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A fundamental question in vision research is whether visual recognition is determined by
edge-based information (e.g., edge, line, and conjunction) or surface-based information
(e.g., color, brightness, and texture). To investigate this question, we manipulated the stim-
ulus onset asynchrony (SOA) between the scene and the mask in a backward masking task
of natural scene categorization. The behavioral results showed that correct classification
was higher for line-drawings than for color photographs when the SOA was 13 ms, but
lower when the SOA was longer. The ERP results revealed that most latencies of early
components were shorter for the line-drawings than for the color photographs, and
the latencies gradually increased with the SOA for the color photographs but not for the
line-drawings. The results provide new evidence that edge-based information is the
primary determinant of natural scene categorization, receiving priority processing; by
contrast, surface information takes longer to facilitate natural scene categorization.

� 2016 Elsevier Inc. All rights reserved.
1. Introduction

Humans have a remarkable ability to categorize natural scenes quickly and accurately. The human brain needs only
approximately 150 ms to decide whether a color photograph, flashed for 20 ms, contains animals or vehicles (Rousselet,
Fabre-Thorpe, & Thorpe, 2002; Thorpe, Fize, & Marlot, 1996; VanRullen & Thorpe, 2001), even with little or no attention
applied to the task (Feifei, VanRullen, Koch, & Perona, 2005; Li, VanRullen, Koch, & Perona, 2002; Otsuka & Kawaguchi,
2007; Rousselet et al., 2002). The challenge is to explain how rapid natural scene categorization takes place in the human
brain.

A recent fMRI study found that line-drawings generated similar neural activation as color photographs in the parahip-
pocampal place area (PPA) and the retrosplenial cortex (RSC), which suggests that the human visual system uses schematic
representations with content that is analogous to simple line-drawings, to encode and process statistical regularities in a
scene (Walther, Chai, Caddigan, Beck, & Fei-Fei, 2011). This finding has provided new evidence for an edge-based theory that
assumes that edge-based representations are sufficient for object recognition and that surface characteristics such as color,
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brightness, and texture are less efficient routes for accessing the memorial representation (Biederman, 1987; Biederman &
Ju, 1988). Indeed, some studies have found that surface gradients such as color changes had little influence on object clas-
sification and identification (e.g., Biederman & Ju, 1988; Cave, Bost, & Cobb, 1996; Joseph & Proffitt, 1996) or even impaired
object classification (e.g., Gagnier & Intraub, 2012). For example, Biederman and Ju (1988) demonstrated that the reaction
times and error rates were virtually identical for the common objects of color photographs and line-drawings when the
images were briefly (50–100 ms) presented. Thus, although scene recognition and object recognition are technically differ-
ent, the same perceptual processes might be involved. However, due to poor temporal resolution, on the order of one to sev-
eral seconds (Rossion, Kung, & Tarr, 2004), the above fMRI study cannot discriminate differences in the time course of
categorizing color photographs and line-drawings.

The role of surface properties in object or scene recognition remains controversial (e.g., Gagnier & Intraub, 2012; Parron &
Washburn, 2010; Wichmann, Sharpe, & Genenfurtner, 2002). In contrast with the edge-based theory, the alternative surface-
based theory assumes that surface gradients are central for object recognition and that both contour and surface information
provide simultaneous routes for basic-level categorization. This perspective has received support from other studies (e.g.,
Tanaka, Weiskopf, & Williams, 2001; Wichmann et al., 2002; Wurm, Legge, Isenberg, & Luebker, 1993). For example, color
improved object recognition of common food items when there was no time limit on the stimulus presentation (Wurm
et al., 1993).

Interestingly, Laws and Hunter (2006) did not find a significant difference in the accuracy between the objects in color
photographs and line-drawings with a 20-ms presentation of each image, which is consistent with the findings of
Biederman and Ju (1988), but a marginally significant advantage for color photographs over line-drawings was found
(p = 0.07) with a 1000-ms presentation of each image, which is principally consistent with the findings of Wurm et al.
(1993). A comparison of the above studies also reveals that most of the studies in support of the edge-based theory limited
the presentation times or processing duration to a very short time, while there was no time limit or a long processing time in
the study that supported the surface-based theory. Thus, we predict that the stimulus presentation or processing duration
could modulate the role of the surface information in scene perception. Specifically, if the processing duration is long enough,
then the surface information should facilitate the recognition; however, if the processing duration is extremely short, then
surface information could even impair recognition performance if edge-based information is thereby harder to extract. If the
latter occurs, then the result will provide new evidence for edge-based information receiving priority processing.

The purpose of the present study was to address this issue by adopting event-related potentials (ERPs) in a backward
masking task of categorizing natural scenes. To manipulate the processing duration, a backward masking paradigm was
adopted in the present ERP study, in which the stimulus duration was constant but the stimulus onset asynchrony (SOA)
between the image and mask was varied. Backward masking is useful in investigating the time course of information pro-
cessing in the visual system in that it allows processing to be interrupted at different times (Bacon-Macé, Macé, Fabre-
Thorpe, & Thorpe, 2005; Hansen & Loschky, 2013; Holcomb & Grainger, 2006; Kovács, Vogels, & Orban, 1995; Loschky,
Hansen, Sethi, & Pydimarri, 2010; Loschky et al., 2007; Macknik & Livingstone, 1998; Rieger, Braun, Bülthoff, &
Gegenfurtner, 2005; Rolls, Tovée, & Panzeri, 1999; VanRullen & Koch, 2003). Usually, when the SOA becomes longer, the
behavioral performance and neural activation recorded by fMRI increase and so does the ERP differential activity, roughly
between 150 and 250 ms on the targets and distracters (Bacon-Macé et al., 2005; Holcomb & Grainger, 2006). Because accu-
racy increases significantly with SOAs below 44 ms (i.e., 6.25, 12.50, 18.75, 25, 31.25, 43.75 ms, see Bacon-Macé et al., 2005),
the SOA was set at 13, 27, 40 and 213 ms in the present study. Moreover, to explore the role of edge-based and surface-based
information in natural scene categorization, we adopted color photographs and line-drawings as stimuli because the color
photographs include both edge-based information (e.g., edge, line, and conjunction) and surface properties (e.g., color,
brightness, and texture), whereas line-drawings include only edge-based information, as established in a previous study
(Walther et al., 2011).

