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1       Chapter 17  

 Communicating structure, affect, 
and movement 

      Zoltán     Dienes  ,     Gustav     Kuhn  ,     Xiuyan     Guo  , 
and     Catherine     Jones         

       In Chapter 16, Bharucha, Curtis, and Paroo propose that music serves to communicate 
affect, the experience of motion, and an inducement to a particular structural inter-
pretation. We will take the meaning of ‘communicate’ to be broad and not necessarily 
implying all the pragmatic constraints that successful communication often entails. 
For example, we will take a structure to be successfully communicated even if the 
recipient is not consciously aware of what the structure as such really is. Commonly 
people appreciate musical structure, and have the experiences intended by the com-
poser, yet are not consciously aware of what the structure is. Indeed, this commentary 
will focus on the case where a structure put into music by us is detected by listeners 
without them being able to say what it is exactly they have detected. We show how 
some musical structures are analogous to certain linguistic structures in virtue of 
exhibiting mirror symmetries. We argue that people can come to implicitly learn to 
detect symmetries, musical inversions in particular (Dienes & Kuhn, forthcoming). 
Such implicit learning leads to greater liking of the structures learnt. Then we will 
show that just as music may communicate affect, structure, and movement, so can 
movement communicate structure and affect. Just as melody is a type of movement in 
tonal space, so can physical movement embody the same symmetry patterns of our 
melodies. Likewise, we present evidence that people can implicitly learn symmetries in 
movement. Finally we will discuss computational models of acquiring sensitivity to 
these structures in music and movement. First we will start with a brief introduction 
to implicit learning.     

   Implicit learning   
 The term ‘implicit learning’ was coined by Reber in 1967 to refer to the process by 
which we acquire unconscious knowledge of the structure of our environment. A key 
example that inspired Reber was natural language: Young children acquire knowledge 
of their native syntax in a way that does not allow them to verbalize what has been 
learned, even though they may have learned it very well indeed. Reber sought to inves-
tigate such learning in the lab using artificial grammars with adults. Whether or not there 
is a general purpose implicit learning process that applies in the same way to any struc-
tured domain, as Reber thought, he nonetheless could observe implicit learning — the 
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1 acquisition of unconscious knowledge — using artificial grammars in the lab. He used 
an artificial finite state grammar to specify allowable strings of letters, such that the 
letter strings were structured but on casual inspection did not appear to be so. People 
were asked to memorize such strings of grammatical letters without being told there 
was a grammar. After a few minutes of exposure to the training strings, people were 
then informed that there was a complex set of rules determining the order of letters 
within strings. People were asked to classify new strings as being either grammatical or 
not. Reber found people could classify above chance (e.g. 65 % ) even though they had 
poor ability to verbalize relevant rules and often reported they were sorry to have 
messed up the experiment. On the face of it, people had acquired unconscious knowl-
edge of the finite state grammar. Reber’s work was ignored for a couple of decades but 
then triggered an extensive literature, debating what exactly it is that people learn in 
the artificial grammar learning paradigm (e.g. Pothos,   2007  ) and whether or not it is 
unconscious (e.g. Shanks,   2005  ). In terms of the latter issue, simply asking people to 
describe the rules, as Reber had originally done, may be an insensitive measure of 
conscious knowledge. Research subsequent to Reber’s original papers has used more 
sensitive measures. The evidence for unconscious knowledge depends on which theo-
retical framework is used for defining consciousness (see Seth, Dienes, Cleeremans, 
Overgaard, & Pessoa,   2008  , for discussion). If knowledge is conscious when one is 
conscious of having the knowledge, then there is good evidence that people do indeed 
acquire unconscious knowledge in Reber’s artificial grammar learning paradigm 
(Dienes,   2008  ; cf. Shanks,   2005  ). 

