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Subjects exposed to strings of letters generated by a finite state grammar can 

later classify grammatical and nongrammatical test strings, even though they 

cannot adequately say what the rules of the grammar are (e.g., Reber, 1989). The 

MINERVA 2 (Hintzman, 1986) and Medin and Schaffer (1978) memory-array 

models and a number of connectionis? autoassociator models are tested against 

experimental data by derlving mainly parameter-free predictions from the 

models of the rank order of classification difficulty of test strings. The importance 

of different assumptions regarding the coding of features (How should the 

absence of a feature be coded? Should single letters or digrams be coded?), the 

learning rule used (Hebb rule vs. delta rule), and the connectivity (Should 

features be predicted only by previous features in the string, or by all features 

simultaneously?) is investigated by determlning the performance of the models 

with and without each assumption. Only one class of connectionist model (the 

simultaneous delta rule) passes all the tests. I? is shown that this class of model 

can be regarded by abstracting a se? of representative but incomplete rules of the 

grammar. 

Recently, there has been considerable interest in how subjects learn artificial 
grammars (Dienes, Broadbent, & Berry, 1991; Mathews et al., 1989; Per- 
ruchet & Pacteau, 1990; Reber, 1967, 1976, 1989; Servan-Schreiber & 
Anderson, 1990). The complex but specifiable stimulus structures generated 
by the grammars provide ideal test cases for theories of human learning 
(Reber, 1989). In a typical experiment subjects memorize strings of letters 
that appear arbitrary but are actually generated by a finite state grammar. 
Figure 1 shows a typical finite state grammar. Subjects are then informed of 
the existence of the complex set of rules that constrains letter order (but not 
what the rules are), and are asked to classify new grammatical and non- 
grammatical strings. Subjects’ typical classification performance-about 
70%-indicates that they have acquired substantial knowledge about the 
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Figure 1. Example of a finite state grammar 

grammar. This knowledge is implicit in that the learning occurs incidentally 
(Mathews et al., 1989; Reber, 1976) and subjects are unable to justify ade- 
quately their classification decisions in free report (Dienes et al., 1991; 
Mathews et al., 1989; Reber & Allen, 1978). These findings suggest that sub- 
jects do not learn the grammars by deliberate hypothesis testing. 

Two currently influential approaches to modelling learning do not involve 
hypothesis testing and have yet to be systematically applied to grammar 
learning: The connectionist and memory-array approaches. In the former 
case, lawful behavior may be produced by a connectionist network in which 
rules or hypotheses are not explicitly represented, but emerge from the way 
that interacting units are connected (Rumelhart & McClelland, 1986a). In 
the case of the memory-array approach (e.g., Estes, 1986; Hintzman, 1986; 
Medin & Schaffer, 1978), rules are also not explicitly ‘represented but 
emerge from the way in which test items are compared to stored exemplars. 

Both approaches have been applied to human concept formation, as will 
be discussed later, but there is a need for more systematic testing of both 
types of models against empirical data. In terms of the connectionist ap- 
proach, Massaro (1988) argued that specific models have rarely been tested 
against plausible alternatives so as to indicate which assumptions in a model 
are necessary and which are extraneous. And in terms of the memory-array 
approach, the mathematical models that have evolved have not been applied 
to the artificial grammar-learning paradigm, even though the approach 
originally gained impetus by its implications for artificial grammar learning 
(Brooks, 1978). 
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TABLE 1 
Strings Presented in Acquisition and Test Periods 

Acquisition 
Grammatical 

MTTll-V 
MTTVT 
MTV 
MTVRX 
MTVRXM 
MVRX 
MVRXRR 

MVRXTV 
MVRXV 
MVRXVT 

VXM 
VXRR 
VXRRM 
VXRRRR 
VXTTVT 
VXTVRX 
VXTVT 
VXVRX 
VXVRXV 
VXVT 

Grammatical 

vxn-rv 
Ml-l-W 

Mll-VRX 
MVRXVT 
MTVRXV 

MTVRXR 
MVRXM 
VXVRXR 
Ml-I-l-VT 
VXRM 
MVT 
MTVT 
MTTV 
MVRXR 
VXRRR 
VXTV 
VXR 
VXVT 
MTV 
VXRRRM 
VXTTV 
vxv 
VXVRX 
VXVRXV 

MVRXRM 

Test 

Nongrammatical 

VXRRT 
vxx 

VXRVM 
XVRXRR 
XTtlTV 

MTVV 
MMVRX 
MVRTR 
MTRVRX 
TTVT 
MTTVTR 
TVlTXV 
RVT 
MXVT 
VRRRM 
XRVXV 
VVXRM 
VXRT 
MTRV 
VXMRXV 
MTM 
TXRRM 
MXVRXM 
MTVRTR 
RRRXV 

This article investigates the usefulness of both the connectionist and 
memory-array approaches in modelling artificial grammar learning. Initially, 
the experimental data used to evaluate the models is described, and then the 
models used are described. Next, the models are evaluated against the em- 
pirical data. Finally, characteristics of the most successful model are explored 
in more detail. This section attempts a higher level description of the suc- 
cessful model in order that a deeper understanding may be obtained of the 
sort of knowledge acquired by it. 

