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Chapter 12

How Bayesian statistics are needed  
to determine whether mental states 
are unconscious

Zoltan Dienes

Introduction
An important aspect of consciousness research is determining when a mental state (e.g. 
perception, memory, knowledge, intention) is conscious versus unconscious. Declaring 
a mental state unconscious often means asserting that some measure of conscious know-
ledge has a value of zero, or a relationship with a measure of conscious knowledge has a 
value of zero. That is, declaring a mental state unconscious often depends on asserting 
a null hypothesis. Conversely, in other situations, asserting that unconscious knowledge 
does not exist also depends on asserting a null hypothesis.

Researchers have been trained to feel ambivalent about asserting a null hypothesis (e.g. 
Gigerenzer 1993). Those feelings are based on the fact that significance testing, as normally 
conducted, contains no basis for asserting the null hypothesis. While orthodoxy offers two 
ways of providing a basis (power and confidence intervals), those solutions are often prob-
lematic in real scientific contexts (because they crucially depend on specifying a minimal 
interesting effect size, which is often hard to specify; see the discussion of the principles of 
“inference by intervals” in Dienes, 2014). In the absence of a real method for asserting the 
null hypothesis, researchers freely assert the null hypothesis following a non-significant 
result for no principled reason (backing down when challenged, or when rhetorically use-
ful). This chapter proposes a simple easy-to-use solution, one that indicates how strong 
the evidence is for the null versus the alternative hypothesis. Details of using free online 
software are described and then concrete examples given in the context of research into 
unconscious processes. Objective and subjective measures are considered in turn.

Do the data support the null hypothesis?
Initially we will consider a series of imaginary examples involving a non-significant result 
to check our intuitions about what can be concluded.

A researcher exposed people to rapidly presented faces. The task was to discriminate 
which face was presented on each trial. Participants also indicated the clarity of their 
visual experience on each trial with the perceptual awareness scale (PAS) (Ramsøy and 
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Overgaard 2004). Specifically, participants indicated if the experience for that trial was 
completely clear (4), almost clear (3), constituted a glimpse of something present (but 
content could not be specified further) (2), or was non-existent, they had no experience 
of a stimulus (1). After careful exploration, the researcher found conditions in which par-
ticipants gave a PAS rating of 2 on each trial (the example is made up). The discrimination 
ability yielded a mean d’ of 0.4, t = 2.85, p < 0.01, with 30 participants. (d’ is a measure of 
discrimination ability, giving the estimated internal signal to noise ratio; d’ is 0 if there is 
no ability to discriminate, negative if people systematically discriminate incorrectly, and 
positive if people systematically discriminate correctly.) In sum, there is evidence of a sort 
of subliminal perception in that people say they don’t know what it is they saw, but they can 
still discriminate what was there.

You would like to know whether subliminal perception occurs when defined by a PAS 
rating of 1 rather than 2. Simply by changing exposure duration slightly, and keeping eve-
rything else the same, you find conditions where participants give a PAS rating of 1. So you 
replicate the original researcher’s procedure except for this one change, with the same num-
ber of participants (30). For ability to discriminate which face was presented, you obtain a 
non-significant result, mean d’ = 0.2 (standard error, SE = 0.25), t = 0.80, p = 0.4. What do 
you conclude about whether people can discriminate stimuli when they give PAS = 1? By 
how much would these data make you change your confidence in the hypothesis that peo-
ple can discriminate when PAS = 1? Do you feel you need to collect more data to support 
any conclusion you draw—or do you have enough for practical purposes? For example, is 
there enough evidence to assert in a talk, or the discussion section of a paper, that sublimi-
nal perception did not occur for PAS = 1 for the conditions of the experiment?

Second example. You replicate the original researcher with the same number of partici-
pants and with the one change that makes PAS scores of 1, as before. But for this example, 
you obtain mean d’ = 0.0 (SE = 0.25), that is, the sample mean is exactly at chance baseline, 
t = 0.00, p = 1.0. Now what do you conclude about the existence of subliminal perception 
when people give PAS = 1? Can people discriminate stimuli when they say they saw noth-
ing at all? How strongly is the matter settled for the conditions of your experiment by this 
set of data?

Next example. You run the experiment as in the previous examples, but you obtain mean 
d’ = –0.20 (SE = 0.25), that is, the sample mean goes in the “wrong direction,” below chance 
baseline, t = 0.80, p = 0.4. Now what do you conclude about the existence of subliminal per-
ception when people give PAS scores of just 1? How confident are you in null hypothesis 
versus the theory that there exists subliminal perception for PAS = 1?

Final example. You run the experiment as in the previous examples, but with ten times 
the number of participants (i.e. with 300 instead of 30). You obtain d’ = 0.03 (SE = 0.037), 
t = 0.80, p = 0.4. Now what do you conclude about the existence of subliminal perception 
when people give PAS scores of just 1? How strongly is the matter settled for the conditions 
of your experiment?

Table 12.1 summarizes the results for these four hypothetical replications of a significant 
result under new conditions (PAS = 1 vs 2). There is of course no guarantee that subliminal 

AQ1 
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perception will occur under the new conditions just because it did under the old. (Indeed, 
you might believe that it should not.) But what evidential value do any of these results have 
for drawing a firm conclusion? One intuition you may have is that the evidence is stronger 
in support of the null in the final example than in the first. Moreover, as we will see, this 
intuition is correct. But notice the p-values in those two cases are the same. So p-values 
cannot constitute a good measure of evidence for the null hypothesis. We need a better 
measure. In the next section we consider a better measure, and we apply it to each of these 
examples.

The Bayes factor

The nature of evidence: the Devil and the cat

We will use the principle that evidence supports the theory that most strongly predicted 
it. To illustrate the principle, I have a box called Zoltan’s Box of Mystery. Inside it is one 
of two creatures with equal probability. Inside there is either a Tasmanian Devil or a cat. 
Tasmanian Devils have one of the strongest bites amongst land mammals, so if you lower 
your hand down to pet the little fellow, the bite could go through your finger bones like 
butter. In fact, if you put your hand in the box and a devil is in it, there is a good chance that 
your hand will be left with only four fingers. The other creature that could be there is a cat 
instead of a devil. You are much less likely to lose your finger if the cat is there. The cat is 
sweet but he does have a vicious streak, so there remains some probability that the cat will 
remove a finger as well. The box is well tested so I can be precise: if the devil is in the box 
there is a probability of 9/10 of losing a finger when a hand is lowered into it; by contrast, if 
the cat is in the box there is a probability of only 1/10 of losing a finger.

The box is on the table. We do not know which creature is in it. John puts his hand in the 
box. When he removes his hand, he has lost a finger. Which hypothesis do the data support 
more strongly, the devil or the cat?

Which theory most strongly predicted the outcome? The outcome is predicted with 
probability 9/10 by the devil hypothesis and only 1/10 by the cat hypothesis. So the devil 
hypothesis is more strongly supported. We can quantify how much more strongly the devil 
hypothesis is supported over the cat by dividing the 9/10 by the 1/10: the evidence is nine 
times as strong for the devil over the cat hypothesis. Or we can say the Bayes factor, B, for 
the devil over the cat = 9.

Table 12.1 statistics for four hypothetical tests for an effect.

