e.g. Knowlton & Squire, 1994, 1996; Perruchet & Vinter, 1998; Servan-Schreiber &
Anderson, 1990) and is also predicted by connectionist models of implicit learning
(e.g. Cleeremans, 1993). Although several diVerent connectionist architectures have
been proposed (cf. Dienes, 1992; Kinder, 2000b), the Simple Recurrent Network
(SRN) (Altmann, 2002; Elman, 1990) has become one of the most popular, based
both on empirical and theoretical grounds (Kinder, 2000a). We will Wrst present the
SRN network and then the buVer memory network, two networks that operate with
contrasting types of storage buVers. Then we will introduce materials that cannot be
learnt by simple chunking models as they require a buVer.

2. The Simple Recurrent Network

The SRN is a three-layered feed-forward network consisting of an extra set of
units (context units) which is a copy of the hidden layer from the previous time step
that then feed back into the hidden layer; thus, at time t the activation of the hidden
units is inXuenced by both the input activation and the activation of the hidden units
at time t¡1 (see Fig. 1). During the training phase, the SRN is presented with each
element of the sequence and is trained to predict the next element. During this train-
ing phase the weights are updated using backpropagation. Once the SRN is trained,
it becomes sensitive to the transitional probabilities between the elements of the
Please cite this article in press as: Kuhn, G., & Dienes, Z., Learning non-local dependencies,
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sequence, which are often reliable predictors of an item’s grammaticality. Each input
at the Wrst time step will lead to a diVerent activation of the hidden units (Servan-
Schreiber, Cleeremans, & McClelland, 1991). Due to the network’s recurrent archi-
tecture, at the second time step the activation of the hidden units is then inXuenced by
both the input and the activation of the previous hidden units. At the third time step
the activation of the hidden units is inXuenced by both the activation of the Wrst and
the second input. This means that the network stores diVerent representations for
each input depending on the context, and therefore can become sensitive to higher
order dependencies by storing contextual information over several time steps (Cleere-
mans & McClelland, 1991; Rodriguez, 2003; Servan-Schreiber et al., 1991).

Although chunking models and the SRN make diVerent predictions about the
exact nature in which the chunks are learnt (see Boucher & Dienes, 2003), both
chunking models and the SRN are good at learning local dependencies. However,
chunking models and the SRN have very diVerent abilities with regards to learning
non-local dependencies. Chunking models, as currently instantiated, simply link
adjacent elements. The context units of the SRN, however, provide a buVer, in princi-
ple enabling the SRN to learn more powerful grammars (e.g. Christiansen & Chater,
1999). The context units allow the SRN to learn (fallibly) how far into the past it
needs a memory in order to reduce error.

3. The memory buVer model

The SRN can be contrasted with a Wxed memory buVer model, similar to the
SRN in operating characteristics, learning rule, etc., except for how time is coded.
The architecture of the memory buVer model is similar to the SRN except that it
has no context units (see Fig. 1). Rather than storing information about the previ-
ous events in the recurrent context units, the input units of the memory buVer
model not only encode the input presented at time t, but also at time t ¡ 1, t ¡ 2,
and t ¡ 3. The size of the memory buVer is speciWed by the number of time steps
that are encoded. Moreover, the number of time steps that have been encoded will
determine deWnitively the length of the non-local dependency that can be learnt.
The simplicity of this means of encoding time (i.e. unfolded in space) has often

Fig. 1. Schematic diagram of the SRN and the memory buVer models.
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recommended itself to researchers (e.g. Sejnowski & Rosenberg, 1987; aspects of
coding in the Plaut, McClelland, Seidenberg, & Patterson, 1996, model). Cleere-
mans (1993) Wt a memory buVer network, coding four time steps into the past, to
the reaction times of people implicitly learning a serial reaction time (SRT) task.
He found people became gradually sensitive in their reaction times to information
contained up to four time steps into the past, and the memory buVer network
could behave in a similar way.

Human learning in general requires a buVer. Aspects of language (Gomez,
2002; Onnis, Monaghan, Christiansen, & Chater, 2004) and music (Dienes &
Longuet-Higgins, 2004) that can be learned in the lab rely on non-local dependen-
cies, i.e. dependencies which take the form of two dependent items that are sepa-
rated by a varying number of embedded items. Several studies have shown that
under certain circumstances people can learn non-local dependencies that go
beyond the learning of adjacent regularities (Gomez, 2002; Kuhn & Dienes, 2005;
Newport & Aslin, 2004).

We will test the SRN and memory buVer models on the materials of Kuhn and
Dienes (2005).

3.1. Materials: long distance dependencies in music

Kuhn and Dienes (2005) investigated whether people could implicitly learn a
musical rule, a diatonic inversion, that was solely based on non-local dependen-
cies. A diatonic inversion changes the direction of the diatonic intervals without
changing the magnitude of the intervals. This inversion can be formed by number-
ing each of the notes in a tune from 1 to 8. The inversion is then formed by sub-
tracting each pitch number from a constant, in this case 9. This diatonic inversion
can be represented in terms of a non-local dependency, or biconditional grammar,
in the sense that the Wrst note is linked to the Wfth note, the second note is liked to
the sixth note, etc. For example if the Wrst note is an F the Wfth note will be a G
(see Fig. 2).