 In terms of what is learned, Reber’s original claim was that people had learned 
abstract knowledge of the finite state grammar. This was a good first guess because 
people could generalize from the training strings to novel strings generated by the 
grammar. Brooks (  1978  ) made the first and most radical challenge to Reber’s claim. 
Brooks pointed out that people could simply memorize whole training strings and 
classify a test string on the basis of its similarity to one or more training strings: no 
abstract knowledge need be induced in training at all. In general, according to this 
approach, conceptual knowledge could be based on storing all encountered exemplars 
of a concept, with no further attempt at abstraction. Computational versions of such 
exemplar models (also called ‘case-based reasoning’ in other contexts) have been 
tested in artificial grammar learning (e.g. Dienes,   1992  ; Jamieson and Mewhort,   2009  ) 
and can fit a range of findings, though not all (e.g. Pothos & Bailley,   2000  ). It is unlikely 
people implicitly learn about musical structure through memorizing whole musical 
pieces, but rather, if exemplar learning is involved, of fragments. Fragments of what 
size? In artificial grammar learning, people appear to implicitly learn fragments of 
two, three, and sometimes four letters (e.g. Servan-Schreiber & Anderson,   1990  ; 
Perruchet & Pacteau,   1990  ), and Wiggins (see commentary, Chapter 18, this volume) 
has modelled the learning of musical structure with similar sized fragments of musical 
notes. 

 As people can implicitly learn more than fragments, as we will discuss later, another 
approach to modelling the implicit learning of structure is to use connectionist net-
works, which can flexibly learn a range of structures. Connectionist networks can 
learn allowable fragments yet also produce representations which lie somewhere on 
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1 a continuum of abstractness from exemplar models to rules of a grammar per se 
(Cleeremans,   1993  ; Dienes,   1992  ). Cleereman’s used a simple recurrent network 
(SRN) and showed that it learned not only the conditional probabilities of successors 
to sequences of increasing length (i.e. fragment information) but also organized its 
internal representations in a way similar to the structure of a finite state grammar. The 
SRN was also adapted to learning the constraints in musical compositions by Mozer 
(  1994  ). We will consider a specific abstract structure, mirror symmetry in music, and 
its learnability by the SRN below. 

 Bharucha et al. used a connectionist network to model musical knowledge consisting 
of nodes coding notes connected to nodes coding chords connected to nodes coding 
keys. One version of the model self-organized into the required hierarchical structure. 
Self-organizing maps have yet to be systematically explored in implicit learning gener-
ally, and this is a promising line of research. However, as we will see, Bharcha’s model 
will need augmenting to deal with the symmetry structures we will consider in this 
paper.     

   Music communicates affect and structure   
 Zizak and Reber (  2004  ) proposed that implicit learning of the structure of a domain 
can lead to greater preference for items having that structure: a structural mere expo-
sure effect. They reviewed and presented new evidence that implicit learning of visual 
sequences obeying a finite-state grammar could lead to enhanced liking of novel 
sequences obeying the same grammar. That is, the communication of structure is the 
means by which affect is itself communicated. In the finite-state grammars used by 
Zizak and Reber, most of the structure in the grammar is accounted for by the ability 
of sequence elements to predict their immediate successors, i.e. by commonly occur-
ring chunks of two or three sequence elements. Such chunking is an important part of 
learning music as well as language, but it does not account for all the structure that 
people can learn in either. The grammars above finite-state in the Chomskian hierar-
chy allow recursion and hence different types of symmetries. Figure   17.1   shows such 
two types of symmetry.  