Raw effect size SE t p Confidence in theory relative to null?

+0.20 0.25 0.8 0.4 ?

0.00 0.25 0.0 1.0 ?

–0.20 0.25 0.8 0.4 ?

+0.03 0.037 0.8 0.4 ?
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Now imagine that when John put his hand in he pulled it out with all five fingers intact. 
Now which hypothesis is most strongly supported? The cat hypothesis predicts this out-
come with probability 9/10 and the devil with probability 1/10. So the data support the cat 
hypothesis nine times more strongly than the devil; or B = 9 for the cat over the devil; or, 
equivalently, B = 1/9 for the devil over the cat.

This time a new devil and a new cat have been found, more equal in their characters1. In 
fact, for these new creatures, thorough testing shows that a finger is lost 6/10 of the time 
if the devil is in the box and 4/10 of the time if the cat is. Now if John loses a finger, would 
you have a strong opinion as to which creature was in the box? The evidence only slightly 
favors the devil over the cat, by a factor B = 6/10 divided by 4/10 = 1.5, that is, not by much 
at all. The evidence is simply inconclusive.

We have constructed three situations: the first in which B showed the evidence sup-
ported one hypothesis more strongly than the other, the second the other way round, and 
the third in which the evidence did not strongly indicate anything either way. In general, 
B indicates how much more probable the data are on one theory (say H1, the alternative 
hypothesis, your pet theory) rather than on another theory (say H0, the null hypothesis); 
thus it measures the amount of evidence data provide for H1 compared to H0 (e.g. Jeffreys 
1939/1961; Berger and Delampady 1987; Kass and Wasserman 1996; Goodman 1999; Lee 
and Wagenmakers 2005; Gallistel 2009; Rouder et al. 2009; Dienes 2011, 2014; Kruschke 
2011). B can indicate whether (1) there is strong evidence for H1 over H0; (2) there is 
strong evidence for H0 over H1; or (3) the data are insensitive and do not discriminate H1 
and H0. In effect, p-values only make a two-way distinction, they contrast (1) with either 
(2) or (3), but in no way discriminate (2) from (3). A p-value of 0.1 or 0.9 has nothing to 
say over whether there is substantial evidence for the null or whether the data are insensi-
tive. The discrimination between (2) and (3) is just what has been missing from statistical 
practice. Bayes factors make the required discrimination; they plug the hole in orthodoxy.

Jeffreys (1939/1961) suggested conventions for deciding whether evidence was substan-
tial or not. If B is greater than 3, then there is substantial evidence for H1 over H0 (for the 
way round the Dienes calculator is programed (Dienes 2008a)); if B is less than 1/3, there is 
substantial evidence for H0 over H1; and if B is between 1/3 and 3, the data are insensitive 
and nothing follows from the data (other than more needs to be collected). The conven-
tions are not arbitrary. If a significant result at the 5% level is obtained and the obtained 
effect size is about that expected, then B is likely to be about 3 (Dienes, 2014). So B > 3 
corresponds to the standard of evidence we are accustomed to as scientists in rejecting the 
null hypothesis (for example, see Table 1 in Dienes, 2014) (though there is in fact no nec-
essary one-to-one relation between p-values and B; Lindley 1957). By symmetry, we get a 
standard of evidence for accepting the null: B < 1/3.

Evidence supports the theory that most strongly predicted it. Thus, in determining the 
strength of evidence for H1 versus H0, the predictions of each must be specified. This is 
easy for the null hypothesis. For example, the null hypothesis may say that the population 

1 For an account of the relation between the devil and the cat, see Bulgakov (1997).
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mean difference is exactly zero. But what does H1 predict? A major task we tackle below(in 
the sections on objective and subjective measures) is just how to answer this question for 
the case of establishing the conscious status of perception or knowledge. Our goal will be 
to consider for H1 the range of possible population values (is there a minimum or maxi-
mum plausible value?) and whether some values are more likely than others. If the ques-
tion strikes you as fiddly and irksome, just remember: you can’t tell if evidence supports a 
theory if you don’t know what it predicts.

One reaction is to ask if we can postulate a default H1. That is, could we specify predic-
tions in a way suitable for many situations psychologists might come across, so that it 
could be used generally, and is hence “objective”? Rouder et al. (2009) provided such a 
default Bayes factor calculator (see <http://pcl.missouri.edu/bayesfactor>) (also compare 
with the Bayesian information criterion (BIC), which approximates a vague default Bayes 
factor; Wagenmakers 2007). To cover the range of situations psychologists are interested 
in, the Rouder calculator assumes that according to H1, the effect could be in either direc-
tion, and the standardized effect size (Cohen’s d) could be up to 6 or 7, but 10 or more is 
very unlikely. Ultimately, this is just a particular set of predictions, a particular model, and 
it may or may not be relevant to a particular scientific problem. Thus, the calculator allows 
modifications of these predictions. In fact, Rouder et al. (submitted) argues elegantly that 
there is no “free lunch” in statistical inference: we have to do the work in specifying predic-
tions of the alternative to allow sensible statistical inference at all. Inference should always 
be sensitive to precise scientific context; thus Gelman and Rubin (1995) argue that infer-
ence should in the end go beyond the statistics. Here we will attempt to make sure that the 
statistics themselves address the scientific context as much as possible.

Representing the alternative hypothesis

The Dienes (2008a) Bayes factor calculator gives three options for specifying the predic-
tions of H1: the plot of plausibility against different possible population values could be 
(1) a uniform, (2) a normal, and (3) a half-normal (see Figure 12.1). A uniform indicates 
that all population effect sizes in certain range (from minimum to maximum) are equally 
plausible, and anything outside that range is ruled out. A normal indicates that one effect 
size is most plausible, and smaller or larger values are increasingly unlikely. A half-normal 
is constructed from a normal which had a mean of zero, but now all of the left-hand side of 
the distribution has been removed. So the half-normal indicates that values close to zero 
are most likely, the bigger the size of the effect in the positive direction, the less likely it is, 
and all negative effects are ruled out (see Figure 12.1). These distribution shapes capture 
the predictions of many theories in psychology to a sufficient accuracy. (It turns out that in 
many cases the exact shape does not change substantial conclusions, as we will see shortly: 
this is crucial in establishing that the predictions of a theory are specified only to the ac-
curacy that they deserve.)

Now we will consider the examples with the PAS scale. Previous research has found that 
as the PAS scale increases, so does discrimination accuracy (e.g. Ramsøy and Overgaard 
2004; Atas et al. 2013). Thus, whatever accuracy as might occur for PAS = 1 will be less 
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than that for PAS = 2. We have an estimate of the accuracy for PAS = 2 from the previous 
researcher: d’ = 0.4. Thus, we can use this as an upper limit of a uniform. What should the 
lower limit be? This is harder to say. Technically, any value above zero would indicate some 
degree of subliminal perception for PAS = 1. Maybe some degrees of subliminal perception 
would be so tiny, though, that they are uninteresting? It turns out that while answering 
this question is crucial for using power or confidence intervals to draw inferences about 
the meaning of a non-significant result, the lower limit is typically not influential for the 
conclusions that follow from a Bayes factor. Thus, we can use 0 as the effective lower limit. 
We might have intuited a lower limit of say d’ = 0.05. Different people may give different 
precise numbers, but we can see what results this lower limit gives us as well.