The training and test material used by Kuhn and Dienes (2005) was designed to
allow for the type of knowledge required to distinguish between the grammatical and
the ungrammatical tunes to be manipulated. All the training tunes obeyed the dia-
tonic inversion. For the test phase, diVerent sets of test tunes were created for which
alternative strategies could be used to distinguish between grammatical and ungram-

Fig. 2. Example of a grammatical training tune. The lines show the biconditional mapping between the
diVerent pitches; e.g. F3 is linked to G3.
Please cite this article in press as: Kuhn, G., & Dienes, Z., Learning non-local dependencies,
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matical tunes.1 In the Exemplar set, the grammatical items consisted of items that had
occurred in the training set. Furthermore, the grammatical items had a higher ACS
(associative chunk strength) than the ungrammatical items. In the Fragment set, all
test items were novel. However, the grammatical items had a higher ACS than the
ungrammatical items. This meant that for the Exemplar and the Fragment sets, cor-
rect classiWcation could be based on either knowledge about chunks, and/or knowl-
edge about the inversion rule, thus these two test sets will be referred to as ACS
discriminating test sets. The material used in the Abstract set, on the other hand, was
created from a set of bigrams that never occurred in the training set. This meant that
correct discrimination could no longer be based on knowledge about chunks, and
therefore relied on leaning of non-local dependencies, thus an ACS non-discriminat-
ing test set.

In the test phase, participants’ were asked to give liking ratings to the test items.
The results showed that participants’ liking ratings for grammatical items increased
over that given to ungrammatical items, as a result of having been exposed to the
training items. Crucially, participants could distinguish between grammatical and
ungrammatical items in their liking ratings regardless of whether grammaticality was
associated with diVerences in ACS or not. Participants’ successful discrimination
occurred for test items that consisted entirely of bigrams that never occurred in the
test phase, demonstrating that participants had acquired knowledge that went
beyond the learning of adjacent elements.

In situations where all the test items are created from chunks that never occurred
in the training material, which was the case in the Abstract set, existing chunking
models cannot distinguish between grammatical and ungrammatical items (see Bou-
cher & Dienes, 2003; Perruchet, Tyler, Galland, & Peereman, 2004; Redington &
Chater, 1996 for discussion of relevant extensions to chunking models). Kuhn and
Dienes (2005) showed that by using liking ratings, participants were able to discrimi-
nate between grammatical and ungrammatical tunes to the same extent in the
absence as in the presence of chunking cues. Chunking models, as currently instanti-
ated, can therefore be excluded as suitable models for participants’ liking responses.

To learn long distance dependencies a buVer is needed, for example as in the SRN
and Wxed buVer models. While the Wxed buVer model can self-evidently learn long
distance dependencies by simple associative learning, the extent to which the SRN
can is a more interesting question. Timmermans and Cleeremans (2000) carried out a
series of simulations investigating whether the SRN could learn a biconditional
grammar used by Shanks, Johnstone, and Staggs (1997). Shanks et al. designed mate-
rial in which grammatical letter strings were generated using a biconditional gram-
mar that determined the relationships between letters in position 1 and 5, 2 and 6, 3
and 7, and 4 and 8. For the test set, letter strings were produced which were balanced
in terms of ACS. Grammatical and ungrammatical items therefore could not be

1 Musical tunes can be represented in several diVerent ways; pitches, chromatic intervals, diatonic inter-
vals and contour. For simpliWcation only the pitch representation will be used in this paper. However, it
should be noted that all the above mentioned stimulus dimensions were taken into consideration when
balancing the material in Kuhn and Dienes (2005).
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distinguished from one another by relying on ACS, and required knowledge about
the non-local mapping between letters. Timmermans and Cleeremans (2000) showed
that after fairly extensive training (50–3000 epochs), the SRN learnt to distinguish
between grammatical and ungrammatical letter-strings. Other studies have shown
that the SRN is capable of learning non-local dependencies (Cleeremans & McClel-
land, 1991; Rodriguez, 2001, 2003; Servan-Schreiber et al., 1991). However, in all
these studies the SRN was tested on material which contained n-grams that occurred
in the training set. The material designed by Kuhn and Dienes is diVerent in the sense
that the items in the Abstract set were created from bigrams that never occurred in
the training set, thus preventing the use of any local transitional probabilities. It is
not clear that the SRN can learn non-local dependencies under these conditions. A
further diVerence between the current study and these previous simulations lies in the
amount of training involved. The learning of higher order dependencies requires
extensive training, which is demonstrated by the use of very large training sets or
large numbers of training epochs. For example, the training corpus used by Servan-
Schreiber et al., 1991 utilised 70,000 training items. Furthermore, Rodriguez, 2003
showed that the learning of higher order dependencies improved with increasing cor-
pus size2 and increasing number of training items. In the human experiments pre-
sented by Kuhn and Dienes (2005), participants were exposed to the training
material, 120 items, only once. If we want to accept the SRN as a suitable model of
implicit learning, the SRN should learn the non-local associations in 1 epoch, which
is less training than was used in these previous simulations.

The Wrst aim of this paper was to investigate whether the SRN and the memory
buVer model could learn the material used by Kuhn and Dienes (2005). As the non-
local dependency learning is explicitly implemented in the memory buVer model it is
fairly obvious that these types of models should have no problems in learning the
non-local dependency. However, due to the reasons stated previously, it is less clear
whether the SRN is capable of learning the biconditional grammar.

A common criticism of computational models is that if the parameters of a model
that could in principle Wt any human data are simply tweaked until a Wt is obtained then
nothing has been explained (Olsson, Wennerolm, & Lyxzen, 2004). This criticism is
applicable to connectionist models, as these models rely on a range of free parameters,
which have relatively large eVects on the network’s performance. Furthermore, as most
of these parameters have no obvious psychological or physiological meaning it could be
rather tempting to use post hoc justiWcation to select parameters that give the best Wt for
a given set of human data. In implicit learning most researchers attempt to Wnd a best set
of parameters and try to Wt simulation performance to a mean performance of human
subjects, such as endorsement rates (e.g. Altmann & Dienes, 1999; Dienes, 1993; Dienes,
Altmann, & Gao, 1999; Kinder, 2000b; Kinder & Assmann, 2000). The problem of mul-
tiple free parameters can be circumvented by running simulations on a large set of
parameter values and then evaluating the models in terms of all of these parameters.
Boucher and Dienes (2003) evaluated two diVerent types of models by training them

2 Corpus size varied from 10,000 letters to 100,000 letters.
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over a large region of parameter space. The characteristic behaviour of the models could
then be determined and compared to human behaviour. This model selection process
can also be viewed in maximum likelihood terms, i.e. one selects the model that provides
the highest probability density for the behaviour that matches human behaviour
(Bishop, 1996). The networks used in the present paper, were trained using a large set of
parameter values, and then tested on the diVerent test sets. These results led to a parame-
ter space, rather than a single best Wt value, which could be use to evaluate how well the
model’s characteristic performance matched that of the human participants. This
approach allows the model to have explanatory power and goes beyond merely giving
an existence proof that a model can Wt a given set of data. The second aim of this paper
was therefore to evaluate how characteristic the human data was of the memory buVer
and the SRN.