 Consider a sequence of four elements, which we will arbitrarily call ‘k l m n’. The 
letters of the alphabet are used simply to indicate the temporal order of the element 
(k comes before l etc.), but the identities of the elements are free to vary. Each element 
could, for example, be a tone, and the sequence a melody. We will label the notes of a 
particular melody: k1 l1 m1 n1. On the right hand side of Figure   17.1  , this melody is 
indicated schematically. In the top it is reflected through a horizontal mirror. This 
creates a musical inversion. The diagram on the left indicates the mapping relation 
between notes (or intervals): the first note in the melody predicts the first note in the 
inversion; the second note in the melody predicts the second in the inversion and so 
on. The case of an inversion is illustrated in Figure   17.2   as well, showing that the map-
ping of intervals involves going to their opposite: if the melody initially descends three 
steps, the inversion initially ascends three steps and so on. Now consider the symmetry 
in the bottom part of Figure   17.1  . Now the melody is reflected in a vertical mirror and 
a retrograde results. The mapping relation is shown on the left.  
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1  The first mapping relation in Figure   17.1   corresponds to inversions and transposes, 
and also to certain linguistic structures. The ‘respectively’ construction has the same 
structure, for example: ‘Tenzin, Trinley, and Tumpo wore yellow, black, and red hats, 
respectively’, in which the first name goes with the first colour, the second with the 
second, and so on. The same structure is seen in cross serial dependencies in Dutch 
and Swiss German. Such dependencies require a grammar more powerful than context 
free. The second mapping relation in Figure   17.1   corresponds to musical retrogrades, 
and also to nesting structures in language like centre embedding: ‘The bamboo the 
panda ate was fresh’. The first noun goes with the last verb and the last noun with the 
first verb. Such dependencies can be produced by context free grammars. 

 Most models of implicit learning were designed to account for the way people can 
implicitly learn chunks (for a review see e.g. Pothos,   2007  ); but no amount of chunk 
learning can make one sensitive to symmetries per se. A different sort of computa-
tional model is needed for detecting symmetries than forming chunks. Yet symmetries 
in an abstract way are part of language and a part of music, and also of movement: 
Most movements we can do, we can also do backwards to get back to where we started; 

Contour +3 –1–6–3 +1+6

     Fig. 17.2    A musical inversion.    
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     Fig. 17.1    Two types of symmetry.    
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1 and movements we do with the left hand we can do mirror reflected with the right, 
while appreciating they are in some sense the same. It would make evolutionary sense 
for perceptual systems to learn to detect symmetries, if only because detecting 
symmetries allows shorter length encodings of stimuli and hence easier storage. Are 
mirror symmetries indeed the sort of structures that we can implicitly learn and that 
can thus influence our affect? 

 Kuhn and Dienes (  2005  ) asked participants to listen to 120 tunes, each tune consisting 
of eight notes. The last four notes were always an inversion of the first four, though 
participants were not informed of this relation, nor indeed that there were any structural 
invariants in the melodies: participants just tried to detect for each melody whether it 
had occurred before, a cover task which served simply to keep them concentrating on 
each tune as a whole. Then subjects either rated how much they liked a set of new 
strings or classified them. The new test strings were composed of novel pairings of 
tunes and of intervals, so the chunks of which they were constructed had never 
occurred in the training phase. Half the new trains had the same inversion structure as 
the training tunes, and half did not. For the classification task subjects were told that 
the strings they had been listening to were generated by a rule and they were about to 
hear some new strings, half of which followed the rule. They were asked to classify half of 
the tunes as following the rule and half as not. We also ran a control group that had no 
training but just completed the test phase. As shown in Figure   17.3  , while the control 
subjects preferred the non-inversions to the inversions, the trained subjects preferred 
inversions. Exposure to inversions led to a relative liking of inversions. Knowledge 
that the rule in question was inversion appears to be unconscious: trained subjects 
could not classify the strings as rule following or not at above chance levels. Melody 
communicated structure and affect (see also Dienes & Kuhn, submitted).  

 Dienes and Longuet-Higgins (  2004  ) used more complex sequences that followed 
the constraints of serialist music, i.e. each sequence was a ‘tone-row’ (i.e. 12 notes long 
and each note A to G occurred once and only once). People were asked to assess 
whether the ‘reply’ (second half of the tone row) went with the ‘theme’ (first half). The tone 
rows could instantiate serialist transposes, inverses, retrogrades, or inverse retrogrades. 
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     Fig. 17.3    Learning inversions, Kuhn and Dienes (  2005  ).    
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1 Highly experienced aficionados of serialist music could discriminate each of these 
from tone rows not exhibiting such symmetries — even when they believed they were 
literally guessing. 