Taking the first example, with mean d’ = 0.20, SE = 0.25, go to the Dienes (2008a) Bayes  
factor calculator (<http://www.lifesci.sussex.ac.uk/home/Zoltan_Dienes/inference/bayes_ 
factor.swf>). Enter 0.20 as the sample mean and 0.25 as the standard error. Say that the 
plausibility of different population values given the theory (p(population value|theory) is 
uniform. Enter “0” as the lower bound and “0.4” as the upper bound (thereby defining the 
interval [0, 0.4]), and click “Go!” The result is B = 1.24. That is, this non-significant result 

Population parameter 

Plausibility

0

Lower limit Upper limit

Mean

SD

SD

(a)

(b)

(c)

Fig. 12.1 representing the alternative hypothesis. (a) a uniform distribution with all population 
parameter values from the lower to the upper limit equally plausible. Here the lower limit is zero, 
a typical but not required value. (b) a normal distribution, with population parameter values close 
to the mean being more plausible than others. the sD also needs to be specified; a default of 
mean/2 is often useful. (c) a half-normal distribution. Values close to 0 are most plausible; a useful 
default for the sD is a typical estimated effect size. Population values less than 0 are ruled out.
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does not count against the theory of subliminal perception at all. One should not reduce 
one’s confidence, even by one iota, in the theory of subliminal perception for PAS = 1. Now 
enter the uniform [0.05, 0.4]. This yields B = 1.27, barely changed. We do not have to worry 
about the minimum; entering “0” is good enough and perhaps even truer to our interests 
(in which case power and confidence intervals become entirely useless, as using them to 
draw inferences about theories depends on specifying a minimum).

Does it matter that we used a uniform distribution? To keep a maximum of 0.4, we could 
use a normal with a mean of 0.2. By two standard deviations out, the normal distribution 
comes fairly close to zero. Thus if we used SD = 0.1, there are plausible population values 
between 0 and 0.4, and the plausibility beyond those limits is small. So now tell the cal-
culator you do not want a uniform. Enter a mean of 0.2 for the normal, an SD of 0.1, and 
indicate the number of tails as “2” (just meaning it is not a half-normal, the distribution 
extends in both directions). Now we get B = 1.28, again virtually unchanged. Alterna-
tively we could use the half-normal. Given the same principle that a normal comes down 
close to zero by two standard deviations out, we set the SD of the half-normal equal to 
0.2 (set the mean to 0 and the tails to 1; these last two numbers are always the setting for 
a half- normal). Again we have effectively specified plausible population values between 0 
and 0.4. Now we get B = 1.23. The upshot is that so long as we used a maximum of about 
0.40 and a minimum near 0, we could shift the distribution around from flat, to pushed 
up against zero, to peaked in the middle, and it did not affect conclusions. It is precisely 
this property of Bayes factors that allows confidence in their conclusions. (Note that the 
robustness of the conclusion to different possible specifications of the theory is not guaran-
teed; that is a matter to check and confirm. Where there is robustness, the conclusions are 
to that extent meaningful. Where the conclusion depends on equally plausible parametric 
specifications, more participants can be run until the conclusion is robust.)

The Bayes factor can be sensitive to the effective maximum specified for the alterna-
tive. But even if we used a uniform [0, 0.8] instead of [0, 0.4], B would be 0.84 instead 
0f 1.24. Even in this case, the qualitative conclusion is the same: the data are insensitive. 
Crucially, the maximum of 0.4 has not been arbitrarily intuited; it was based on the estab-
lished theory that discrimination increases with PAS score and on the estimate of 0.4 for 
PAS = 2 obtained from data. This illustrates how a maximum can be simply specified in 
a non-arbitrary way2. There are further examples below (in the sections on objective and 
subjective measures) illustrating how this can be done in different situations relevant to 

2 One could rightly argue that setting the upper limit as 0.4 does not take into account uncertainty in that 
estimate. Thus, the upper limit should be increased to reflect that uncertainty; for example, one could 
use the upper limit of the 95% confidence (or credibility) interval of that estimate. In the original study, 
t = 2.85, so the standard error = mean difference/t = 0.4/2.85 = 0.14 d’ units. So the confidence interval 
on the raw effect size for the original study was [0.12, 0.68]. So for B for our first example we could use 
a uniform to specify the alternative of [0. 0.68] instead of [0, 0.4], which gives a B of 0.97, again indi-
cating the same qualitative conclusion, namely data insensitivity. In practice, in my papers I have just 
used the estimate of the maximum from data and not taken into account uncertainty in that estimate 
(for a set of examples see Dienes, 2014). One reason is simplicity in specifying what is being done. The 
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consciousness research. As the simplest way of specifying the alternative in this case is the 
uniform [0, 0.4], we will continue to use this specification for the remaining examples il-
lustrated in Table 12.1.

In the second example, mean d’ = 0 for PAS = 1 and SE = 0.25, as in the previous exam-
ple. Now we get B = 0.70. That is, the data are insensitive. Just because the sample mean 
is zero, it does not indicate in itself that one’s confidence in the null hypothesis should be 
substantially increased. If the standard error is large enough, a sample mean difference 
of around zero is quite possible even when the alternative is true. There is nothing magic 
about a sample mean difference of zero.

In the third example, mean d’ = –0.20. The mean is entered as “–0.20,” negative because 
it goes in the wrong direction, according to the theory. Now we get B = 0.44. That is, while 
the evidence is favoring the null more than before, it is still not substantial. Just because 
the sample means go in the wrong direction, it does not mean one has substantial evidence 
against one’s theory and in favor of the null. Again, a sample effect size of zero is not a magic 
line whose crossing entails that inferential conclusions change their qualitative character.

One should not think that non-significant results are always insensitive. Sensitivity de-
pends on the standard error. In the final PAS example, mean d’ = 0.03, SE = 0.037. The 
standard error is considerably smaller than the previous examples (and, crucially, it is 
small relative to the maximum, 0.4). Now we get B = 0.25, substantial evidence for the null 
hypothesis. Table 12.2 shows the pattern for all our examples. Note that the p-value for the 
final example is the same as the first (and third), and even less than the second example. 
Yet the final example provides stronger evidence for the null hypothesis than any of these 
other examples. P-values do not measure evidence for the null hypothesis.

Of all the examples we have considered, it is only in the final one that we have a reason 
for asserting, in a results or discussion section, that subliminal perception does not occur 

Table 12.2 statistics for four hypothetical tests for an effect, whose plausible range of effect sizes 
can be specified with a uniform [0, 0.4].