4. Simulation study 1

The aims of the Wrst simulations were to investigate whether the SRN and the
memory buVer models could learn the material designed by Kuhn and Dienes (2005).
The models were trained on the same material used by Kuhn and Dienes (2005), and
tested on the two ACS-discrimination sets (Exemplar set and the Fragment set) and
the ACS non-discriminating test set (Abstract set). In the Exemplar and the Fragment
set, the grammaticality of the items was correlated with ACS. In the Abstract set, all
of the items were created from a diVerent set of bigrams, thus discrimination perfor-
mance cannot be based on ACS. In simulation 1a the tunes were coded locally,
whereby each element in the sequence was represented using one unique active unit.
Similar to Boucher and Dienes (2003), simulations were run using a large range of
diVerent parameter values.

4.1. Method

4.1.1. Material
The grammar used was a diatonic inversion rule. All tunes consisted of 8 notes,

which were selected from the C-major scale. These notes can be numbered from 1 to
8; C3D 1; D3D 2; E3D 3; F3D4; G3D5; A3D 6; B3D 7; C4D8, where C3 is middle C.
The Wrst four notes formed the prime and were selected semi-randomly, while the last
four notes formed the inversion, which was created by subtracting the pitch number
from a constant (9). The prime 3 6 4 3 leads to the following inversion 6 3 5 6, and the
tune3 3643–6356.

One hundred and twenty diVerent grammatical training tunes were constructed.
These tunes were created from a unique set of bigrams, ensuring that a new set with
diVerent interval bigrams could be designed.

3 It should be noted that the material was also balanced in terms of diatonic intervals, chromatic inter-
vals, and contour.
Please cite this article in press as: Kuhn, G., & Dienes, Z., Learning non-local dependencies,
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Three diVerent sets of test tunes were created, which diVered in the way they were
associated to the training set. For the Exemplar set, 12 tunes were selected from the
training set, which formed the grammatical tunes, and 12 ungrammatical tunes were
created which violated the inversion. Furthermore, the ungrammatical items were
created from bigrams that occurred rarely in the training set, thus leading to a lower
ACS. Care was taken to ensure that grammaticality was not correlated with Wrst
order frequencies. For the Fragment set, 12 novel grammatical tunes were created
with high ACS. The 12 ungrammatical tunes were created using the same rationale as
in the Exemplar set, and therefore had a lower ACS than the grammatical items. For
the Abstract set, both grammatical and ungrammatical tunes were created from a
novel set of bigrams, which never occurred during the training phase. This meant that
none of the tunes had any bigrams in common with the training set, thus leading to
zero ACS. A full list of the material can be found on http:www.lifesci.sussex.ac.uk/
home/Gustav_Kuhn/ch4/material_Kuhn_Dienes_ch4.htm.

The SRN had the same number of input units as output units and one hidden
layer. During training, tunes were presented one element at a time by activating the
input units, and the network was trained to predict the next element in the sequence,
using backpropagation. Ten input/output units represented the 8 notes, the end and
the beginning. The activation of the appropriate unit was then set to 0.9 and all other
units were set to 0.1. A complete tune could be represented as a vector by concatenat-
ing the vectors specifying the unit activations for each successive note. The error
between the target and the output activation was used to update the weights by using
backpropagation, and after each completed sequence presentation, the context units
were set to zero. For each network, the sequence of tunes was presented in a diVerent
random order.

The memory buVer model had 40 input units which could code four sequential ele-
ments, one hidden layer, and 10 output units. Test items were presented in the follow-
ing way. The Wrst element of the tune “1 2 3 4–8 7 6 5” was “* * * 1”, and the network
was trained to predict the second element, which was “2”. On the second time step,
the network was presented with the Wrst and the second elements of the tune “* * 1 2
” and it was trained to predict the third element “3”, etc. All other parameters were
identical to the SRN.

The simulations were carried out using all possible permutations of the parameter
values presented in Table 1. The selection of these parameters was based on existing
artiWcial grammar learning simulations. A buVer of four time steps was used because
the stimuli played to participants consisted of two perceptually separate melodies
each consisting of four notes, naturally suggesting a theme of four notes and its reply.

Table 1
Range of parameter values used in the simulations

Network parameters

Learning rate 0.1, 0.3, 0.5, 0.7, 0.9
Momentum 0.1, 0.3, 0.5, 0.7, 0.9
Number of hidden units 5, 10, 15, 30, 60, 120
Epochs 1
Please cite this article in press as: Kuhn, G., & Dienes, Z., Learning non-local dependencies,
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Moreover, with this size of buVer, the network should be able to learn the bicondi-
tional grammar. We consider this assumption of buVer size further in Section 8.