Previous ERP studies have shown that natural scene categorization involves two stages: a perception stage that extracts
information about different features of the visual input and a decision stage that evaluates the relevance of the information
in making a decision (Bacon-Macé et al., 2005; VanRullen & Thorpe, 2001). Early ERP components such as P1 and N1 are asso-
ciated with feature detection or integration (Hillyard & Münte, 1984) and are sensitive to elemental features of stimuli (e.g.,
Holcomb & Grainger, 2006; Itier, Latinus, & Taylor, 2006). Given that color photographs involve both edge-based and surface-
based information while line-drawings include only edge-based information, differences in the components at the percep-
tual stage could be elicited by color photographs versus line-drawings. Specifically, if surface-based information is processed
simultaneously with edge-based information such that both facilitate categorization, then the latencies of the early compo-
nents should be at least as fast for the color photographs as for the line-drawings. Conversely, if the latencies of early com-
ponents are faster for the line-drawings than the color photographs, then it indicates the importance of edge-based
information, with surface information analyzed as a secondary route for visual cognition which does not facilitate early
on. Indeed, Walther et al. (2011) found that there was only a low correlation between the neural activity that was generated
by color photographs and the neural activity that was generated by line-drawings in early visual areas, which suggests that
the feature analysis in early visual processing differs between color photographs and line-drawings. The later ERP compo-
nents, such as N2 and P3, are related to decision making (Folstein & Van Petten, 2008; Nieuwenhuis, Aston-Jones, &
Cohen, 2005). If only an edge-based representation is sufficient in the decision-making process, then there will be no differ-
ence in the pattern of later components of color photographs and line-drawings, as suggested by Walther et al. Conversely, if
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an edge-based representation is not sufficient in the decision-making process, then there will be differences in the pattern of
later components between color photographs and line-drawings.

To the best of our knowledge, although a considerable number of studies have investigated the role of surface information
in scene and object recognition (Biederman & Ju, 1988; Delorme, Richard, & Fabre-Thorpe, 2000; Gagnier & Intraub, 2012;
Walther et al., 2011), few studies have adopted ERP techniques to address this question. Goffaux et al. (2005), using a go/
no-go paradigm, measured ERPs when people categorized normally colored, grayscale and abnormally colored scenes with
a 100-ms presentation. They found that the reaction times and accuracy were optimal for the normal version, followed by
the grayscale and then the abnormal version; the onset of the early ERP component at the frontal sites mirrored these effects.
Thus, color contributes to rapid natural scene categorization, which is consistent with the surface-based account. However,
although the stimulus presentation in this study was 100 ms, they used a long variable SOA of 1500–1800 ms. Because no
masks were used to interrupt the processing, there was sufficient time to process the image fully. Moreover, their concern
was the role of color in natural scene categorization, and thus, they did not answer how edge-based and surface-based infor-
mation contributes to natural scene categorization. The role of edge-based and surface-based information and its interaction
with the processing duration in scene recognition remains an open question.

In addition, all of the above ERP studies used a go/no-go paradigm, during which people first made a decision about
whether the image contained animals or vehicles and then performed the go or no-go reaction. Because the targets and dis-
tracters belonged to different categories, the differential activity between the targets and distracters might have reflected a
difference in either a high-level property such as the category or a low-level property such as the contrast (Rousselet &
Pernet, 2011). To avoid this ambiguity, we used a forced-choice rather than go/no-go task and compared the differential
activity between incorrect and correct trials. Because there were incorrect and correct trials for each category, the analysis
of the differential activity according to the correctness should reflect how people correctly categorize scenes. Second,
because the targets and distracters require different responses in the go/no-go task, the differential activity between the tar-
gets and distracters could result from either different decision-making processes or different preparations for reactions. To
dissociate the reaction preparations from the decision-making processes, the locations of six category names were randomly
assigned on each trial, and a blank was displayed for 500 ms before the presentation of the category names (see Fig. 1).

2. Methods

2.1. Participants

Twenty-two undergraduate and graduate students (11 male, 11 female), aged 19–29 years (M = 21.82, SD = 2.34), volun-
tarily took part in this experiment and were paid for their attendance. All of them had normal or corrected-to-normal vision
and gave the written informed consent. None of them had any history of neurological or psychiatric diseases. This experi-
ment was conducted in accordance with the Declaration of Helsinki and was approved by the committee for the protection
of subjects at the Institute of Psychology, Chinese Academy of Sciences.

2.2. Materials

Color photographs and line-drawings of six natural scene categories (beaches, city streets, forests, highways, mountains
and offices) were adopted as stimuli, which were first used by Walther et al. (2011).1 Each category had 76–80 different
images, for a total of 475. Each image had two versions: one was a color photograph, and the other was a line-drawing. The
line-drawings were produced by trained artists by tracing the contours in the color photographs (see Walther et al., 2011).
All of the images were resized to 320 ⁄ 240 pixels. Two white noise images at two different spatial scales were generated as
masks: one was generated at the resolutions of 320 ⁄ 240, and the other was generated at the resolutions of 20 ⁄ 15 and then
resized to 320 ⁄ 240 pixels. Each mask also had two versions: one in color, the other in grayscale. The experiment was carried
out on a CRT monitor with a resolution of 1280 ⁄ 768 pixels, a mean luminance of 50.6 cd/m2, and a refresh rate of 75 Hz. The
images of six natural scene categories were presented on a silver gray background with a mean luminance of 27.4 cd/m2.

2.3. Procedure

The participants were seated in an electrically shielded, dimly lit and sound-attenuated room. The distance from the par-
ticipants’ eyes to the center of the screen was approximately 60 cm when they sat straight in the chair, and no chinrest was
used. Each image was approximately 8.70 deg wide and 8.19 deg high. The participants were tested for 10 blocks, for a total
of 950 trials. At the beginning of each trial, a black fixation cross was presented on a silver gray background in the center of
the screen for 500–950 ms at random (see Fig. 1). Then, an image was flashed for 13 ms, which was followed by two masks.2

Each mask was shown for 50 ms, for a total of 100 ms. The sequence of the two masks was randomly assigned on each trial.
1 We got all of the images from Dr. Walther.
2 In a preliminary experiment, we found that the mask with a high resolution masked color photographs (non-significantly) more than line-drawings, while a

mask with a low resolution masked line-drawings (non-significantly) more than color photographs. To balance possibly different masking effects on color
photographs and line-drawings, we used the two masks.



Fig. 1. Materials and experimental procedure. (A) Examples of six categories of color photographs and line-drawings. (B) Experimental setup and design. (C)
Masks for color photographs. (D) Masks for line-drawings.
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After the masks, there was a blank of 500 ms. The stimulus onset asynchrony (SOA) between the image and the mask was 13, 27,
40 or 213 ms, at random. After the blank, six category names appeared on the screen from left to right, for which the locations
corresponded to the keys D, F, G, H, J, and K on the keyboard. On each trial, the locations of the six category names were ran-
domly assigned, and thus, the participants would not prepare their response before its appearance and no response bias toward
a favored location would contaminate the results3 (Loschky, Ringer, Ellis, & Hansen, 2015). The participants were forced to make
a choice among the six categories by pressing the corresponding key, and there was no time limit for them to make the choice.
There was no feedback about the correctness of their response. After their response, they were further asked to report ‘‘how
clearly did you see the image” with four possible responses from left to right on a perceptual awareness scale (PAS), by pressing
the corresponding key. Then, the participants were asked to press the space key to begin the next trial when they were ready. In
each block, half of the images were color photographs, and half were line-drawings, with equal trials in each category and each
SOA. There was at least a 30-s rest between any two blocks.