Raw effect size SE t p B

+0.20 0.25 0.8 0.4 1.24, data insensitive

0.00 0.25 0.0 1.0 0.70, data insensitive

–0.20 0.25 0.8 0.4 0.44, data insensitive

+0.03 0.037 0.8 0.4 0.25, substantial evidence for null

second is that in the examples, I used B to interpret non-significant results. The higher the maximum of 
a uniform, the more B will support the null. Thus, by using the estimated maximum the outcome errs 
slightly towards indicating data insensitivity rather than support for the null. This is the cautious way to 
proceed. It also simplifies the situation where it is hard to specify the actual uncertainty in the estimate, 
given, for example, a change in context. In many of the examples we will consider, we infer unconscious 
knowledge from evidence for the null hypothesis. To conclude that unconscious knowledge exists, a 
simple, cautious, yet practical approach seems appropriate.
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for PAS = 1, for the conditions of the experiment3. In the previous examples we could have 
asserted “there was no significant subliminal perception” because that is just a fact about 
our sample and not a claim about the population (it leaves open that subliminal perception 
may have actually occurred), and it deserves and requires no theoretical explanation. But 
we could not have asserted “there was no subliminal perception” because that is a claim 
about the underlying state of affairs. It would be easy to slip erroneously between the two 
claims, making not a pedantic error but a fundamental scientific mistake.

Now that the use of the Dienes (2008a) Bayes calculator has been illustrated, some 
remarks about its use follow. The easiest way to use it in a t-test situation is to run the 
t-test first. The calculator asks for a “mean” which is the mean difference, M, tested by 
the t-test. It also asks for a “standard error” (call this SE) which is the standard error of 
the difference. As t = M/SE, SE = M/t. Thus, as you know M and you know t, you can 
easily find the required standard error, no matter what design (within-subjects, between-
subjects, one sample, mixed). The calculator assumes that the population distribution is 
normally distributed, as, for example, a t-test does. The calculator also assumes that the 
population variance is known, which in many applications it will not be. If the degrees 
of freedom, df, are greater than 30, then the assumption can be ignored. If df < 30, a cor-
rection should be applied to the size of the standard error. Specifically, increase SE by a 
factor (1 + 20/df2) (see Dienes, submitted). For example, if df = 10, the correction factor 
is (1 + 20/100) = 1.2. Thus, if the standard error was 0.25, you would actually enter into 
the calculator 1.2 × 0.25 = 0.3 as the standard error. The calculator can be used in many 
ANOVA, regression, correlation and Chi-squared situations (for how, see Dienes, 2014). 

3 Inference by intervals provides an interpretation of these examples largely consistent with one based on 
Bayes factors, though with interesting differences (for a useful application of inference by intervals to 
subliminal perception see Overgaard et al. 2013). For illustration we will use 95% confidence (or cred-
ibility) intervals, but the same logic applies to, e.g., 90% confidence or credibility intervals. The upper 
limit of the 95% confidence or credibility interval for the first example is 0.2 + 2 × 0.25 = 0.7 d’ units. This 
is larger than the d’ of 0.4 for the case of PAS = 2, so the data must be declared insensitive, as it was in 
the text. In the second example, the upper limit is 0.5 and the same conclusion follows. Notice to declare 
data insensitive by inference by intervals does not always require specifying a minimum, so long as one 
can say the interval includes values definitely above the minimum. In the third example, the upper limit 
is 0.3, less than the 0.4 of the PAS = 2 experiment. In the final example, the upper limit is 0.10. Now 
judgment is needed about a minimum. This is the first problem with inference by intervals: asserting a 
null hypothesis does require specifying a minimum in a non-arbitrary way. The second problem is that 
even when a minimum is specified, intervals typically require more data to reach sensitive conclusions 
than Bayes factors: in this case the interval includes a minimum of 0.05, so the null cannot be asserted, 
while a Bayes factor (using a uniform [0.05, 0.40]) indicates there is evidence for the null. See Dienes 
(2014) for fuller discussion. In sum, the rough agreement between the methods is reassuring, and in-
ference by intervals can often be useful and quickly used to indicate data insensitivity. Where a rough 
typical or a maximum effect size can be specified, Bayes factors are easier to use than intervals. Where 
the minimum is the aspect of the alternative hypothesis easiest to specify, and where the minimum is 
the most important aspect of the alternative hypothesis, inference by intervals may be more useful than 
a Bayes factor.
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See Appendix 12.2 for a discussion of the use of Rouder’s Bayes factor calculator for 
binomial situations.

As is now obvious, there is no such thing as the Bayes factor for a given set of data. A 
Bayes factor compares two models; for example, a model of H1 against H0. How we model 
H1 can vary according to theory and context. To make this explicit, when a uniform is 
used, B could be notated BU; when a half-normal is used, BH; and when a normal, BN (and 
when the full default Rouder calculator is used, BJZS)4. Further, BU[0,3], for example, could 
specify that the uniform was the interval [0, 3]; BN(10,5) could specify that the normal had a 
mean of 10 and an SD of 5; and BH(0, 5) could specify that the half-normal used an SD of 5. 
Appendix 12.1 shows the results using different specifications of H1 for all the examples to 
follow. (See also Verhagen and Wagenmakers (2014) for a different Bayes factor calculator 
that takes as its theory that the current study is an exact replication of a previous one, so 
H1 can be set as predicting the effect size previously obtained, with an uncertainty defined 
by the previous standard error in the estimate.)

With background and technicalities out of the way (for more discussion see Dienes 
2008, 2011, 2014), we now consider the application of Bayes to different situations in 
which the conscious status of knowledge and perception are established.

The use of Bayes when using objective measures
According to objective measures, knowledge is unconscious when priming shows know-
ledge but direct classification of the relevant distinction is at chance. Asserting that per-
formance is precisely at chance requires Bayes factors; it cannot be done with orthodox 
approaches unless a theoretically relevant minimum can also be stated. But it is not clear 
how such a minimum could be decided in order to declare knowledge unconscious. Thus, 
using objective measures to assert knowledge is unconscious, according to the definition 
just given, requires Bayes factors. We will first consider the case of implicit learning, and 
then subliminal perception.

Objective measures in implicit learning

A common paradigm for exploring implicit learning is the serial reaction time (SRT) 
task (Nissen and Bullimer 1987). People indicate which of, say, four possibilities occurred 
on a given trial by pressing one of four buttons (for example, they indicate which of four 
locations a stimulus appeared in that trial). From the participants’ point of view this is all 
there is to the task: it is a complex reaction time (RT) task. Unbeknownst to participants, 
the sequence of events is structured. It can be shown that people learn the structure be-
cause they are faster on structured rather than unstructured trials. The question is, is this 
knowledge of the structure as shown in RTs conscious or unconscious? One common 
method for determining the conscious status of the knowledge is to give participants a 
recognition test afterwards. The logic is that if people are at chance on recognizing the 

4 Thanks to Wolf Vanpaemel for suggesting both this notation and Table 12.1A in the Appendix.
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structure, then the knowledge must be unconscious. To employ this logic, a null hypoth-
esis must be asserted.

Shang et al. (2013) used an SRT task followed by a recognition task. The SRT task in-
volved over 1000 trials, where 90% of the trials followed a sequence and 10% violated the 
sequence in some way. RTs showed that people had acquired knowledge of structure (peo-
ple were faster for trials that followed rather than violated the sequence, p < 0.001). Was 
that knowledge conscious? For one set of conditions, people were non-significantly differ-
ent from chance on a subsequent recognition task (p = 0.30). A common reaction would 
be to look at the p-values and declare the objective threshold satisfied. But the p = 0.30 in 
itself does not mean people were at chance in recognizing, and thus it does not mean that 
the knowledge was unconscious.