 As Bharucha et al. indicate, melody is not the only aspect of music that can com-
municate structure. We have been investigating implicit learning of the rhythm of 
drum beats. In a training phase subjects listened to rhythms that instantiated a retro-
grade structure: The last half of each sequence was rhythmically the first half played 
backwards. Figure   17.4   shows an example: a ‘1’ stands for a hit and a ‘0’ for a rest. In a 
subsequent test phase using sequences constructed of novel chunks, when people said 
they were using intuition or just guessing, they reliably picked new retrogrades as 
being like the old ones: Figure   17.5   shows 95 %  confidence intervals for people’s ability 
to discriminate the retrogrades from the non-retrogrades (d ′ ). When trained subjects 
thought they were guessing or using intuition, they discriminated retrogrades from 
non-retrogrades (whereas untrained subjects did not).   

 Often the musical communication of structure involves feelings (for example, liking, 
intuition) that indicate the presence of structure that has been consciously discerned 
as existing, though not what that structure is (compare Norman, Price, & Duff,   2006  ). 
And sometimes people are not even aware they have discerned structure at all: this is 

0 111 1 0 111 00 11 1111110 1 110 1 1101 011

     Fig. 17.4    An example of a rhythmic retrograde.    
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     Fig. 17.5    Ability to discriminate rhythmic retrogrades from non-retrogrades when 
people thought they were guessing or just using intuition.    
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1 implicit learning, which underlies but does not yet fully constitute successful commu-
nication. Nonetheless, we had, as Bharucha et al. put it, induced an alignment of our 
subjects’ brain states coding structure with those states we had intended.     

   Movement communicates affect and structure   
 Music and movement are similar. Melodies are movement in a pitch space (and also 
movement in a richer tonal space, e.g. Longuet-Higgins,   1976  ). Figure   17.6   shows the 
modulo representation of the tones of C major. A person physically moving around 
the clock face would produce movements structurally isomorphic with corresponding 
melodies. Like movement in tonal space, physical movements have natural opposites: 
moving two steps anti-clockwise is the opposite to moving two steps clockwise. 
A series of the opposites of a sequence of movements constitutes its inverse. We are 
currently exploring the implicit learning of symmetries in movement. We had people 
walk around a circle on the ground, walking out inverses (unbeknownst to them), 
under the cover story of practising moving meditation. This procedure is fairly time-
consuming, so despite some initial encouraging results, we streamlined it by asking 
subjects to trace their fingers around a circle, as shown in Figure   17.7  . Figure   17.7   
shows two separate screen displays as seen by subjects. The subject first sees the left 
display and places their finger on the highlighted character. When the next display 
comes up (the one on the right), the subject moves their finger in the direction of the 
arrow to reach the next highlighted character. And so on until a sequence has been 

C

A

D

E

G F

B

     Fig. 17.6  Clock face structure of C major.    

     Fig. 17.7    Two successive screen displays seen by people tracing out inversions.    

17-Rebuschat-17.indd   16217-Rebuschat-17.indd   162 7/7/2011   4:38:54 PM7/7/2011   4:38:54 PM

OUP UNCORRECTED PROOF – FIRST-PROOF, 27/06/2011, GLYPH



COMMUNICATING STRUCTURE, AFFECT, AND MOVEMENT 163

43

42

41

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1 traced out. None of our subjects knew Chinese characters; thus, the material was difficult 
to verbalize. We used a subset of the very same materials used in Kuhn and Dienes 
(  2005  ). The melodies in the latter were all contained within the interval from middle 
C to the C above. To make the structure slightly harder to discern and the mapping 
onto music non-obvious, for our initial finger movement study, these two Cs were 
represented by different characters. To encourage processing the movements as a 
theme followed by a reply, after each half sequence had been traced, subjects tried to 
re-trace it unaided in one flow, then after the second half judged for the sequence as a 
whole whether it had occurred before. In the test phase, subjects classified the 
new sequences as rule following or not and then indicated the basis of their decision: 
guessing, intuition, rules or recollection (Dienes & Scott,   2005  ). As can be seen in 
Figure   17.8  , when people thought they were guessing or using intuition, they picked 
out the inverses over the non-inverses, suggesting they had implicitly learned to detect 
inverses. Movement can communicate structure and hence feelings of intuitive 
rightness.    