THE EXPERIME NTAL DATA 

The data used to evaluate the models were obtained from Dienes et al. 
(1991) and Dulany, Carlson, and Dewey (1984). In both studies, subjects 
were initially exposed to the 20 acquisition strings shown in Table 1, and 
were asked to memorize them. Then subjects were asked to classify the 25 
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TABLE 2 

Mean Experimental Data 

PC cc CE EE 

Dienes et al. (1991) .63 .4B .15 .22 

Dulany et al. (1984) .63 Sl .15 .20 

Note. PC is the proportion of strings correctly classified: 
CC is the proportion correctly classified twice in a row; CE 
is the proportion correctly classified once correctly and once 
in error: and EE Is the proportion classified in error twice 
in a row. 

grammatical and 25 nongrammatical test strings shown in Table 1. Subjects 
saw each string twice, and therefore made 100 classification decisions. 
Dienes et al. provided data from eight separate subject groups, with a total 
of 82 subjects, and Dulany et al. provided data from four separate subject 
groups, with a total of 50 subjects.’ 

The experiments provided data on the average classification performance 
of subjects (PC), the range of classification performance, the proportion of 
strings classified correctly twice (CC), the proportion classified once cor- 
rectly and once in error (CE), and the proportion classified in error twice 
(EE). The experiments also provided data on the rank order of string dif- 
ficulty for both grammatical and nongrammatical strings. 

The average PC, CC, CE, and EE values for Dienes et al. (1991) and 
Dulany et al. (1984) are shown in Table 2. Although the average values 
happen to be very similar across the two studies, the precise values vary 
depending on experimental condition. The range of individual subject scores 
is also quite large; in Dienes et al., PC varied between chance and 80%. 
Thus, an adequate model should be able to produce PC values near 80%. 

Another constraint on the models concerns the reIationship between CE 
and EE. Reber (e.g., 1989) emphasized the theoretical importance of this 
relationship; specifically, Reber argued that if the subjects’ CE and EE are 

I The groups in Dienes et al. (1991) and Dulany et al. (1984) differed at the learning 
stage. Some groups of subjects were asked to search for rules, other groups were not informed 
of the existence of rules; both Dienes et al. and Dulany et al. found that this had no influence 
on performance. Some groups tested by Dienes et al. were asked to perform a concurrent sec- 
ondary task (random number generation), other groups were not; Dienes et al. found that con- 
current random number generation deteriorated performance. Some groups tested by Dulany 
et al. were presented the learning strings sequentially, others simultaneously; this did not affect 
performance. Because there is no evidence that the experimental manipulations affected per- 
formance qualitatively on the test strings, their details will not be important for the modelling 
conducted in this article. Dienes et al. also included a group (the mixed group) exposed to 
nongrammatical as well as grammatical strings of learning. Because this group was exposed to 
a different set of strings than the other subjects, and the models, they are not considered in this 
article. 
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very similar, then their knowledge can be regarded as representative of the 
grammar. Consider a subject who correctly knows a certain proportion of 
the strings and guesses for the remaining strings. Then any string that was in 
error once or twice (CE or EE) must have been classified simply by guessing. 
Thus, with the probability of a correct guess set at SO, CE would equal EE. 
However, if the subject systematically misclassifies some strings because of 
rules not representative of the grammar, then EE would be greater than CE. 
Dienes et al. (1991) and Dulany et al. (1984) consistently found a slightly 
but significantly greater EE than CE value. Reber also often obtained 
values similar to the means displayed in Table 2 (see Dulany et al., 1984, p. 
546 for discussion on this point). The important aspect of these results, 
which will be used to constrain the models, is that EE should be slightly, but 
only slightly, greater than CE; the difference EE - CE was taken to be .05. 
Thus, a model that could obtain high enough PC values only by inflating EE 
considerably above CE, would not be adequate. 

The experiments provided data on rank orderings of string difficulty and 
these were used to assess the adequacy of different models. It is important 
that the rank orderings represent a reliable aspect of subject performance. 
The obtained rank orderings may, for example, simply represent random 
scatter. Indeed, Mathews et al. (1989) emphasized the divergence between 
knowledge representations of different subjects, as indexed by the contents 
of free-recall reports. However, the extent of the overlap across subjects in 
the knowledge representations underlying classification performance re- 
mains an open question. 

To assess the reliability of the experimental rank orderings, separate rank 
orderings were determined for the eight groups in Dienes et al. (1991). 
Rank orderings were determined by summing the number of correct re- 
sponses to each string. The 28 Spearman’s correlations between each group 
and all the other groups were transformed by Fisher’s z and averaged. The 
mean Fisher’s z converted back to a correlation was -68 for grammatical 
exemplars (with a standard deviation, SD,- I, in z scores of. 19), and 32 for 
nongrammatical exemplars (SD,,- I= .17). Thus, there is considerable over- 
lap between the groups in which strings were found difficult. The agreement 
among subjects in all the Dienes et al. groups can also be indexed by Cron- 
bath’s alpha: for grammatical exemplars, cy = 56, and for nongrammatical 
exemplars, CY = .65. 