We need a handle on an expected level of recognition, if knowledge had been con-
scious. Shang et al. (2013) used a sequence of elements defined by triplets. That is, just 
knowing the preceding element did not allow one to predict the next element. But know-
ing the two preceding elements allowed one to predict the next one with certainty. There 
were in total 12 such triplets that could be learned. The recognition test consisted of 
indicating whether or not a triplet was old (explicitly defined as the one occurring 90% 
of the time). Thus the question arises, how many triplets did people learn in the RT phase 
of the experiment? Each triplet had been paired with an infrequent violation triplet with 
the same first two elements but a different final element. Thus, for each triplet, Shang 
and colleagues could determine if there was evidence for RT saving. Let us say that in 
one condition there was significant learning of each of five triplets. If on the recognition 
task people expressed all this knowledge, they would get those five correct. The remain-
ing seven triplets did not contribute detectably to the RT effect; participants are thus 
expected to get half of those right in recognition (i.e. 7/2 = 3.5 correct). Thus, in total, 
participants could be expected to get 5 + 3.5 correct or 8.5/12 = 71% if they expressed 
all knowledge in the recognition test. However, people are unlikely to express all their 
knowledge on every trial (e.g. Shanks and Berry 2012), so it would be more cautious 
to consider the 71% as a maximum possible recognition performance, rather than the 
performance we expect (i.e. recognition performance may be significantly lower than 
the 71%, but this could happen even if the knowledge were conscious). Thus, we could 
represent the hypothesis that the knowledge was conscious, and thus expressible in rec-
ognition, as a uniform from chance (50%) to 71%. In fact, the Dienes (2008a) calculator 
assumes the null hypothesis is always 0. Thus we need to consider our scores in terms of 
how much above chance they are. Scored in this way, the minimum of the uniform is 0 
(i.e. 0% above chance baseline) and the maximum of the uniform is 21 (i.e. 21% above 
chance baseline).

Say recognition performance was 52% (SE = 6%) (so t(40) = 0.33, p = 0.74). Is this 
evidence for people being at chance on the recognition test? Enter “2” (i.e. 2% above a 
baseline of 50%) as the mean in the Dienes (2008a) calculator and enter “6” as the stand-
ard error. Indicate the alternative is a uniform and enter the limits [0, 21]. The result is 
BU[0,21] = 0.48, which is not substantial evidence for the null hypothesis that recognition 
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was at chance5. Thus these data would not legitimate concluding that there was uncon-
scious knowledge. But now let us say that recognition performance was 52% as before, 
but with a standard error of 2% (so t(40) = 1, p = 0.32). Then BU[0,21] = 0.33, substantial 
evidence for the null and hence for unconscious knowledge. (Note that in this case the 
higher p-value is associated with less substantial evidence for the null hypothesis. Moral: 
p-values do not indicate evidence for the null hypothesis.)

Objective threshold in subliminal perception

Armstrong and Dienes (2014) rapidly presented low-contrast words on each trial and then 
asked participants to indicate which of two words had just been displayed. The choice 
was followed by a confidence rating on a 50–100% scale, where 50% indicated that the 
participant expected to get 50% of such answers correct because she is literally guessing. If 
the participant was confident in the answer (i.e. confidence above 50%), the time between 
the onset of the stimulus and the onset of a back-mask (i.e. the stimulus onset asynchrony, 
SOA) was reduced, until the participant used 50% five times in a row. This was an attempt 
to reach a stable subjective threshold (i.e. the point where people believe they are perform-
ing at chance). With the SOAs obtained by this method, people were actually correct in 
indicating which word was presented on 51% of trials (SE = 0.8%), t(29) = 1.49, p = 0.15 
(Experiment 1). So, had the objective threshold been reached (i.e. were people actually at 
chance) in addition to the subjective threshold?

Armstrong and Dienes (2013; Experiment 3) had used the same threshold setting and 
masking procedures for slightly different stimuli; they obtained an objective performance 
of 55%, significantly different from chance. Thus we can use the 2013 performance as a 
rough estimate of the sort of performance we could expect in the 2014 study. Remember, 
we need to consider all scores as deviations from the chance baseline; thus the 55% be-
comes 5% above chance. Figure 12.1 indicates that for a typical estimated effect size, one 
can use a half-normal with a standard deviation equal to that estimate (i.e. 5% in this case). 
Thus, in the Dienes (2008a) calculator, enter “1” as the mean and “0.8” as the standard 
error. Indicate that the alternative will not be represented as a uniform. Boxes for entering 
the parameters of a normal then appear. Enter “0” for the mean and “1” for the tails (both 
numbers being the specifications for a half-normal generally). Then enter “5” as the stand-
ard deviation. Click “Go!” We obtain BH(0,5) = 0.60, indicating the evidence is insensitive. 

5 Using a “default Bayes factor,” i.e. one that does not take into account the scientific context, would make 
obtaining evidence for unconscious knowledge too easy, because defaults necessarily represent alterna-
tive hypotheses as vague. (The vaguer a theory, the harder it is to obtain evidence for it.) For example, 
using the Rouder calculator (<http://pcl.missouri.edu/bf-one-sample>) gives B = 0.13, substantial evi-
dence for the null hypothesis, and hence substantial evidence for unconscious knowledge. (The Rouder 
calculator is actually scaled in terms of the null relative to the alternative, so it reports 7.79 in favor of 
the null; take 1/7.79 = 0.13 to get it scaled the same way round as the Dienes calculator.) But in this 
example, we can specify the alternative according to the actual scientific demands of the situation, so a 
default alternative hypothesis is not appropriate. We can estimate the level of recognition we are trying 
to detect.
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We cannot conclude that the objective threshold has been reached (nor that it has not). 
The matter could be settled by collecting more data. (In fact, Armstrong and Dienes (2013) 
collapsed across three experiments and with this larger dataset had sufficient evidence to 
show that objective performance was above chance.)

Armstrong and Dienes (2014) were lucky they had another study that provided a rough 
estimated effect size. What if one did not have a very similar example to draw on in order 
to specify the alternative? We will now discuss another general procedure for considering 
subliminal perception at the objective threshold.

In general, in a subliminal perception experiment using objective measures, one obtains 
a level of priming (call it P) in milliseconds or whatever units the priming is measured in. 
Let us say there was 20 ms of priming. This is significant, p <0.05. In addition, on a forced-
choice identification or classification task indicating what was shown, people are non-
significantly different from chance, say 51%, p > 0.05. The standard syllogism is to now 
conclude there was subliminal perception. But this is invalid. The non-significant result 
in no way indicates that people were at chance on classification. But we cannot go further 
until we can answer the following scientific question: what level of classification could we 
expect for 20 ms priming if it had been based on conscious perception? Without further 
data, one cannot say. So run another group of people with stimuli that are difficult to view 
but nonetheless give a level of conscious experience. As shown in Figure 12.2(a), regress 
classification against priming score for just the data where people are clearly conscious. 
Now we can estimate for a given level of priming, say P, what level of classification could 
be expected (call this level E) if perception had been conscious. If P falls within the body 
of data, we can derive E without extrapolating. But one might not be comfortable using the 
regression line to obtain E if P falls outside of the data. In fact, one might have an estimate 
of mean priming and classification for conscious cases, but not access to all the data for 
obtaining a regression line.