Epochs refer to the number of times the network cycles though the training set. In the
human experiments, participants were exposed to the training set once. The number of
epochs was therefore set to 1. The number of hidden units ranged from 5 to 120.
Although 120 hidden units may seem like a very large number, several studies have
shown that the learning of higher order dependencies does require rather large numbers
of hidden units (Cleeremans & McClelland, 1991; Rodriguez, 2003; Servan-Schreiber
et al., 1991). The learning rate is a constant that determines the size of the weight change,
which ranged from 0.1 to 0.9 in steps of 0.1. Although 0.9 appears to be a large learning
rate, this is commonly used value in artiWcial grammar learning simulations (e.g. Alt-
mann & Dienes, 1999; Dienes, 1993; Dienes et al., 1999; Kinder, 2000b; Kinder & Ass-
mann, 2000). Finally the momentum, a parameter that speciWes the amount a weight
keeps changing in the same direction over trials, ranged from 0.1 to 0.9, in steps of 0.1.
Incorporating all of the above mentioned parameter combinations resulted in 150 diVer-
ent models. Each of these models was run 25 times, each time using a diVerent set of ran-
dom starting weights, using the Nguyen-Widrow method (1990), thus leading to 3750
simulations. All networks were simulated using the Matlab 6 Neuralnetwork toolbox.

In the test phase, networks were presented with the test items, and their ability to
predict the next tone in the sequence was used as an index of performance. If the net-
work has acquired knowledge about the training items it would be expected to per-
form better on the grammatical than on the ungrammatical items. Each network was
tested independently on the material from the 3 test sets. Performance was assessed
by calculating the cosine (COS) of the angle between the target vector t and the out-
put vector o (e.g. Altmann & Dienes, 1999; Dienes, 1993; Dienes et al., 1999; Kinder,
2000b). A large COS implies a small angle, and thus a small distance between the two
vectors. The COS can therefore be used as an index of how well the network per-
forms at predicting the correct output sequence. The larger the COS, the better the
performance. In order to compare the networks’ discrimination performance to that
of the human subjects, z-scores were calculated by subtracting the ungrammatical
items’ mean COS from the grammatical items’ mean COS, and dividing this diVer-
ence by the pooled standard deviation. A positive score represents an ability to dis-
criminate between grammatical and ungrammatical items, and 0 is chance
performance. During the test phase, training was left on; presumably, learning
devices in the brain do not switch themselves oV in test phases. In the human experi-
ments participants’ learning was assessed by comparing the experimental group’s dis-
crimination performance with that of an untrained control group. Similarly, the
networks’ learning was evaluated by comparing the trained networks’ performance
with that of a set of untrained networks (see Christiansen & Chater, 1999).

4.2. Results and discussion

Table 2 shows the mean z-scores for each network on each of the test sets. Paired
sample t-test showed that all trained networks performed signiWcantly better than the
untrained networks on all three test sets (all ps < .0005). Moreover, both the SRN and
Please cite this article in press as: Kuhn, G., & Dienes, Z., Learning non-local dependencies,
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the BuVer model performed signiWcantly better on the ASC discriminating test sets
(Exemplar and Fragment) than on the Abstract test, (all ps < .0005).

The relatively large standard errors demonstrate that the networks’ performances
were strongly aVected by the particular parameter setting, which clearly illustrate one
of the major problems with evaluating computational models that involve free
parameters. In situations where the network’s performance is aVected by the parame-
ter it would be rather tempting to select the parameter settings leading to the most
desirable results. For example, one of the parameter settings resulted in positive dis-
crimination performance on all three test sets, whilst several other parameter settings
only led to correct discrimination performance on the Exemplar and the Fragment
set, but not the Abstract test set. However, if the pattern of the models’ characteristic
behaviour is diVerent from that of people, the model barely provides an explanation
of peoples’ behaviour, a good Wt with a speciWc set of parameter values not with-
standing. It therefore seems most important to indicate what the model’s characteris-
tic behaviour is and the degree to which peoples’ behaviour is typical of this
behaviour. It is possible that a computational model could Wgure in an explanation of
human behaviour even if human behaviour was uncharacteristic of the model if
uncharacteristic behaviour was produced by a set of parameter values for which a
coherent story could be told. Clearly, in the case of human behaviour being unchar-
acteristic of a model, this coherent story bears a large burden in making the model
explanatory. This problem will be addressed in simulations 3.

The fact that both the SRN and buVer model successfully discriminated between
grammatical and ungrammatical items in the absence of chunking cues, suggests that
they possibly learnt the biconditional mapping used in the inversion rule. The BuVer
model was explicitly designed to learn non-local dependencies. It was therefore
expected that this model would learn to discriminate between grammatical and
ungrammatical items on the Abstract set. However, the fact that the SRN was able to
make this discrimination was more surprising. It would be rather tempting to con-
clude that the SRN did in fact learn the biconditional grammar. However, it is possi-
ble that the network learnt certain idiosyncratic statistical regularities in the test and
training material that were not intended by the experimenter, but could be used for
the successful discrimination between grammatical and ungrammatical items. Before
any conclusion about whether the network has acquired knowledge of the bicondi-
tional mapping can be reached, we must gain an insight into what the network has
actually learnt, which will be the focus of the simulations presented next.

Table 2
Mean z-scores for trained and untrained networks, and the discrimination performance of the human sub-
jects reported by Kuhn and Dienes (2005) for all three test sets

Test set SRN BuVer model Human data

Trained Untrained Trained Untrained Experimental Control

M SE M SE M SE M SE M SE M SE

Exemplar 0.128 0.204 0.012 0.088 0.214 0.011 0.045 0.007 0.17 0.111 ¡0.03 0.092
Fragment 0.279 0.253 0.039 0.099 0.267 0.013 0.047 0.007 0.263 0.086 ¡0.09 0.096
Abstract 0.03 0.049 0.005 0.04 0.073 0.007 0.013 0.006 0.144 0.09 ¡0.13 0.099
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5. Simulations study 2: non-local dependency learning by the SRN

One way of establishing what the network has learnt is by looking at the net-
work’s internal representations. Cleeremans (1993) trained an SRN on material
generated using a Wnite state grammar. Once trained, the network was presented
with a set of grammatical items, and the pattern of activation on the hidden units
was recorded. The matrix of the Euclidian distance between these vectors was then
used as the input for a cluster analysis. This analysis revealed that the activation
patterns of the hidden units were grouped according to diVerent nodes in the Wnite
state grammar, thus suggesting that the SRN not only acquired knowledge about
local dependencies, but acquired distributed knowledge of the Wnite state grammar
itself.