2.4. EEG recording and analysis

The EEG was recorded from 64 scalp sites using Ag-AgCl electrodes in an elastic cap according to the International 10–20
system. The vertical and horizontal EOG were recorded with two pairs of electrodes placed 1 cm above and below one eye
and 1 cm lateral from the outer canthi of both eyes. The left mastoid was used as an on-line reference, and the algebraic aver-
age of the left and right mastoids was used as an off-line re-reference. The EEG and EOG signals were amplified by a NeuroS-
can Synamps amplifier with a band pass of 0.05–100 Hz and digitized at 500 Hz. The impedance of the electrodes was
maintained below 5 kX. EEG data were low-pass filtered with a cutoff frequency at 30 Hz and averaged offline for epochs
of 800 ms, starting 100 ms prior to the stimulus onset and ending 700 ms afterward. A baseline correction was performed
for each epoch using the 100 ms before the presentation of each image. Trials with artifacts that were determined by a cri-
terion of 80 lV were rejected offline, which amounted to only 2.6% of the trials.

The ERPs were first averaged separately across correct and incorrect trials for each type of image and SOA for each subject.
The SOA of 213 ms was not included because of having an insufficient number of incorrect trials for the ERP average. In the
3 However, as participants need first search the target category name on each trial, thus the reaction time was inflated and the accuracy rather than RT was
used as a dependent variable.
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statistical analysis of the ERP data, we focused on the peak latencies and amplitudes of the posterior P1 (80–160 ms) and N1
(130–210 ms) and anterior P2 (140–240 ms) and the mean amplitudes of the posterior P2 (210–260 ms) and anterior N2
(220–320 ms), P3 (370–420 ms), and N4 (420–520 ms). The time windows were chosen because they best captured the dif-
ferences among the different conditions and were relatively free from overlap with adjacent ERPs. Based on previous studies
(e.g., Bacon-Macé et al., 2005; Melloni et al., 2011) and the topography of each component in the present study, a group of
occipital electrodes (CB1, O1, Oz, O2, and CB2) was selected for the posterior P1, N1, and P2 (see Fig. 3C and E); a group of
fronto-central electrodes (F3, Fz, F4, FC3, FCz, FC4, C3, Cz, and C4) was selected for the anterior P2, N2, P3, and N4 (see Fig. 5C
and E). The latencies and amplitudes were computed as the means over groups of electrodes that were representative of the
topography of each component for each subject. The mean and standard error for each component were computed across
subjects. Each was subjected to a repeated measures three-way ANOVA with the factors of type of image (color photographs
vs. line-drawings), SOA (13 ms vs. 27 ms vs. 40 ms), and correctness (correct vs. incorrect).

Key non-significant results were interpreted with Bayes factors. P-values by themselves cannot discriminate insensitive
data from support for the null hypothesis, whereas Bayes factors make that distinction. More specifically, when using the
Bayes factor, B, to compare an alternative hypothesis (H1) against the null hypothesis (H0), if B is greater than 3, then there
is substantial evidence for H1 over H0; if B is less than 1/3, then there is substantial evidence for H0 over H1; and if B is
between 3 and 1/3, then the data do not discriminate H0 from H1 (Dienes, 2011). Bayes factors were determined using
the free online software associated with Dienes (2014), which is located at http://www.lifesci.sussex.ac.uk/home/Zoltan_
Dienes/inference/bayes_factor.swf, with the Matlab and R code provided at http://www.lifesci.sussex.ac.uk/home/Zoltan_
Dienes/inference/Bayes.htm. Dienes (2014) provides a tutorial.

3. Results

3.1. Behavioral results

Fig. 2A shows the accuracy rate for color photographs and line-drawings for each SOA. Because the task was to make a
choice among the six categories, the chance probability is 0.17. The accuracy for the color photograph trials was significantly
better than chance for each SOA [SOA = 13 ms: t(21) = 11.08, p < 0.001, dz = 2.36; SOA = 27 ms: t(21) = 14.51, p < 0.001,
dz = 3.09; SOA = 40 ms: t(21) = 20.52, p < 0.001, dz = 4.38; SOA = 213 ms: t(21) = 75.99, p < 0.001, dz = 16.20], as was the
accuracy for the line-drawing trials for each SOA [SOA = 13 ms: t(21) = 10.66, p < 0.001, dz = 2.27; SOA = 27 ms: t(21)
= 12.96, p < 0.001, dz = 2.76; SOA = 40 ms: t(21) = 16.31, p < 0.001, dz = 3.47; SOA = 213 ms: t(21) = 51.09, p < 0.001,
dz = 10.89]. The results suggested that people could correctly classify natural scenes for each SOA. A repeated ANOVA with
the type of image and SOA as within-subject factors revealed that overall, the accuracy rate was higher for the color pho-
tograph trials than for the line-drawing trials [0.66 ± 0.02 vs. 0.62 ± 0.02, F(1,21) = 18.87, p < 0.001, gp2 = 0.47], which
increased with SOA [F(1.95,41.00) = 261.20, p < 0.001, gp2 = 0.93, using the Greenhouse-Geisser correction], and the increase
with the SOA was influenced by the type of image [F(3,63) = 14.42, p < 0.001, gp2 = 0.41]. Further analysis revealed that the
accuracy rate was significantly higher for the color photograph trials than for the line-drawing trials when the SOAs were 27,
40 and 213 ms [SOA = 27 ms: 0.61 ± 0.03 vs. 0.55 ± 0.03, t(21) = 3.62, p < 0.01, dz = 0.77; SOA = 40 ms: 0.72 ± 0.03 vs.
0.64 ± 0.03, t(21) = 4.81, p < 0.001, dz = 0.96; SOA = 213 ms: 0.90 ± 0.01 vs. 0.84 ± 0.01, t(21) = 5.57, p < 0.001, dz = 1.19],
but was lower for the color photograph trials than for the line-drawing trials when the SOA was 13 ms [0.41 ± 0.02 vs.
0.44 ± 0.03, t(21) = �2.16, p < 0.05, dz = 0.46]. The results indicated that the facilitatory role of surface information in natural
scene categorization is modulated by the processing duration. A lower performance for the color photograph trials than for
the line-drawing trials when SOA was 13 ms revealed that surface-based information could impair recognition performance
Fig. 2. Accuracy rates. (A) Accuracy rates for color photograph trials and line-drawing trials in each SOA, in which the dotted line was the chance level; (B)
accuracy rates contributed by surface-based information, calculated by accuracy rate for color photographs minus accuracy rate for line-drawings in each
SOA, and accuracy rates contributed by edge-based information, calculated by accuracy rate for line-drawings minus the chance level in each SOA; (C)
awareness scores for color photograph trials and line-drawing trials in each SOA. The error bars depict standard errors.
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when the processing time was extremely limited, providing evidence for edge-based information receiving priority
processing.