Figure 12.2(b) shows a possible solution. The one data point is the mean classification 
and priming for data where perception was clearly conscious. Draw a line from that point 
to the origin (0, 0), i.e. (chance baseline, chance baseline). The assumption is that if per-
ception is conscious, it can express itself on either measure (consistent with the global 
workspace hypothesis); thus, when one measure is at chance, so will the other measure be. 
The assumption will be false in detail because of noise in measuring or expressing prim-
ing; such noise will flatten the regression line. But that only means that the line through 
the origin will give a smaller E than if one fitted a least squares regression line to the actual 
data. A smaller E will make it harder to get discriminating evidence either way. Thus the 
solution in Figure 12.2(b) is slightly cautious, while remaining simple. And that is just 
what we want.

We can work a hypothetical example. As before, say the level of priming is 20 ms and 
classification is 51%, t(40) = 0.5, p = 0.62. By itself, nothing follows from the last result. So 
a group is run with a longer SOA, under which conditions people say they saw relevant 
information. Classification is 70% and priming is 40 ms. What level of classification do we 
roughly expect for the potentially subliminal case?
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Fig. 12.2 Predicting a level of classification performance. (a) Plot of classification against priming 
for just those cases where people indicated they saw the stimulus, so the seeing was conscious. 
the level of priming found in the potentially subliminal condition (X) falls amongst the spread of 
data for the conscious cases. (b) same plot but when the level of priming for putative unconscious 
conditions falls outside of the data for clearly conscious seeing, or else only means are known for 
the conscious case. the line is drawn to the origin (chance level, chance level).
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The potentially subliminal condition showed exactly half the priming as the conscious 
condition. Assuming a proportional relation between priming and classification, as shown 
in Figure 12.2(b), the expected level of classification is also halved for the potentially sub-
liminal case. Seventy percent is 20% above baseline; thus, a halving of it gives E = 10% above 
baseline. How should the alternative hypothesis be represented? The simplest method is to 
use the suggestion in Figure 12.1(c): use E as the standard deviation of a half-normal. Thus, 
enter “1” as the mean and “2” as the standard error. Indicate the alternative is not uniform 
and give its standard deviation as “10.” This gives BH(0,10) = 0.30. There is subliminal per-
ception! One could also argue that the expected value E really is the most expected value; 
thus we could use the suggestion in Figure 12.1(b) and use a normal with mean “10” and 
standard deviation half this value (enter “5”)6; this gives B = 0.10. In this case, the methods 
agree qualitatively, so the difference does not matter.

One general moral to draw is that often interpreting a non-significant result involves 
solving a scientific problem of what effect size could be expected—a problem that can-
not be solved by general statistical methods but, for example, by collecting more data and 
using the data in theoretically relevant ways (in this case, data on how well people do 
when they consciously see to some degree). Figure 12.2(b) assumes a relation of close to 
proportionality between the two measures; in any given case this could be disputed: it is a 
scientific matter to settle.

For a different approach to assessing perception below an objective threshold, using 
Bayesian hierarchical models, see Rouder et al. (2007) and Morey et al. (2008).

The use of Bayes when using confidence (and other type 2 
measures of metacognition)
According to subjective measures, one criterion of knowledge being unconscious is if 
people say they are guessing (or, for example, have no relevant visual experience), and 
yet they classify above baseline accuracy (the guessing criterion; Dienes 2008b). In this 
case, unconscious knowledge is indicated by a significant result; thus, the danger is that 
unconscious knowledge is declared not to exist simply because of a non-significant result. 
We considered an example in the section “Do the data support the null hypothesis.” Ac-
cording to subjective measures, another criterion of knowledge being unconscious is if 
confidence is unrelated to accuracy (the zero-correlation criterion; Dienes 2008b). In this 
case, unconscious knowledge is indicated by evidence for the null hypothesis of no rela-
tion between confidence and accuracy. Thus, the danger is that unconscious knowledge is 
declared just because the data are insensitive.

6 If one had used the method in Figure 12.2(a), one could use a normal with a more precise standard 
error, because the prediction from a regression equation has a calculable standard error in predic-
tion. Let SSe = SSclassification (1 – r2), SE = SSe/(N – 2), where SSclassification is the sum of squares  
for classification scores and r is the correlation between classification and priming, then SE in predic-
tion = SE × sqrt(1 + 1/N + (P—mean priming)2/SSpriming). Represent the alternative as a normal 
with mean E and standard deviation equal to the SE in prediction.
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The guessing criterion

In terms of the guessing criterion, Guo et al. (2013b) investigated people’s ability to asso-
ciate word forms with semantics. In one condition, Guo and colleagues found that when 
people said they were guessing, the classification performance was 44% (SE = 5%) where 
chance baseline was 50%, t(15) = 1.37, p = 0.19. Can one conclude there was no unconscious 
knowledge by the guessing criterion? Not yet. Chen et al. (2011) used a very similar para-
digm for exploring the learning of form-meaning connections and found the guessing cri-
terion was satisfied with 55% classification accuracy, i.e. a reliable 5% above baseline. Thus, 
Guo et al. (2013b) modeled the alternative hypothesis with a half-normal with a standard 
deviation of 5, i.e. using Chen et al. (2011) as an estimate of the scale of effect size that might 
be expected if there were an effect. As degrees of freedom were below 30, a correction of (1 + 
20/152) = 1.09 needs to be applied to the standard error; i.e. the standard error to be entered 
is 1.09 × 5% = 5.4%. Entering “–6” as the mean (negative because it goes in the opposite di-
rection to theory), “5.4” as the standard error, indicating not a uniform, “0” as the mean of 
the normal, “5” as the standard deviation, and “1” for tails gives BH(0,5) = 0.44. The evidence 
is insensitive. Guo and colleagues concluded that no claim can be made about whether or 
not there was unconscious knowledge, according to the guessing criterion.

What if we did not have other examples of reliable guessing criterion knowledge with 
very similar paradigms? If one had a full range of confidence ratings one could use the 
information from these data. For example, given a continuous 50–100 confidence scale, 
an intercept at confidence = 50% of a regression of accuracy against confidence, using  
all data except for confidence = 50%, could provide an estimated performance for confi-
dence = 50%. That estimate could be used as a standard deviation of a half-normal. How-
ever, the intercept might be small, zero, or negative if it has a large standard error. Further, 
we may be conducting a Bayes factor precisely because the intercept is non-significant and 
may thus have a large standard error. Thus, the upper limit of the confidence interval on 
the intercept could be used as the maximum of a uniform, for testing accuracy for when 
people say they are guessing. (To find the confidence interval, regress accuracy against 
confidence where you have rescaled confidence so that 0 = guessing, i.e. subtracted 50% 
from all confidence ratings. Your stats package should give you the intercept, I, and its 
standard error, SE. I + 2 × SE is close enough to the upper limit of the confidence interval 
of the value of the intercept.) Note this technique is only valid if the accuracy data for 
confidence = guessing is not used in the regression; otherwise we are double counting 
the same data, once to make a prediction and then again to test the prediction, which is 
strictly invalid (Jaynes 2003). (We can use other aspects of the same data to help make 
predictions about a mean, but we cannot use the very mean we are testing to predict itself!) 
The suggested regression technique assumes the theory that performance when judgment 
knowledge is conscious allows inferences about performance when judgment knowledge 
is unconscious. (In artificial grammar learning the theory is often true, especially when 
most structural knowledge is unconscious (Dienes 2012); but, for transfer between do-
mains in artificial grammar learning, it is not true (Scott and Dienes 2010).)