 The methodology of our music and movement studies allows a novel test of the 
claim that ‘music communicates movement’. Does listening to musical inverses induce 
a person to classify or like movement inverses over non-inverses? (Compare Altmann, 
Dienes & Goode,   1995  , who used finite state grammars and obtained transfer between 
music and visual symbols.) To what extent is this true for other symmetries? Conversely, 
does following movement inverses prime one to like musical inverses? These remain 
questions for future research. They are related to the role of ‘embodiment’ in under-
standing language (e.g. Zwaan & Taylor,   2006  ). According to theories of embodied 
cognition, one understands the concept of an action or object by activating the motor 
patterns that are involved in engaging with that action or object. Is there in addition an 
embodied component to understanding syntax? We have shown that people can learn 
movement patterns instantiating grammars of complexity greater than context-free 
(namely, inverses and also retrograde inverses). Does understanding the inversion 
structure of music entail in any way activation of movement inversions? Is understand-
ing centre embedding in language facilitated by performing movement retrogrades —
 or hearing musical retrogrades — or conversely harmed by performing movement 
inverses? These also remain for the time being unanswered questions.     

   Computational models of learning symmetries in music 
and movement   
 Learning inversions and retrogrades go beyond the computational models considered 
by Bharucha et al. The latter’s models were designed to learn the co-occurrence relation-
ships that occur in tonal music. However, inversions can occur in atonal music (as, for 
example, investigated by Dienes & Longuet-Higgins,   2004  ) and do not depend on any 
particular co-occurrence of tones or intervals. Similarly, learning inverses go beyond 
chunking models in the implicit learning field, because our test melodies were made 
of chunks not heard in the training phase (see Cleeremans & Dienes,   2008  , for a review 
of computational models of implicit learning). What sort of model could learn the 
inversions we used? An inversion (or a retrograde) is a type of long distance dependency. 
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1 So any model that just learned to predict one tone (or interval) from the preceding one 
would fail. The model needs some kind of buffer or memory store. A computational 
model that has a long history of use in implicit learning is Elman’s simple recurrent 
network, or SRN, illustrated in Figure   17.9   (see Cleeremans,   1993  ), which has an elegant 
memory store. This model learns structure in sequences not by having a memory of 
past events of any particular length but by (fallibly) learning how far into the past it 
should remember. At time one, the input units code the first note played and attempt to 
predict the second note at the output units by flowing activation through the hidden 
layer. Errors in prediction are used to adjust weights by back propagation. At the next 
time step, the hidden unit activations are copied to the context units. The input units 
code the second note and attempt to predict the third. But now the third is predicted 
by not just the input layer but also the activation across the context units, which carry 
information about the first note from the previous time step. So predictions about the 
third note can in principle be sensitive to the identity of both the first and second 
notes. Because the hidden layer receives input from the context and input units it now 
contains information about both the first and second notes. At the next time step this 
pattern of activation on the hidden layer is copied to the context units. The input units 
code the third note. Both the context units and input units together try to predict the 
fourth note. So the fourth note can in principle be predicted based on the first, second 
and third notes. And so on. Of course, whether the network really develops hidden 
unit representations carrying useful information from a long way back in time is in 
practice for any given case an open question. In principle it can do it if the small 
appropriate changes in the weights results in error reduction for each time step.  

 Cleeremans (  1993  ) showed that initially when exposed to a sequence structured by a 
finite state grammar, the SRN learns first order dependencies — what elements predict 
what other immediate successors. It then learns to use the preceding two elements to 
predict the next — and the preceding three elements and so on. That is, the SRN learns 
chunks of progressively higher order. But there is no reason to think the SRN is just a 
chunk learner. If the buffer can keep track of number of tones it may eventually be able 
to learn the ith tone predicts the (i +  4)th tone, regardless of the intervening material. 
Kuhn and Dienes (  2008  ) trained the SRN on the materials of Kuhn and Dienes (  2005  ) to 
see if it could indeed learn the long-distance dependencies that the inversion entailed. 