To further examine the contribution of surface-based and edge-based information to accuracy, we took the accuracy dif-
ference between the color photograph trials and the line-drawing trials as the accuracy contributed by surface properties
and took the accuracy difference between the line-drawing trials and chance level (i.e., 0.17) as the accuracy contributed
by edge-based features (see Fig. 2B). A repeated ANOVA with the contribution of different types of information and SOA
as within-subject factors revealed that overall the accuracy contributed by edge-based information was much larger than
that contributed by surface-based information [0.04 ± 0.01 vs. 0.45 ± 0.02, F(1,21) = 191.36, p < 0.001, gp2 = 0.90], the accu-
racy contributed by edge-based and surface-based information increased with SOA [F(1,21) = 212.77, p < 0.001, gp2 = 0.91],
and the increase with SOA was influenced by the contribution type [F(1,21) = 34.93, p < 0.001, gp2 = 0.63]. Further analysis
revealed that the accuracy contributed by the edge-based information was much larger than that contributed by the surface-
based information for each SOA [SOA = 13 ms: �0.04 ± 0.02 vs. 0.27 ± 0.03, t(21) = 8.01, p < 0.001, dz = 1.71; SOA = 27 ms:
0.06 ± 0.02 vs. 0.38 ± 0.03, t(21) = 8.24, p < 0.001, dz = 1.76; SOA = 40 ms: 0.08 ± 0.02 vs. 0.47 ± 0.03, t(21) = 9.81, p < 0.001,
dz = 2.09; SOA = 213 ms: 0.07 ± 0.01 vs. 0.67 ± 0.01, t(21) = 25.39, p < 0.001, dz = 5.41]. Interestingly, the contribution of
edge-based information gradually and significantly increased with SOA (all ps < 0.001), whereas the contribution of
surface-based information increased from SOA of 13 ms to SOA of 27 ms [�0.04 ± 0.02 vs. 0.06 ± 0.02, t(21) = 5.17,
p < 0.001, dz = 1.10], but there were no significant difference among SOAs of 27, 40, and 213 ms (all ps > 0.34). The results
indicated that the edge-based information plays a primary role and the surface-based information a secondary role in natural
scene categorization.

Finally, we calculated the average awareness score for each SOA of color photographs and line-drawings (see Fig. 2C).
When SOA was 13 ms, the awareness scores were significantly above 1 (no experience) for both types of images [color pho-
tographs: t(21) = 8.97, p < 0.001, dz = 1.91; line-drawings: t(21) = 9.14, p < 0.001, dz = 1.95], but were not significantly differ-
ent from 2 (brief glimpse) [color photographs: t(21) = �0.61, p = 0.55; line-drawings: t(21) = �0.21, p = 0.83]. When SOA was
27 ms, the awareness score for color photographs was significantly above 2 (weak glimpse) [t(21) = 3.38, p < 0.01, dz = 0.72],
but significantly below 3 (almost clear experience) [t(21) = �5.45, p < 0.001, dz = 1.12]; the awareness score for line-
drawings was not significantly above 2 (weak glimpse) [t(21) = 1.70, p = 0.10], and significantly below 3 (almost clear expe-
rience) [t(21) = �7.32, p < 0.001]. When the SOA was 40 ms, the awareness score for both types of images were significantly
above 2 (weak glimpse) [color photographs: t(21) = 5.68, p < 0.001, dz = 1.21; line-drawings: t(21) = 3.71, p = 0.001,
dz = 0.79], but significantly below 3 (almost clear experience) [color photographs: t(21) = �2.62, p < 0.05, dz = 0.56; line-
drawings: t(21) = �4.88, p < 0.001, dz = 1.04]. When the SOA was 213 ms, the awareness score for color photographs was sig-
nificantly above 3 (almost clear experience) [t(21) = 4.29, p < 0.001, dz = 0.91], but significantly below 4 (clear experience) [t
(21) = �6.48, p < 0.001, dz = 1.38]; the awareness score for line-drawings was not significantly above 3 (almost clear expe-
rience) [t(21) = 0.85, p = 0.40], and significantly below 4 (clear experience) [t(21) = �9.23, p < 0.001, dz = 1.97]. That is, par-
ticipants reported having experience below ‘‘almost clear experience” for both types of images when SOA were 13, 27, and
40 ms, and having mainly ‘‘almost clear experience” only when SOA was 213 ms.

3.2. ERP results

The ERP data of the color photographs and line-drawings in both the correct and incorrect trials at the occipital sites (CB1,
O1, Oz, O2, and CB2) and fronto-central sites (F3, Fz, F4, FC3, FCz, FC4, C3, Cz, and C4) were analyzed when the SOA was 13,
27, and 40 ms. The SOA of 213 ms was not included because of having an insufficient number of incorrect trials for the ERP
average. We first consider how the type of image, SOA, and correctness influenced the posterior P1, N1, and P2 at the occip-
ital sites. Then, we show how the factors modulated the anterior P2, N2, P3, and N4 at the fronto-central sites. Three-way
repeated ANOVAs with the type of image, SOA, and correctness as within-subject factors were performed over the latencies
or amplitudes of each component. To demonstrate the different time courses of the natural scene categorization of the color
photographs and line-drawings, we reported only two-way interactions between the type of image and the SOA and between
the type of image and the correctness. Finally, we will explore the relationship between the behavioral accuracy and ERP
effects by using regression analysis.

3.2.1. Posterior P1, N1, and P2 effects
Fig. 3 shows ERP data at the occipital electrode sites, in which the ERP waveforms were computed over the group of occip-

ital electrodes (CB1, O1, Oz, O2, and CB2), which was representative of the topography of each component. Fig. 4 shows the
latencies or amplitudes of the posterior P1, N1, and P2 under each condition. Table 1 summarizes the significant results of
the three-way repeated ANOVAs that were performed over the latencies or amplitudes of the posterior P1, N1, and P2.