12-Overgaard-Chap12.indd   214 12/01/15   12:58 PM

OUP-FIRST UNCORRECTED PROOF, January 12, 2015



tHe use of Bayes wHen using ConfiDenCe (anD otHer tyPe 2 measures of metaCognition) 215

If a binary confidence scale had been used, e.g. “purely guessing” vs “confident to some 
degree,” classification accuracy for the higher confidence could be used as a maximum for 
predicted accuracy when guessing. That is, the alternative hypothesis could be represented 
as a uniform from 0 to a maximum provided by the estimate of performance when people 
have confidence.

Appendix 12.2 illustrates using a Bayes factor for binomial data, where a single case 
achieves a certain proportion of trials correct when he claims he is guessing.

The zero-correlation criterion

The relation between confidence and accuracy can be expressed in a number of ways. For 
example, the relation may be expressed in terms of signal detection theory (SDT) as type 
2 d’ (Tunney and Shanks 2003) or meta-d’ (Maniscalco and Lau 2012); or by the slope of 
accuracy regressed on confidence. We consider each in turn.

In general, for distinguishing conscious versus unconscious states, the interest is in 
whether having any confidence at all is associated with improved performance com-
pared to believing one is purely guessing. That is, the relevant distinction in con-
fidence is between “purely guessing” and everything else. The fact that there is no 
relation between classification accuracy and “being confident to some degree” versus 
“being confident to a larger degree” does not mean that knowledge is unconscious 
(Dienes 2004). Thus, for analysis, for determining a zero-correlation criterion, confi-
dence should typically be made binary, specifically as “purely guessing” vs “any degree 
of confidence.” Binary ratings could be made from the start (e.g. using “no loss gam-
bling” methods; Dienes and Seth 2010), or a more continuous confidence scale could 
be collapsed.

Signal detection measures of confidence accuracy relation

SDT expresses the relation between discriminative responses (judgments) and the states 
being discriminated in terms of a d’. If there is no relation between judgments and states, 
d’ is zero; otherwise it is some positive value if the judgments are accurate to some degree. 
Type 1 judgments are about the world (e.g. what stimulus was present, whether an item 
is old or new, grammatical or non-grammatical), and the resulting d’ is called a type 1 d’. 
Type 2 d’ is calculated in the same way as type 1 d’, but the judgments are guess vs confident 
and the states discriminated are the accuracy of the type 1 judgments (the states being cor-
rect versus incorrect). Assuming the confidence judgment is based on essentially the same 
information as the type 1 judgment (compare with Lau and Rosenthal 2011), type 2 d’ is 
very unlikely to be more than the corresponding type 1 d’ for plausible criteria placement 
(though it can exceed type 1 d’ in extreme cases; Barrett et al. 2013). Thus, when using type 
2 d’ to measure the confidence accuracy relation, we can represent the alternative hypoth-
esis as a uniform up to the type 1 d’ estimate as the maximum. This procedure was used by 
Armstrong and Dienes (2013, 2014) to argue for subliminal perception using Bayes factors 
and the zero-correlation criterion.
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Type 2 d’ is in fact not optimal; it is sensitive to both type 1 and type 2 bias, so Maniscalco 
and Lau (2012) developed a different signal detection measure of the confidence accuracy 
relation, meta-d’. Meta-d’ is the type 1 d’ that would be obtained, given the participant’s 
type 2 performance, if the participant had perfect metacognition7. Indeed, meta-d’ has 
better properties than type 2 d’ in practice for large numbers of trials, including insensitiv-
ity to type 1 and 2 bias (Barrett et al. 2013) (though it may be better to use type 2 d’ than 
meta-d’ if the number of trials per participant is less than 50 and response bias is small; 
Sherman et al., this volume, Chapter 6.) Assuming the confidence judgment is based on 
essentially the same information as the type 1 judgment (see Lau and Rosenthal 2011; 
contrast Scott et al, in press), type 1 d’ is the maximum that meta-d’ could be. Thus, when 
using meta-d’ to represent the confidence accuracy relation, a natural representation of the 
alternative hypothesis would be a uniform with a maximum estimated by type 1 d’ (just as 
we did when using type 2 d’).

The accuracy confidence slope

Consider an implicit learning task where people classify sequences as rule-following or not 
after a training phase. Overall classification performance is 62% and significantly different 
from a chance baseline of 50%. There is knowledge, but is it unconscious? Let us say the 
classification accuracy when people say they are purely guessing is G and when they say 
they have some confidence is C. For example, let us say performance was 54% when people 
said they were guessing and 65% when they had some confidence. We will rescale these 
numbers so they are the amount of performance above baseline. That is, G = 4%, C = 15%. 
Also, if we represent overall performance ignoring confidence as X, then X = 12%. The ac-
curacy confidence slope is just the difference C – G, i.e. in this case slope = 11%. Let us say 
it has a SE of 7%, so t(40) = 11/7 = 1.57, p = 0.12, non-significant. One might be tempted to 
conclude that all the knowledge was unconscious because the confidence accuracy relation 
was non-significant. But as you know, such a conclusion would be unfounded. So do the 
data provide evidence for the knowledge being entirely unconscious or not?

It turns out to be easy to specify a maximum possible slope, given X, and pc, the propor-
tion of confident responses8. Namely, the maximum slope = X/pc. So if 70% of responses 
were associated with some confidence, the maximum slope = 12/0.7 = 17%. Thus, we rep-
resent the alternative as the uniform [0, 17]. This gives BU[0,17] = 2.65. The evidence is in-
conclusive. (But, if anything, it is more in favor of knowledge being partly conscious rather 
than completely unconscious.) For actual applications of this method see Armstrong and 
Dienes (2013, 2014), Guo et al. (2013a), and Li et al. (2013).

7 See supplemental material for Barrett et al. (2013) for MATLAB code for calculating meta-d’.
8 X is a weighted average of G and C, with the weights being the proportions of each type of response. 