In investigating hidden unit representations, the general strategy is to deter-
mine the proximity of the hidden unit activation patterns to each other for diVer-
ent states of aVairs in the world. The functional proximity of the diVerent
activation patterns depends on how these patterns are used. We know that in the
SRN the output units use the hidden unit activation by transforming the hidden
unit activation with a sigmoid squashing function. Therefore the most natural
way of learning about the proximity of diVerent hidden unit activation patterns to
each other is not to use Euclidean distance but to determine the closeness of the
output they produce after the sigmoid squashing. Thus the approach presented
here evaluated the relation between states of aVairs in the world and output unit
activation as a way of determining whether the hidden units had learnt to encode
the states of aVairs. If the SRN has learnt the non-local mapping, then once the
network has been presented with a particular input element, it should be able to
correctly predict the associated item in the correct position. For example, if the
network is presented with an F in the Wrst position, it should be able to predict a G
in the Wfth position, as this was one of the mappings the network was trained to
learn, regardless of what the intervening material is. If the network fails to predict,
whatever the intervening material, we can conclude that the network used other
regularities in the training material that could be used to successfully discriminate
between grammatical and ungrammatical items. In the simulations presented
here, a new set of test material was designed that enabled us to determine whether
the SRN was able to predict the correct non-local mappings independently of the
separating elements. In order to select the best parameter settings, discrimination
performance was averaged across the three test sets, and the parameter values of
the network with the highest overall performance were used for the subsequent
simulations.

In the BuVer Network, the non-local dependency involves learning simple asso-
ciations between the item at t0 and t¡4, and we can assume that these associations
are learnt easily: the relevant information about the item at t¡4 is just as readily
available as the item at t¡1 in predicting the item at t0. Local dependencies and
dependencies back to t¡4 are equivalent for the network. Thus, we did not run any
formal analysis on the type of representations that were learnt for the BuVer Net-
work.
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5.1. Method

The SRN containing 120 hidden units, a learning rate of 0.3, and a momentum of
0.3 led to the best overall discrimination performance on all three test sets. These
parameter values were therefore used for the subsequent simulations. The training
and test procedures were identical to the previous simulations. The models were run
25 times by initiating a diVerent set of random weights each time, using the Nguyen-
Widrow method (1990).

A set of test items was designed with the aim of establishing whether the net-
work learnt each of the 8 biconditional mappings in each of the 4 positions.
Sequences were created that started with a speciWed input element, followed by 3
random elements. If the network has learnt the biconditional mapping, and is pre-
sented with a speciWc input element in the Wrst position, it should be able to pre-
dict the correct target element in position 5. Similarly, if the network is presented
with a speciWc input element in position 2, it should be able to correctly predict the
corresponding element in position 6, independent of the separating elements and
so on. The numbers 1–8, which corresponded to the 8 diVerent pitches, were used
as speciWed input numbers, and random numbers between 1 and 8 were used as the
embedded elements. Table 3 shows a schematic representation of the material
used.

The networks’ performance was then measured by calculating the Luce ratio
(Luce, 1963) for the target output unit, and the Luce ratios for all the non-target out-
put units. The Luce ratio is calculated by dividing the activation of the target output
unit by the sum of the activation of all other output units. If the network has learnt
the biconditional mapping we would expect a higher Luce ratio for the target unit,
than the non-target units. A total of 8000 test items were created whereby each of the
8 pitch numbers occurred 1000 times as an input. This procedure was repeated for
each of the 4 positions. In the same way as the previous simulations, each sequence
was preceded by the beginning marker. These simulations were carried out using the
25 trained networks.

Table 3
Schematic diagram of the test items used for each of the 4 biconditional mappings

Each sequence contained 9 elements, whereby the Wrst element was always the beginning marker. N, input
number which took the values 1, 2, 3, 4, 5, 6, 7, and 8. R, random numbers between 1 and 8. P, predictor
element. The bold items highlight the biconditional mapping.

Biconditional 
mapping

Element number

1 2 3 4 5 6 7 8 9

1–5 Beginning marker N R R R P R R R
2–6 Beginning marker R N R R R P R R
3–7 Beginning marker R R N R R R P R
4–8 Beginning marker R R R N R R R P

N D {1,2,3,4,5,6,7,8}
R D random number {1,2,3,4,5,6,7,8}
P D predicted element
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5.2. Results and discussion

Fig. 3 shows the mean Luce ratios averaged across networks and speciWed inputs,
for target and non-target elements, for each of the 4 biconditional mappings. t-Tests
showed that mean Luce ratios of the target elements were signiWcantly greater than
those of the non-target items, all ps < .0005. That is, for each position the network
predicted the correct pitch more strongly than the other pitch. This leaves open the
question of whether it predicted this pitch more strongly for the appropriate position
rather than the other positions. This question is now addressed.

The next simulations aimed to assess whether the network was sensitive to the
positional information inherent in the bi-conditional rule, by looking at whether the
network predicts the corresponding note better in its associated position than any
others position.4 For example, an F3 in the Wrst position should predict a G3 in the
Wfth position. However, it is possible that the network predicts a G3, but without the
speciWc location of the inversion being predicted. In order to investigate whether the
network learnt the positional information we calculated the Luce Ratio for the pre-
dicted element in its correct location, and compared this with the average Luce
Ratios for the same element in the remaining three positions.

The 25 trained networks from the previous simulations were presented with 1000
randomly generated inversion sequences. For each of these sequences we calculated
the Luce Ratio for the predicted element in its predicted location and in the Luce
Ratios for the three non-predicted locations. From Fig. 4 it can be seen that in loca-
tions Wfe and six the Luce Ratios for the correct locations were signiWcantly higher
than for any of the non-predicting locations (all ps < .0001). For the location seven,
the Luce Ratio for the correct location was signiWcantly higher than the adjacent

4 We thank Pierre Perrucht for the suggestion of this simulation. We also ran an additional simulation
suggested by Perruchet similar to the one in Fig. 4 except that in calculating the Luce Ratio, the unit cod-
ing the same note as occurred 4 time steps back was not used. The results were the same as in Fig. 4; i.e. the
network is doing more than learning simply not to predict the same element again.