3.2.1.1. Peak latencies of the posterior P1 and N1. For the P1 peak latencies, there was only a significant SOA by the type of
image interaction. As shown in Fig. 4, consistent with the edge-based theory, the P1 peak latency was significantly shorter
for the line-drawing trials than for the color photograph trials when SOA was 40 ms [122.61 ± 3.43 ms vs. 115.19 ± 3.30 ms, t
(21) = 2.39, p < 0.05, dz = 0.51]; but inconsistent with the edge-based theory, the P1 peak latency was significantly shorter for
the color photograph trials than for the line-drawing trials when SOA was 13 ms [110.61 ± 2.19 ms vs. 116.29 ± 2.67 ms, t
(21) = �2.22, p < 0.05, dz = 0.47], and there were no significant differences between the color photograph trials and the



Fig. 3. ERP data at the occipital electrodes. (A) Grand-average ERPs of correct and incorrect trials for color photographs and line-drawings in each SOA,
averaged across five occipital electrodes CB1, O1, Oz, O2, and CB2. (B) ERP differences of incorrect minus correct trials for color photographs and line-
drawings in each SOA. (C) The scalp topography of the posterior P1, N1, and P2, incorrect minus correct trials separately for color photographs and line-
drawings. (D) ERP differences of color photograph trials minus line-drawing trials for correct and incorrect ones in each SOA. (E) The scalp topography of the
posterior P1, N1, and P2, color photograph trials minus line-drawing trials separately for correct and incorrect ones.
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Fig. 4. Latencies or amplitudes of the posterior P1, N1, and P2. (A) Latencies or amplitudes of the posterior P1, N1, and P2 for the correct trials under each
condition. (B) Latencies or amplitudes of the posterior P1, N1, and P2 for the incorrect trials under each condition. The error bars depict the standard errors.

Table 1
Significant results of the three-way repeated ANOVAs performed over the latencies or amplitudes of the posterior P1, N1, and P2, considering the type of image,
SOA, and correctness.

Posterior P1 latency Posterior N1
latency

Posterior P1
amplitude

Posterior N1
amplitude

Posterior P2
amplitude

F gp2 F gp
2 F gp2 F gp2 F gp2

Typ 31.90⁄⁄⁄ 0.60 28.39⁄⁄⁄ 0.58 43.37⁄⁄⁄ 0.67 202.57⁄⁄⁄ 0.91
SOA 10.23⁄⁄ 0.33 6.42⁄⁄ 0.23 21.88⁄⁄⁄ 0.51 4.38⁄ 0.17 105.74⁄⁄⁄ 0.83
Acc 4.43⁄ 0.17 14.62⁄⁄ 0.41 7.00⁄ 0.25
Typ ⁄ SOA 11.32⁄⁄⁄ 0.35 7.34⁄⁄ 0.26 19.28⁄⁄⁄ 0.48 16.31⁄⁄⁄ 0.44
Typ ⁄ Acc 15.42⁄⁄ 0.42 15.99⁄⁄ 0.43 17.10⁄⁄⁄ 0.45 19.22⁄⁄⁄ 0.48
Acc ⁄ SOA 4.77⁄ 0.19 15.31⁄⁄⁄ 0.42 11.67⁄⁄⁄ 0.36

Note: In each ANOVA, we report F (and df) values with significance. ⁄ p < .05; ⁄⁄ p < .01; ⁄⁄⁄ p < .001.
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line-drawing trials when SOA was 27 ms [118.43 ± 2.57 ms vs. 118.45 ± 3.07 ms, t(21) = �0.01, p = 0.99]. However, more
importantly, the P1 peak latency significantly increased with the SOA only for the color photograph trials (ps < 0.05) but
not for the line-drawing trials (ps > 0.12). To interpret the latter non-significant results, Bayes factors were used (Dienes,
2011). Nothing at all follows from a non-significant result in itself, but a Bayes factor (B) can indicate substantial evidence
for the null hypothesis (B < 1/3), that the data are insensitive (1/3 < B < 3), or substantial evidence for the alternative (B > 3).
Because the linear trend was significantly greater for the color photograph trials than for the line-drawing trials, the alter-
native hypothesis for the line-drawing trials can be represented as being uniform between 0 and the maximum provided by
the linear trend estimated for the color photograph trials. For the P1 latencies, the linear trend for the line-drawing trials was
�1 ms (SE = 2 ms); using the uniform range [0, 12] to represent the alternative (where 12 was the linear trend for color pho-
tographs) yields B = 0.15. In other words, there is substantial evidence for the null hypothesis of no linear trend in the P1
latencies for the line-drawing trials over the alternative. Thus, the results indicated that shorter SOA was sufficient for
extracting information from line-drawings rather than color photographs, which was principally consistent with the hypoth-
esis of the edge-based theory.

For the N1 peak latencies, there was a significant type of image by SOA interaction. As shown in Fig. 4, consistent with the
edge-based theory, there was significantly shorter N1 peak latency for the line-drawing trials than for the color photograph
trials when SOA was 27 and 40 ms [SOA = 27 ms: 172.39 ± 1.87 ms vs. 162.20 ± 2.20 ms, t(21) = 5.37, p < 0.001, dz = 1.15;
SOA = 40 ms: 180.49 ± 1.85 ms vs. 161.21 ± 3.46 ms, t(21) = 5.70, p < 0.001, dz = 1.21], but there were no significant differ-
ences on the N1 peak latency between color photograph trials and line-drawing trials when SOA was 13 ms
[162.93 ± 1.78 ms vs. 159.74 ± 2.54 ms, t(21) = 1.55, p = 0.14]. However, more importantly, the N1 peak latency significantly
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increased with SOA for the color photograph trials (ps < 0.05) but not for the line-drawing trials (ps > 0.17). Similarly, the
linear trend was 1 ms (SE = 3.5 ms) for the line-drawing trials; using the uniform [0, 18] to represent the alternative (where
18 was the linear trend for the color photographs) yields B = 0.31, which is also substantial evidence for the null hypothesis.
The results confirmed that shorter SOA was sufficient for extracting information from line-drawings rather than color pho-
tographs, which was substantially consistent with the edge-based theory.

In addition, the type of image by correctness interaction was also significant. The N1 peak latency was significantly
shorter for the incorrect than correct trials for the color photograph trials [168.87 ± 1.64 ms vs. 175.01 ± 2.03 ms, t(21)
= �4.10, p = 0.001, dz = 0.87], but not for the line-drawing trials [162.19 ± 2.41 ms vs. 159.91 ± 2.59 ms, t(21) = 1.77,
p = 0.09]. That is, the N1 peak latency was related to correct classification for color photographs.

3.2.1.2. Amplitudes of the posterior P1, N1, and P2. For the posterior P1 peak amplitudes, there was a significant type of image
by SOA interaction. For both types of images, the P1 amplitude significantly increased from a SOA of 13 to a SOA of 27 [color
photographs: 2.77 ± 0.39 lV vs. 3.58 ± 0.45 lV, t(21) = �2.90, p < 0.01, dz = 0.62; line-drawings: 1.65 ± 0.40 lV vs.
2.28 ± 0.51 lV, t(21) = �2.56, p < 0.05, dz = 0.55], but not from a SOA of 27 to a SOA of 40 (ps > 0.29). The interaction of
the type of image by correctness also reached significance. For the color photographs, the P1 amplitude was significantly
larger for correct than incorrect trials for the color photographs [3.54 ± 0.41 lV vs. 3.22 ± 0.44 lV, t(21) = 3.51, p < 0.01,
dz = 0.75], but the P1 amplitude was marginally significantly smaller for the correct than the incorrect trials for the line-
drawings [1.73 ± 0.49 lV vs. 2.08 ± 0.44 lV, t(21) = �2.04, p = 0.054, dz = 0.43]. That is, incorrect classification was related
to different P1 effects for color photographs and line-drawings.