That is, X = (1 – pc) × G + pc × C. By definition, our measure of confidence accuracy relation, the slope, 
is C – G. This will be maximum when all guessing responses are at baseline, i.e. when G = 0. In this case, 
slope = C – G = C. Also in this case, X = pc × C, with the G term dropping out. Rearranging, C = X/pc. 
Thus, since maximum slope = C in this case, maximum slope = X/pc.
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Conclusions
Research in many fields, including consciousness science, often involves asserting a null 
hypothesis. Up to now, users of inferential statistics have not typically used any coherent 
basis for asserting null hypotheses. The result is theoretical claims made without justifica-
tion. This chapter offers a few suggestions for how we may proceed using Bayes factors, 
only declaring mental states unconscious when we have substantial evidence for that claim, 
and also only claiming the absence of unconscious knowledge when we have substantial 
evidence for that claim. In general, we will only assert a hypothesis, null or alternative, 
when there is substantial evidence for it. The rest of the time we will, like Socrates, have the 
wisdom to know that we do not know.
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Appendix 12.1 Variations of conclusions with different  
Bayes factors
Table 12.A1 shows Bayes factors for examples given in the text where the alternative hypothesis, H1, is 
specified in different ways. Considering different specifications of H1 is important for evaluating the ro-
bustness of the conclusions; if the different specifications are different ways of modeling the same theory, 
then the conclusion is robust if the different Bayes factors agree. BU, BN, and BH are all specified so that 
the lower and upper limits of plausible values are approximately equal; that is, for a lower limit of 0 and an 
upper limit of L, BN uses a normal N(L/2, L/4) to model predictions (i.e. a normal distribution with a mean 
of L/2 and a standard deviation of L/4); and BH uses a half-normal based on N(0, L/2) to model predic-
tions. BJZS is the default Rouder calculator (<http://pcl.missouri.edu/bf-one-sample> scaled so that r = 1), 
and reciprocated so that higher values indicate support for H1 and against H0.

These examples illustrate how typically BJZS shows stronger support for the null than more context-
specific Bayes factors (because BJZS necessarily uses a vague specification of H1, and thus is effectively test-
ing a different theory than the other Bayes factors). BH tends to give values closer to 1 than the other Bayes 
factors (i.e. it is more likely to indicate data insensitivity, because it indicates plausible values around the 
null value). Thus, if the data are shown to sensitively discriminate H1 from H0 using BH, then the conclu-
sion is likely to be robust (e.g. example 4).

BJZS involves a theory about standardized effect size and so depends on the t-value and degrees of free-
dom; for constant degrees of freedom, the smaller the t, the more BJZS supports the null (e.g. examples 1 

Table 12.A1 examples from the text.

Example Mean SE BU BN BH BJZS

1 section 3.1 2 6 BU[0,21] = 0.48 BN(10.5,5.25) = 0.45 BH(0,10.5) = 0.64 BJZS = 0.13

2 section 3.1 2 2 BU[0,21] = 0.33 BN(10,5) = 0.20 BH(0,10) = 0.53 BJZS = 0.20

3 section 3.2 1 0.8 BU[0,10] = 0.39 BN(5,2.5) = 0.21 BH(0,5) = 0.60 BJZS = 0.28

4 section 3.2 1 2 BU[0,20] = 0.20 BN(10,5) = 0.18 BH(0,10) = 0.30 BJZS = 0.14

5 section 4.1 6 5.4 BU[0,10] = 0.33 BN(5,2.5) = 0.30 BH(0,5) = 0.44 BJZS = 0.44

6 section 4.2.2 11 7 BU[0,17] = 2. 65 BN(8.5,4.25) = 2.80 BH(0,8.5) = 2.35 BJZS = 0.39
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and 2). The other Bayes factors (in these examples) involve theories of raw effect sizes, and hence can show 
increased support for the null even as t increases (examples 1 and 2)—because the larger t may indicate a 
smaller standard error (and hence more sensitivity).

Appendix 12.2 Rouder’s Bayes factor for binomially distributed data
The Dienes calculator assumes normally distributed data, so it cannot be used for a binomial situation 
(unless a normal approximation is used). Consider a task consisting of a sequence of binary forced-choice 
trials (making left or right responses) where the correct answer is on the right a random 50% of the time; 
consider the number of successes as binomially distributed. Past research suggests that performance on 
the task should be about 60% when people say they are guessing. Out of 20 trials where an individual 
participant claims to be guessing, he obtained 12 correct answers, non-significantly different from the 
chance expected value of 10, p = 0.503 (using <http://graphpad.com/quickcalcs/binomial1.cfm>). That 
is, there is no evidence of unconscious knowledge by the guessing criterion. But is there evidence against 
unconscious knowledge?

The following Rouder calculator can be used for a binomially distributed observation (regardless of 
whether a normal approximation is appropriate): <http://pcl.missouri.edu/bf-binomial>. H1 is specified 
in terms of the parameters “a” and “b” of a “beta distribution.” The mean of the beta distribution is given 
by a/(a + b), and its variance is ab/((a + b)2(a + b + 1)). Given that past research has found performance 
to be about 60%, the mean for the distribution should be 0.6, the proportion expected on H1. What about 
the variance? We can use the equivalent of the rule given in Figure 12.1(b); namely, set the SD to be half 
the distance of the mean from the null value. The mean, 0.6, is 0.1 units from 0.5; thus, we would like 
an SD of 0.05. We will obtain this by trial and error. If a = 60 and b = 40, the mean of the beta is 0.6, as 
required. Variance = 60 × 40/(100 × 100 × 101) = 0.0024, and thus SD = √0.0024 = 0.05, just as required. 
(If the variance had been too big, a and b would be increased to reduce the variance.) Thus, we enter a = 
60 and b = 40 into the boxes for the “prior.” This gives a B of 0.73 in favor of the null; i.e. 1/0.73 = 1.37 in 
favor of H1 over H0 (the way round we have been considering in this chapter). That is, the result may be 
non-significant, but the data do not support the null hypothesis and do not provide evidence against the 
existence of unconscious knowledge.

Another way of thinking about setting the predictions of H1 is to treat a as the number of successes and 
b as the number of failures in a hypothetical past study, upon which we are basing H1. Using an online 
binomial calculator (e.g. <http://graphpad.com/quickcalcs/binomial1.cfm>), 60 successes out of 100 tri-
als is almost significantly different from a null value of 0.5, p = 0.057. Given that a just significant outcome 
often corresponds to (just) substantial evidence for H1 assuming the mean was about that expected, one 
way of understanding the rule in Figure 12.1(b) is that it represents the expected value as coming from 
a past experiment that provided just enough evidence for the value to be taken seriously. Alternatively, 
a just significant difference can be seen as a way of finding how to spread out the plausibility of different 
population values maximally so that a negligible amount is below baseline. Thus, a heuristic for setting 
the a and b values of the beta is: set the values so that mean (a/(a + b)) is the expected value, and use a 
binomial calculator to set (a + b) so that the number of successes, a, would be just significantly different 
from the null value.

For example, consider an expected value of 0.7. Using a binomial calculator (e.g. <http://graphpad.com/
quickcalcs/binomial1.cfm>), if a = 7 (b = 3), p = 0.34 . We need to increase a. If a = 14, b = 6, then p = 0.12. 
If a = 21, b = 9, p = 0.04, just significant. So, to specify the prior in the Rouder calculator, use a = 21, b = 9 
to represent an expected proportion of 0.7 on H1 (i.e. as the “prior”).

a = b = 1 yields a uniform distribution over the interval [0,1]. Such a distribution could be considered 
a “default” H1 in that all population values are equally probable. For the example in the first paragraph, 
using a = b = 1 gives B = 2.52 in favor of the null, i.e. 1/2.52 = 0.40 in favor of H1 over H0. However, given 
information that expected performance is about 0.60, this default is not as relevant as the one used in the 
first paragraph.
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Q. No. Query

AQ1  We have shortened the running head. Please check.

12-Overgaard-Chap12.indd   221 12/01/15   12:58 PM

OUP-FIRST UNCORRECTED PROOF, January 12, 2015