Fig. 3. Mean Luce ratio averaged across speciWed input and network, for target and non-target elements.
Error bars represent standard errors.
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incorrect locations, and signiWcantly higher than the average of incorrect locations,
but no higher than the element in position Wve. These results imply that for these
positions, the network successfully learnt the positional information. For the element
in location eight, the Luce Ratio of the correct location was no higher than the aver-
age of the other locations. However, the Luce Ratio for the correct location was
higher than the preceding incorrect location, suggesting that the network may have
learnt at least some positional information for this location. These results demon-
strate that the network was able to predict the correct position, but that this ability
decreases further along the sequence. After each time step the Network stores more
and more information in its context units. It is therefore likely that this additional
information made the task more diYcult, which may explain this drop in perfor-
mance further along the sequence.

The results show that if the SRN is presented with a speciWc input element fol-
lowed by four random elements, it produced a signiWcantly higher activation level
for the output nodes that were associated with that particular biconditional map-
ping, than for the remaining nodes. Furthermore, we showed that for positions
Wve to seven the activation level of the output nodes associated with a particular
biconditional mapping was higher in the correct location than in the incorrect
locations. These results demonstrate that at least for the Wrst three biconditional
mappings, the network was able to correctly predict the location of the corre-
sponding element. This method oVers a direct way to gain an insight into what the
network has actually learnt, and provides strong evidence to suggest that the SRN
did in fact learn the biconditional mapping between the pitches in the diVerent
positions, and at least to some extent, the positional information that governs the
biconditional rule.

Fig. 4. Mean Luce Ratios for correctly predicting the element at each of the Wve time steps for each of the
to be predicted links. The large data points represent the correct location. Error bars represent standard
errors.
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6. Simulations 3a: characteristic behaviour of the networks

The aim of the analyses presented here was to evaluate how the models’ typical
performance compared to the human data. Table 2 also shows participants’ discrimi-
nation performance. The results so far suggest that both models learned the material
where grammatical items had higher ACS than ungrammatical items more easily
than the material where grammatical and ungrammatical items contained novel
bigrams. In the analysis reported next we evaluate how typical the performance of
the networks are to that compared to the human data, by looking at the relationship
between discrimination performance based on chunks and discrimination perfor-
mance based on non-local associations more closely. The eVects of learning were cal-
culated for each network by subtracting the z-scores of the untrained networks from
the z-scores of the trained networks. The diVerences in z-scores on the Exemplar and
the Fragment set were then plotted against each other (Fig. 5a). The area covered by
the human subjects (mean§1SE) was also plotted in the same graph, which was cal-
culated by subtracting the mean z-scores of the control group from that of the exper-
imental group. Fig. 5a shows a positive relationship between the discrimination
performance on the Exemplar and the Fragment set for both types of models. More-
over, the models’ characteristic discrimination performance appears to match the
human data, which is demonstrated by the fact that a substantial number of the
SRNs (21/150) and the memory buVer models (47/150) fell within the area covered by
the human data. In order to look at the networks’ sensitivity towards chunks we plot-
ted the discrimination performance on material where grammaticality was correlated
with ACS (average of the Exemplar and Fragment set) against the discrimination per-
formance where grammaticality was independent of chunks (Abstract set). Although
the data from the two models does still overlap, the distributions of the two models
look somewhat diVerent. For the SRN there was a very steep slope (r2D0.51,
BetaD 0.56) which demonstrates that the SRN was particularly sensitive to chunks.
For the memory buVer model on the other hand, the data was less correlated
(r2D0.28, BetaD0.53), illustrating that the model was less aVected by chunks. With
regards to the human performance, the graph shows no overlap in performance
between the SRN and human’s discrimination performance, as none of the models
fell within the square deWned by human data. However, several of the memory buVer
models fell within the human data (12/150), which was signiWcantly more than the
SRN (�2D11.76, p < .0005), thus suggesting that it was more characteristic of the
human data.

7. Simulation 3b

In the previous simulation the tunes were coded locally and therefore independent
of the neighbourhood relations between the notes. Although this type of coding is
useful for most computational simulations, it bares limited resemblance to the way in
which the human participants represented the material. Participants would have
experienced two notes that are located closely to each other on the scale as being
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more similar than those separated by several notes. In simulations 3b we incorpo-
rated these neighbourhood relationships by using a distributed coarse coding rather
than local coding. For example, a C3 was coded with units 1, 2, and 3 being active; a
D3 with units 2, 3, and 4 being active, an E3 with units 3, 4, and 5, and so on. Each
note shared an active unit with its two neighbouring notes of the diatonic scale. This
meant that two notes that were in close proximity on the scale also shared common
activation. In all other respects the simulations were identical to the previous simula-
tions.

7.1. Results and discussion

The results of these simulations were very similar to the ones using the simple cod-
ing. On all three test sets, the trained networks performed signiWcantly better than the
untrained networks, and they performed signiWcantly better on the ACS discriminat-
ing test sets than on the Abstract set (all ps < .0005). Similar to the previous simula-
tions we evaluated the models’ characteristic behaviour, with regards to chunks and
non-local dependencies. When the discrimination performances of the Exemplar and
the Fragment sets were plotted against each other, the SRN (17/150) and the memory
buVer (18/150) model captured the human data equally well (�2D 0.32, pD .86). How-
ever, when the discrimination performance on the ACS discriminating test sets were
plotted against the discrimination performance on the Abstract set, the human data
captured signiWcantly more memory buVer models (15/150) than SRNs (4/150),
�2D6.80, pD .009. Similar to the previous simulations, the characteristic behaviour of
the memory buVer model was more typical of the human behaviour, than that of the
SRN.