For the posterior N1 peak amplitudes, there was a significant type of image by correctness interaction. The N1 effect was
significantly larger for the incorrect than correct trials for the color photographs [�5.71 ± 0.48 lV vs. �4.64 ± 0.52 lV, t(21)
= 4.51, p < 0.001, dz = 0.96] but not for the line-drawings [�3.03 ± 0.45 lV vs. �3.02 ± 0.46 lV, t(21) = 0.08, p = 0.94]. Fur-
thermore, for color photographs, the comparison between incorrect and correct trials for each SOA revealed that the N1
effect was significantly larger for the incorrect than correct trials when the SOA was 27 and 40 ms [SOA = 27 ms:
�5.86 ± 0.59 lV vs. �4.54 ± 0.53 lV, t(21) = 4.35, p < 0.001, dz = 0.93; SOA = 40 ms: �5.89 ± 0.57 lV vs. �4.03 ± 0.58 lV,
t(21) = 4.54, p < 0.001, dz = 0.97, respectively], but not when the SOA was 13 ms [�5.37 ± 0.42 lV vs. �5.34 ± 0.53 lV,
t(21) = 0.08, p = 0.94]. The difference for SOA of 13 ms was �0.03 lV (SE = 0.37), using the uniform [�1.86, 0] to represent
the alternative (where �1.86 was the difference for SOA of 40) yields B = 0.27, which is substantial evidence for the null
hypothesis. Thus, the results suggested that N1 was related to correct classification of color photographs when SOA was
longer than 13 ms.

For the posterior P2 amplitudes, there was a significant type of image by SOA interaction. The posterior P2 amplitude was
significantly larger for the line-drawing trials than for the color photograph trials for each SOA (ps < 0.001), while the P2
amplitude significantly decreased with the SOA for both types of images (ps < 0.001). The interaction of the type of image
and correctness was also significant. For color photographs, the P2 amplitude was significantly larger for incorrect than cor-
rect trials [2.68 ± 0.41 lV vs. 1.82 ± 0.36 lV, t(21) = 3.96, p = 0.001, dz = 0.84] but not for the line-drawings [4.15 ± 0.36 lV
vs. 4.33 ± 0.35 lV, t(21) = 1.55, p = 0.14]. That is, the posterior P2 amplitude was related to correct classification for color
photographs.

3.2.2. Anterior P2, N2, P3 and N4 effects
Fig. 5 shows the ERP data at the fronto-central electrode sites, at which the ERP waveforms were computed over the group

of fronto-central electrodes (F3, Fz, F4, FC3, FCz, FC4, C3, Cz, and C4), which were representative of the topography of each
component. Fig. 6 shows the latencies or amplitudes of the anterior P2, N2, P3 and N4 under each condition. Table 2 sum-
marizes the significant results of the three-way repeated ANOVAs that were performed over the latencies or amplitudes of
the anterior P2, N2, P3 and N4.

3.2.2.1. Peak latencies of the anterior P2. For the anterior P2 peak latencies, there was a significant type of image by SOA inter-
action. As shown in Fig. 6, consistent with the edge-based theory, there was significantly shorter anterior P2 peak latency for
the line-drawing trials than for the color photograph trials for all SOAs [SOA = 13 ms: 176.39 ± 3.72 ms vs. 171.19 ± 4.44 ms, t
(21) = 2.13, p < 0.05, dz = 0.45; SOA = 27 ms: 181.97 ± 3.40 ms vs. 171.81 ± 4.45 ms, t(21) = 3.02, p < 0.01, dz = 0.64;
SOA = 40 ms: 193.01 ± 3.93 ms vs. 171.25 ± 4.46 ms, t(21) = 6.02, p < 0.001, dz = 1.28]. Importantly, the P2 peak latency sig-
nificantly increased with the SOA for the color photograph trials (ps < 0.05) but not for the line-drawing trials (ps > 0.84).
Similarly, the linear trend was 0 ms (SE = 3.8 ms) for the line-drawings; using the uniform [0, 17] to represent the alternative
(where 17 was the linear trend for the color photographs) yields B = 0.28, which is also substantial evidence for the null
hypothesis. Thus, consistent with the results of posterior P1 and N1 latencies, the results of anterior P2 latencies provided
strong evidence for the edge-based theory.

In addition, the type of image by correctness interaction was significant. The P2 peak latency was significantly shorter in
incorrect than correct trials for the color photographs [176.62 ± 2.57 ms vs. 190.95 ± 4.85 ms, t(21) = �4.16, p < 0.001,
dz = 0.89], but not for the line-drawings [172.07 ± 3.93 ms vs. 170.76 ± 4.53 ms, t(21) = �0.51, p = 0.62]. The anterior P2
latency difference between the color photograph trials and line-drawing trials was similar to the posterior N1 peak
latency.



Fig. 5. ERP data at the fronto-central electrodes. (A) Grand-average ERPs of correct and incorrect trials for color photographs and line-drawings in each SOA,
averaged across nine fronto-central electrodes F3, Fz, F4, FC3, FCz, FC4, C3, Cz, and C4. (B) ERP differences of incorrect minus correct trials for color
photographs and line-drawings in each SOA. (C) The scalp topography of the anterior P2, N2, P3 and N4, incorrect minus correct trials separately for color
photographs and line-drawings. (D) ERP differences of color photograph trials minus line-drawing trials for correct and incorrect ones in each SOA. (E) The
scalp topography of the anterior P2, N2, P3 and N4, color photograph trials minus line-drawing trials separately for correct and incorrect ones.
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Fig. 6. Latencies or amplitudes of the anterior P2, N2, P3, and N4. (A) Latencies or amplitudes of the anterior P2, N2, P3, and N4 for the correct trials under
each condition. (B) Latencies or amplitudes of the fronto-central components for the incorrect trials under each condition. The error bars depict the standard
errors.

Table 2
Significant results of the three-way repeated ANOVAs performed over the latencies or amplitudes of the anterior P2, N2, P3, and N4, considering the type of
image, SOA, and correctness.