 We also used another model applied to implicit sequence learning by Cleeremans 
(  1993  ), the fixed buffer model, illustrated in Figure   17.7  . This model stores what has 
happened for a fixed amount of time into the past, here for precisely four notes into 
the past. This would correspond to say a fixed length working memory slave system 
(Baddeley,   1986  ). This model can learn associations between any tone in the preceding 
four trials and the current tone; in fact the model predicts any of these associations 
would be just as easy to learn as any other. 

 Kuhn and Dienes (  2005  ) did not only present subjects with a test set consisting of 
novel chunks (the ‘abstract’ set) as we have discussed above; we also presented subjects 
with a test set where the tunes that happened to be inverses could be distinguished 
from the non-inverses by the frequency with which the chunks had occurred in training. 
Thus we can see whether subjects or models are more sensitive to the inversion or to 
chunk statistics. 
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1  We trained the models on the same material as people for the same number of expo-
sures and tested them on the same test sets. Figure   17.10   shows the ability of each model 
to discriminate inverses from non-inverses where each point corresponds to a certain 
combination of parameter values. There were a number of parameters free to vary as is 
typical for any computational model: the learning rate, the number of hidden units, 
and so on. Because different combinations of free parameter values can dramatically 
affect the results the model produces, how do we know when a model is a good expla-
nation? If a model could predict all possible outcomes by adjusting free parameters it 
would hardly be an explanation of any outcome. To determine the explanatory power 
of each model we explored a full range of parameter space to determine to what extent 
model predictions concentrated in the region of human performance. We regard this 
as a superior methodology for evaluating models than simply fitting data.  

 The y-axis in Figure   17.10   shows performance on the test set where discrimination 
could be achieved by knowledge of chunks and the x-axis shows performance on the 
abstract set where all chunks were novel. The small squares are specific combinations 
of free parameter values for fixed buffer models and the crosses are for SRN models. It 
can be seen that the SRN models were very sensitive to chunks; the crosses rise steeply 

Error bars: 95% CI
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     Fig. 17.8    Ability to discriminate movement inverses from non-inverses when people 
thought they were guessing or just using intuition.    
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     Fig. 17.9    The two computational models used by Kuhn and Dienes (  2008  ).    
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1 in the figure. Conversely, the fixed buffer models are not sensitive to chunks in particular: 
As long as there are associations, they don’t have to be between adjacent elements to 
be learned. The large square is the mean for human data plus or minus a standard 
error. Notice that while the SRN  can  learn the abstract set and the chunk sets as well as 
people for particular combinations of free parameters, what the SRN typically does is 
learn chunks. In consequence, while 12 out of 150 fixed buffer models are contained 
in the large square, zero out of 150 SRN models are. More fixed buffer models are 
concentrated around human data than SRN models are (p <0.0005); characteristically, 
the buffer model behaves more like people than the SRN model does. 

 The models learned particular long distance associations. But this is different from 
learning inverses as such. To know that a C predicts an F four tones later is not to 
detect a mirror symmetry as such. We do not yet know what people have implicitly 
learned either — a set of specific associations or the ‘operation over variables’ (Marcus, 
  2001  ) that whatever interval was in ith position in the theme must be ( − 1) times that 
interval in the ith position in the inverse. The latter knowledge allows generalizations 
to C predicting tones other than specifically F where appropriate, and to spotting 
inverses of arbitrary length. Our models are models of learning the specific task we set 
subjects but not yet models of learning the full symmetry our materials instantiated. 
We look forward to future work determining what it is that people actually learn and 
what models can explain that ability. Finally, our models fail completely to be models 
of musical interpretation in general. What we need is a model that explains the tonal 
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     Fig. 17.10    Discrimination performance of models and people. The y-axis represents 
ability to discriminate inverses from non-inverses when chunk frequency can aid that 
discrimination. The x-axis represents discrimination performance when all chunks in the 
test phase were novel. Small squares represent fixed buffer models; crosses SRN models. 
The large square is the mean for people plus or minus one standard error.    
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1 nature of our musical appreciation, as addressed by the model of Bharucha et al., as 
well as our ability to detect and appreciate symmetry in music, as we have taken first 
step to addressing with the models reported here.      
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