Finally, we ran simulations in which the melodies were encoded at input and out-
put by their neighbourhood relations in the circle of Wfths using coarse coding. Long-
uet-Higgins (1987) argued that in hearing music tonally, a salient dimension is the
number of Wfths apart two notes are. The participants in Kuhn and Dienes (2005)
may well have coded stimuli along this dimension if they heard the melodies in a
musical way. Our coarse coding activated units (say) 1, 2, and 3 to code C, activated
units 2, 3, and 4 for G (which is a Wfth higher), units 3, 4, and 5 for D (a Wfth higher
again) and so on. Virtually identical results were obtained as for localist pitch coding

Fig. 5. (a) Scatter plot in which the diVerence between the trained and the untrained networks’ z-scores on
the Fragment set was plotted against the z-scores from the Exemplar set. The + signs represent the SRN’s
performance, and the squares represent the performance of the memory buVer model. The plot also shows
the areas covered by the human discrimination performance, which was calculated by subtracting the con-
trol group’s mean z-scores from the Experimental group’s mean score and plotting these mean diVerences
§1 standard error for each test sets on the corresponding axis. (b) Scatter plot in which the diVerence
between the trained and the untrained networks’ z-scores on the Abstract set was plotted against the aver-
age z-scores of the Fragment and the Exemplar sets. The + signs represent the SRN’s performance, and
the squares represent the performance of the memory buVer model. The plot also shows the areas covered
by the human discrimination performance, which was calculated by subtracting the control group’s mean
z-scores from the Experimental group’s mean score and plotting these mean diVerences §1 standard error
for each test sets on the corresponding axis.
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and the coarse coding of pitch: Training led to signiWcant improvement of models’
discrimination on all tests sets, but signiWcantly and substantially better performance
with the ASC discriminating tests sets than the abstract set (all ps < .0005). When the
discrimination performance of the Fragment set was plotted against the discrimina-
tion performance of the Exemplar set, the human data captured signiWcantly more
memory buVer models (38/150) than SRN models (18/150) �2D 8.78, pD .003. Fur-
thermore, when the discrimination performance of the ACS discriminating test sets
were plotted against the Abstract set, the human data captured signiWcantly more of
the memory buVer models (7/150) compared to the SRN models (1/150) �2D 4.62,
pD .032.

8. General discussion

The simulations presented in this paper used rather novel ways of exploring the
types of rules a SRN and a memory buVer model could learn, and the extent to which
its characteristic performance matched that of human participants. Computational
models, whether connectionist or symbolic, with suYcient free parameters to repli-
cate a large repertoire of behaviours explain nothing by Wtting one particular pattern
of behaviour. The problem of multiple parameters was circumvented by training the
networks on a wide range of parameter settings, and then evaluating the model
across this parameter space. The eVect of learning was shown by comparing the dis-
crimination performance of the trained networks to a set of untrained networks. This
method has several advantages over other methods that simply Wt models to data.
The idea is to gain an accurate picture of the network’s characteristic behaviour. This
approach revealed an interesting point that would be ignored using conventional
model Wtting; namely that when grammaticality was independent of ACS there was
only a small subset of models that learnt to discriminate between the grammatical
and ungrammatical items.

The results from the previous simulations provided evidence to suggest that the
SRN and the memory buVer models could discriminate between grammatical and
ungrammatical tunes in which grammaticality was deWned by a non-local mapping,
and independent of bigrams. The memory buVer model was explicitly designed to
learn non-local dependencies. It’s architecture meant it could store information from
up to four time steps, which allowed it to learn non-local dependencies up to nD4.
The fact that the SRN learnt the biconditonal grammar was more interesting. How-
ever, the fact that the SRN could discriminate between grammatical and ungrammat-
ical items in the absence of chunks does not yet prove that it has learnt the
biconditional grammar. It is possible that the SRN picked up on quirky statistical
regularities present in the training and the test set, which could be used to success-
fully discriminate between grammatical and ungrammatical items. The aim of the
Wnal simulations was to establish whether the SRN had in fact learnt a biconditional
mapping. This was achieved by demonstrating that the SRN could correctly predict
the target elements as deWned by the biconditional grammar, independent of the
embedded elements. In a similar study, Timmermans and Cleeremans (2000)
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investigated whether an SRN could learn the biconditional rule used by Shanks et al.
(1997). Although Timmermans and Cleeremans showed that the SRN did learn to
discriminate between novel grammatical and ungrammatical items generated by the
biconditional grammar, these results were possibly due to irregularities in the train-
ing and test material, rather than the network having learnt the biconditional map-
ping. The results presented here on the other hand showed that the SRN could
correctly predict the items linked to the biconditional grammar, independently of
randomly constructed embedded elements over a large number of simulations, thus
providing strong evidence that the SRN can in fact learn the biconditional rule.
Although several studies have shown that the SRN is capable of learning non-local
dependencies, these have all been based on looking at the extent to which the SRN
could learn n-grams (e.g. Cleeremans, 1993; Rodriguez, 2003). The results presented
in this paper oVer more direct evidence showing that the SRN had in fact learnt the
non-local dependency. Furthermore, the networks in these previous studies required
extensive training, which seems to be rather untypical of the procedure employed in
implicit learning paradigms, where participants are usually exposed to the same
training items once or twice. The simulations presented here have demonstrated that
the SRN could learn the non-local associations using only 1 epoch and 120 training
items.

The suitability of each model as a model of participants’ discrimination perfor-
mance was evaluated by comparing the behavioural data with the models’ perfor-
mance across the whole range of parameters. This analysis can be regarded as
motivated by likelihood or Bayesian considerations. In likelihood and Bayesian
inference, simply Wnding a good Wt model is not suYcient to evaluate the model. In
Bayesian inference, one also has to determine how probable the data is, given the
model, and the prior probability distribution of the parameter values in order to
Wnally calculate how much one’s prior probability of the model being true could be
increased. In Wnding roughly how the characteristic behaviour of the model matches
what people do, we have in one sense done a poor man’s Bayes. Rather than seeing a
poor man’s Bayes as a weakness of our approach, we see it as strength. One need not
buy into Bayesian approach in toto in order to appreciate the weaker claim that the
model’s characteristic behaviour should be similar to people’s behaviour.