Anterior P2 latency Anterior P2
amplitude

Anterior N2
amplitude

Anterior P3
amplitude

Anterior N4
amplitude

F gp2 F gp2 F gp2 F gp2 F gp2

Typ 27.66⁄⁄⁄ 0.57 26.07⁄⁄⁄ 0.55 11.57⁄⁄ 0.36 40.35⁄⁄⁄ 0.66 11.77⁄⁄ 0.36
SOA 8.95⁄⁄ 0.30 3.30⁄ 0.14 5.79⁄⁄ 0.22 6.39⁄⁄ 0.23 14.98⁄⁄⁄ 0.42
Acc 8.21⁄⁄ 0.28 5.80⁄ 0.22 24.35⁄⁄⁄ 0.54 7.26⁄ 0.26
Typ ⁄ SOA 10.53⁄⁄⁄ 0.33
Typ ⁄ Acc 15.00⁄⁄ 0.42 4.37⁄ 0.17
Acc ⁄ SOA 3.35⁄ 0.14

Note: In each ANOVA, we report F (and df) values with significance. ⁄ p < .05; ⁄⁄ p < .01; ⁄⁄⁄ p < .001.
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3.2.2.2. Peak amplitudes of the anterior P2. For the anterior P2 peak amplitudes, there was a significant type of image by cor-
rectness interaction. The anterior P2 peak amplitude was significantly larger for incorrect than correct trials only for the color
photographs [6.53 ± 0.80 lV vs. 5.62 ± 0.68 lV, t(21) = 2.87, p < 0.01, dz = 0.61] but not for the line-drawings [4.45 ± 0.72 lV
vs. 4.29 ± 0.73 lV, t(21) = 0.65, p = 0.53]. Moreover, for both correct and incorrect trials, the anterior P2 amplitude was sig-
nificantly larger for the color photograph trials than for the line-drawing trials (ps < 0.01). That is, the anterior P2 amplitude
difference between the incorrect and correct trials was similar to the posterior P2, while the anterior P2 amplitude difference
between the color photographs and line-drawings was opposite to the posterior P2.

3.2.2.3. Amplitudes of N2, P3, and N4. As shown in Fig. 6, consistent with our prediction, the three-way ANOVA on N2, P3, and
N4 revealed only significant main effects. The amplitudes of N2, P3, and N4 were all significantly larger for the color pho-
tograph trials than for the line-drawing trials (all ps < 0.001). However, for both types of images, a longer SOA led to signif-
icantly decreased effects of N2, P3, and N4 (all ps < 0.05), while incorrect trials of both types of images elicited significantly
greater N2 but smaller N4 effects (both ps < 0.05). The results indicated that the later components varied with the SOA and
correctness similarly for the two types of images.

3.2.3. The relationship between the behavioral accuracy and ERP effects
To further explore the relationship between the accuracy rates and latencies or the amplitudes of the ERP components,

the accuracy rates were stepwise regressed on the incorrect-correct difference for the latencies or amplitudes of all of the
components (i.e., incorrect minus correct latency or amplitude of each component averaged over the SOAs) separately for
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the color photographs and line-drawings. For the color photographs, this step revealed a relationship between the accuracy
rates and peak latencies of the anterior P2 which reached only marginal significance, F(1,20) = 4.04, p = 0.058, R2 = 0.17. For
the line-drawings, this step revealed two significant models: (1) the amplitude differences of the anterior N2 significantly
predicted the accuracy rates, F(1,20) = 5.78, p = 0.026, R2 = 0.22; (2) the amplitude differences of the anterior N2 and P2 sig-
nificantly predicted the accuracy rates, F(2,19) = 7.99, p = 0.003, R2 = 0.46. Thus, the anterior P2 latency appears to be an indi-
cator of the accuracy for the color photographs, while the anterior N2 and P2 amplitudes appear to be indicators of the
accuracy for the line-drawings.

4. Discussion

Our behavioral results showed that the correct classification was higher for the color photograph trials than for the line-
drawing trials when the SOA was longer than 13 ms, but crucially, it was lower when the SOA was 13 ms. These results rec-
oncile the apparently contradictory empirical findings of Biederman and Ju (1988) with those of Wurm et al. (1993) and
Goffaux et al. (2005), and are consistent with our prediction that the role of surface information is modulated by the pro-
cessing duration. Specifically, when the processing time was extremely limited, the color and other surface properties
impaired rather than improved the performance on the color photograph trials; even when the processing time was longer,
the contribution of the surface-based information to accuracy was very limited and much smaller than that of the edge-
based information. The results provided new behavioral evidence for the edge-based theory which assumes that the
edge-based information determines primarily performance in visual recognition and gets priority processing.

Importantly, if edge-based information receives the first analysis and the surface-based information is analyzed as the
second route for recognition, then we predict that the latencies of early components that are sensitive to elemental features
of stimuli would be faster for the line-drawing trials than for the color photograph trials. Previous studies revealed that the
posterior P1 is the first component that indicates the spatial selective attention and the posterior N1 and the anterior P2 are
associated with feature detection or integration (Hillyard & Münte, 1984; Luck & Hillyard, 1994). Thus, we analyzed the peak
latencies of the posterior P1, N1, and the anterior P2 components. Consistent with the prediction, our ERP results revealed
that most latencies of the posterior P1, N1, and the anterior P2 were faster for the line-drawing trials than for the color pho-
tograph trials. Specifically, the results showed that the posterior P1 peak latency was faster for the line-drawing trials than
for the color photograph trials when SOA was 40 ms, the posterior N1 peak latency was faster for the line-drawing trials than
for the color photograph trials when SOA was 27 and 40 ms, and the anterior P2 peak latency was faster for the line-drawing
trials than for the color photograph trials when SOA was 13, 27, and 40 ms. Nonetheless, there was a slower P1 peak latency
and a similar N1 peak latency for the line-drawing trials compared to the color photograph trials when SOA was 13 ms, and a
similar P1 peak latency when SOA was 27 ms. Crucially, an increase in the SOA produced an linear increase in the latencies of
all the three components for the color photograph trials but not for the line-drawing trials. The absolute increase value of the
latency for the color photograph trials tended to rise up as one from the posterior P1 (12.00 ms) to N1 (17.56 ms) or the ante-
rior P2 (16.62 ms). Thus, the results indicated that the shorter SOA was sufficient for extracting usable information from line-
drawings, whereas more usable information continued to be extracted from color photographs as the SOA increased, which
was consistent with the edge-based theory.

Moreover, incorrect trials elicited shorter latencies of the posterior N1 and the anterior P2 compared to correct trials for
color photographs but not for line-drawings, indicating that incorrect categorization of color photographs may arise from
insufficient processing time of extracting relevant information from color photographs. Coincidently, the regression results
revealed that the accuracy rates for the color photograph trials instead of line-drawing trials could be predicted by the ante-
rior P2 latency, suggesting that a longer anterior P2 latency is related to the higher accuracy rate for color photographs. That
is, the results confirmed that sufficient processing time was crucial for extracting useful information from color photographs.
This also explains why people performed worse on the color photograph trials than on the line-drawing trials when the pro-
cessing time was extremely limited, i.e., when the SOA was 13 ms.