Both the SRN and the memory buVer models performed better on the test sets
where grammaticality was associated with chunks, than when the rule was solely deW-
ned in terms of the non-local mapping. The way in which chunks inXuenced the net-
work’s discrimination performance was further investigated by plotting the
discrimination performance from the test sets in which grammaticality was associ-
ated with diVerences in chunks against the performance where grammaticality was
solely determined by the non-local mapping. Similar to Chater and Conkey (1992) we
showed that the SRN was mainly sensitive to chunks. Furthermore, the comparison
between these results and the results obtained by the human data revealed that peo-
ples’ discrimination performance was uncharacteristic of the SRN’s behaviour and
more characteristic of the memory buVer model. These results suggest that although
similar to the memory buVer model, the SRN did learn to discriminate between
grammatical and ungrammatical items when the grammar was only deWned in terms
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of non-local dependencies, the memory buVer model provided a better account of the
human behaviour.

We have only shown an advantage for one sort of memory buVer model over the
SRN for a certain type of data, we can make no claims about an advantage in general
(see Dominey, 1998, for another way of associatively learning events at diVerent time
delays). Further, although we chose a buVer of four time steps a priori (we did not
simulate with any other buVer sizes), it could be argued by using task characteristics
to stipulate part of the model architecture, we have unfairly favoured the buVer
model over the SRN. Whether and in what conditions task requirements can Wx a
buVer size is a question that can only be answered with future research. But we have
shown that the SRN barely predicts human performance at all, despite its ability to
Wt such performance, and also that a certain plausible buVer model fares better.

Two possible ways of construing buVer models might account for future data. One
is that the buVer size is Wxed for all tasks. The second is that task requirements lead to
diVerent buVer sizes, perhaps depending on domain (e.g. auditory vs. visual stimuli)
or, more interestingly, as a learned adjustment to the statistical properties of the stim-
uli. In the latter case, learning might be best understood in terms of a pool of buVer
models, each with diVerent buVer sizes; the model that performs best gets progres-
sively weighted more strongly so that buVer size adjusts to task requirements (cf.
Jacobs, Jordan, & Barto, 1991).

Elman (1990) pointed out the computational inelegance of Wxed buVer models: a
certain time window needs to be hard-wired in, indeed a window as large as the lon-
gest dependency that can and should be learned, which means many pools of units
will be irrelevant most of the time. The SRN learns to remember over diVerent time
spans depending on task. Further, the SRN has been shown to have interesting prop-
erties in terms of the hidden unit representations it can learn (e.g. Cleeremans, 1993;
Elman, 1993). Despite the attractions of the SRN, there remains the question of what
sort of model actually best explains human data, which is our interest. Cleeremans
(1993, chapter 5) compared the SRN and a buVer model in terms of their ability to
simulate how people learn on a serial reaction time (SRT) task. He found that where
the buVer model (with a buVer of four time steps) and the SRN made diVerent predic-
tions, and where the data diVered signiWcantly in that respect, the buVer model per-
formed better than the SRN. SpeciWcally, both the buVer model and people could
learn a certain probabilistic diVerence over random intervening material, whereas the
SRN could not. Future research needs to consider more ways of directly contrasting
the models in explaining human learning.

In the buVer model we implemented, all stored elements are accessible at once. It is
neither a ‘Wrst in-Wrst out’ nor a ‘last in-Wrst out’ buVer. As discussed by Dienes and
Longuet-Higgins (2004), whether people use a buVer for learning in which the Wrst or
last item is most accessible Wrst has important and testable implications for the types
of musical structures that can be most easily learned, whether context free or context
sensitive grammars are relative easier to learn.

Although it was shown that the SRN and the memory buVer model did in fact
learn the non-local mapping in the form of a value–value mapping between elements,
it is uncertain whether this is the type of representation used by the human subjects.
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The inversion rule can also be represented in the form of a variable–variable map-
ping, or what Marcus refers to as operations over variables (Marcus, 2001).

These two forms of representations are very diVerent and it is seems rather
unlikely that the SRN or memory buVer model could learn a variable–variable map-
ping. Similarly, from the empirical work presented by Kuhn and Dienes (2005) it is
impossible to distinguish between these two forms of representation in terms of what
people implicitly learn, and until we know how the inversion rule is represented in the
human mind, it remains uncertain whether the models can capture all aspects of
implicit learning of musical structures. This must remain a question for future
research. Moreover, the types of rules that can be learnt largely depend on the
domain in which the stimuli are presented. For example, when presented with letter
strings, people tend to become more sensitive towards local rather than non-local
dependencies. Indeed, in everyday life, what we learn about letters is what letters can
go together; what we learn about music includes long distance relations like transpo-
sition. Maybe the ability to track long distance relations arose speciWcally in the audi-
tory domain because of our need to keep track of people attempting to reproduce
sounds given that diVerent people have diVerent productive pitch ranges making
transpositions inevitable. It therefore remains to be seen whether the data from other
domains is relatively best captured by the SRN or the memory buVer model.

In sum, this paper has considered the SRN and memory buVer models as models
of human learning. We argue that the SRN can rapidly learn long distance dependen-
cies that people can learn, which is important in evaluating the SRN as a model of
people. However, the SRN does not characteristically behave in this way and so it
does not constitute an explanation of how people learn long distance dependencies.
We show the memory buVer model is more strongly supported by the data of Kuhn
and Dienes (2005) by virtue of more strongly predicting those data than the SRN
does. Future research can pursue some questions we have begged: for example, what
in general determines the size of the buVer and in what domains might the SRN be
superior to the buVer model as a model of human learning?
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