As there was such a short variable SOA (i.e., 13, 27, and 40 ms) and long-duration mask (100 ms), it is possible that the
latencies of the early components reflected the processing of the target plus the mask with different onset time. Neverthe-
less, previous neurophysiologic studies in monkeys, using line segments as stimuli, have demonstrated that backward mask-
ing typically does not have significant effect on the latencies of the early components in early visual areas (see Lamme,
Zipser, & Spekreijse, 2002). Consistently, our results revealed that the latencies of the early components did not change with
the SOA for the line-drawings. But we also found that the latencies of the early components gradually increasing with the
SOA for the color photographs. As the mask onset time is identical for line-drawings and color photographs, the different
latency patterns between the two conditions could not be due to the processing of the mask but the processing of the target
image. That is, surface-based information involved in color photographs is not processed simultaneously with edge-based
information, which is consistent with the edge-based theory.

Then, why would the edge-based information of the color photographs not be processed in the same way as that of the
line-drawings, especially when SOA was 13 ms? There are at least two possible explanations: either because the edge-based
information in the color photographs was not present to the same degree in the line-drawings (due to lower contrast for
example), or the presence of surface information influenced the processing of edge-based information. The former explana-
tion is consistent with the edge-base theory, while the later one is in favor of an early mechanism for surface detection,
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which seems inconsistent with the edge-based theory. However, it should be noted that the lower performance for color
photographs than for line-drawings when SOA was 13 ms indicated that this possible early detection of surface properties
did not lead to early facilitation effects. That is, although there is possibly an early mechanism for surface detection, surface
properties are still less efficient routes for accessing the memorial representation in natural scene categorization, which is
consistent with the edge-base theory.

Previous studies have shown that the magnocellular (M) pathway (which is sensitive to the luminance contrast) is faster
than the parvocellular (P) pathway (which is sensitive to the chromatic contrast and generally less sensitive to the luminance
contrast) (Baseler & Sutter, 1997). The color photographs contained both luminance and chromatic information, while the
line-drawings contained only luminance information; thus, our findings are consistent with the previous findings. Moreover,
in Bar’s model, it is argued that low spatial frequencies (i.e., the global features of the image) conveyed by the M pathway are
perceived earlier than high spatial frequencies (i.e., the fine properties of the image) (Bar, 2003; Schyns & Oliva, 1994). This
relationship has been supported by a number of studies. For example, it is found that the inferior temporal cortex responded
to low spatial frequencies 51 ms earlier than when it received high spatial frequencies (Sugase, Yamane, Ueno, & Kawano,
1999). Low spatial frequency information represents global information about the shape (Bar, 2003) or reveals salient infor-
mation about the global scene structure (Schyns & Oliva, 1994). Although line-drawings are famous for conveying high spa-
tial frequency information while blurry blobs are known to convey lower spatial frequency information, the global structure
in the line-drawings produced by trained artists tracing the outlines was more salient than that in the color photographs.
Thus, our findings are also partially consistent with Bar’s model (Bar, 2003).

Nonetheless, our findings appear to be inconsistent with the finding that color can be perceived earlier than form
(Moutoussis & Zeki, 1997). In this previous study, colors were presented on the right half of the screen and oriented lines
on the left half of the screen. Both the colors and lines switched with a square-wave oscillation, and the participants were
asked to report what the color was when the bars tilted to the right or left. The perception in their study was conscious. In
our study, the stimulus was presented for 13 ms with a variable SOA of 13, 27, 40 ms between the image and the mask. Due
to the limited processing time, the perception in our study was mainly unconscious subjectively. It has been argued that
form or contour processing proceeds faster than surface processing at the unconscious level such as V1 and, by contrast, sur-
face processing proceeds faster than form or contour processing at the conscious level (Breitmeyer & Tapia, 2011). Crucially,
the early peak latencies that are within 200 ms after the stimulus onset reflect unconscious processing as a precursor to con-
scious perception and not a separate pathway. In other words, although the contour usually receives priority processing in
early scene analysis, this circumstance need not imply that the reaction time is faster for the contours than for color in con-
scious perception.

Surprisingly, although the anterior P2 amplitude was greater for the color photographs than for the line-drawings, the
posterior P2 amplitude was larger for the line-drawings than for the color photographs. Enhanced anterior P2 has been found
when people attend to a specific color (Hillyard & Münte, 1984) or when only one of several simultaneously presented
objects contains the target feature (Luck & Hillyard, 1994), which indicates that the anterior P2 reflects the detection of a
specific feature with feature-based attention (Luck, 2012, pp. 331–332) or top-down matching processes (Evans &
Federmeier, 2007). Increased posterior P2 has been found when the targets are preceded by non-informative cues rather
than valid and invalid cues, which suggests that the posterior P2 reflects relatively late processing of the stimuli in the visual
areas (Talsma, Slagter, Nieuwenhuis, Hage, & Kok, 2005). Because the posterior P2 amplitude gradually decreased with the
SOA for both types of images and it was greater for incorrect than correct trials for the color photographs, the posterior P2
amplitude might reflect a top-down redetection or filling-in of features (Komatsu, 2006; Paradiso et al., 2006) in the early
visual areas.

Unlike the above components, for both types of images, the effects of N2, P3, and N4 at the frontocentral sites gradually
decreased with the SOA, despite the effects being larger for color photographs than for line-drawings. Because the N2 reflects
an actively attended mismatch between a stimulus and a mental template while the P3 appears to reflect top-down mon-
itoring by frontal attention mechanisms that are engaged in evaluating incoming stimuli (see Folstein & Van Petten, 2008 for
review; Polich, 2007), the results were consistent with decision-making becoming easier with longer SOAs. Moreover, incor-
rect trials of both types of images elicited greater N2 and smaller N4 effects. The later components varied with SOA and cor-
rectness similarly for color photographs and line-drawings, which is in agreement with the prediction that edge-based
representation is sufficient for decision making.

Finally, we should note that there were some limitations in the present study. First, we did not include grayscale images
in the study, and thus, we could not differentiate the roles of color and other surface properties such as brightness and tex-
ture in rapid natural scene categorization. Future research should explore this arrangement by comparing the grayscales
with color photographs and line-drawings separately. Second, we did not manipulate the luminance contrasts and spatial
frequencies of the color photographs and line-drawings in the study. Further studies should investigate this type of scenario
by keeping the color photographs and line-drawings at similar luminance contrasts or spatial frequencies. Third, to compare
the ERPs elicited by edge-based information and surface-based information, we used color masks for color photographs and
gray masks for line-drawings. Further research should examine the role of different type of masks in ERPs for color pho-
tographs and line-drawings.

To summarize, our behavioral and ERP results provide converging evidence that edge-based information receives priority
processing and plays a crucial role in natural scene categorization, whereas surface information can help to improve judg-
ment only when the processing duration is sufficient. These results reconcile the apparently contradictory empirical findings
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and theoretical predictions by the edge-based and surface-based theories and help us to understand the role of edge-based
and surface-based information in rapid scene categorization and how the human brain categorizes different visual stimuli in
natural scene categorization.
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