The data from the subjects run in Dienes et al. (in press) were combined 
to provide a single rank ordering (call it RANKl). The Spearman’s correla- 
tion between RANK1 and the rank ordering derived from Dulany et al’s 
(1984) data2 was .68 for grammatical exemplars, and .59 for nongrammati- 
Cal exemplars, ps -=z .Ol . 

’ Many thanks to Don Dulany for making these data available. 
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In s_ummary, there was considerable consistency in the rank ordering of 
exemplar difficulty between subjects. An adequate model of artificial gram- 
mar learning should be able to account for this consistency. 

The data from Dienes et al. (in press) and Dulany et al. (1984) were com- 
bined to produce a single rank ordering (call it TOTAL) to test the models 
with. It may be objected that, by averaging over all subjects, a rank order- 
ing is obtained that is not representative of any single subject. Although 
recognizing this possibility, the simple assumption will be made here, based 
on the high levels of between-subjects consistency found earlier, that the ob- 
tained average rank ordering represents a central tendency, around which 
each subject deviated by a random error. 

DESCRIPTION OF MODELS 

The two types of model considered, connectionist models and the memory- 
array models of Estes (1986; also, Medin & Schaffer, 1978) and of Hintz- 
man (1986), are now described in turn. 

Connection&t Models 
Initiahy, the relevant ideas in connectionism are introduced, and then two 
influential learning rules are explored in more detail. Next, previous experi- 
mental applications of connectionist ideas to human concept formation are 
briefly reviewed, and then the details of the connectionist models used in 
this article are described. . 

Introduction. Connectionism is having an increasing impact on psychol- 
ogy; indeed, Massaro (1988) called it a revolution, and Schneider (1987), a 
“paradigm shift.” Connectionism attempts to model human performance 
according to patterns of activation across a number of simple computa- 
tional elements, or units, connected by weights. The architecture of a net- 
work of units is specified by the connectivity between the units, that is, 
which weights are allowed to be nonzero. For example, the autoassociator 
can be represented by a set of units all connected to each other (but no con- 
nections to the same unit from itself); see Figure 2. McClelland and Rumel- 
hart (1986) argued that the autoassociator could provide a useful model of 
human learning and concept formation. 

A stimulus presented to an autoassociator produces a pattern of activation 
(the input activation) across the units at time t. At time t + 1, the autoasso- 
ciator produces a response: An output activation for each unit based on the 
weighted sum of the input activations of the other units. The aim of the auto- 
associator is to produce output activation equal to the input activation. The 
simplest output function, and the one used for the models in this article, is 
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L r\ 
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I I I I 

, 
Figure 2. An autoassociator 

where oi is the output activation of the ith unit, wo is the weight from the&h 
unit to the ith unit, and aj is the input activation of thejth unit. Models with 
hidden units require more complex output functions. In order to investigate 
the performance of the simplest models, this article does not use models 
with hidden units. 

In a feed-forward autoassociator, activation passes through the weights 
just once to produce the output activation. In a recurrent autoassociator, 
the output activation arriving back at each node can be passed through the 
weights again until a stable state is reached. This article will mainly investi- 
gate feed-forward rather than recurrent autoassociators. When a recurrent 
autoassociator is used, it will be explicitly labelled as such. 

The autoassociator is interesting from the point of view of artificial 
grammar learning because the task of forming suitable weights in an auto- 
associator is similar to the task of subjects Iearning the grammar: that is, 
to establish the predictability of each letter from the other letters in a gram- 
matical string. For example, a given input vector a could represent a partic- 
ular string. The different units could represent letters in different positions. 

Part of the appeal of connectionist networks is that there is often no need 
to set the weights by hand in order to produce appropriate behavior; the 
network can learn to “program itself” by the use of local learning rules. 
Two rules that are commonly used in networks without hidden units and 
that have been suggested as models of human learning are the Hebb rule 
(Anderson, 1983) and the delta rule (Rumelhart & McClelland, I986b). 
These rules are discussed in turn. 

(a) The Webb Rule. The Hebb rule is so called because it was clearly 
espoused by Hebb (1949), although a previous statement of it appeared in 
James (1890/1950) as his “law of neural habit.” The Hebb rule is that the 
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increment in weight between two units is dependent on the correlation be- 
tween the activations of the two units. A common version of this rule (see, 
e.g., Anderson, 1983), and the simplest version, is for the weight to be 
incremented on each learning trial by an amount equal to the product of the 
activations of the two units. That is, 

where ai and ai are the activations of the ith and jth units, respectively.3 
Thus, the weight between units i andj will be increased only if both units are 
on (have positive activations) during the learning trial. 

@j The Delta Rule. Whereas the Hebb rule was developed as a plausible 
way in which neurons might learn (Hebb, 1949; James, 1890/1950), the 
delta rule was developed as an optimal solution to a computational problem 
(see Hinton, 1987; Stone, 1986; Widrow & Hoff, 1960). The delta rule is the 
procedure that, by gradient descent, will produce a set of weights that 
minimizes the squared difference between the desired output.vectors and the 
actual output vectors produced by the network. It can be shown (e.g., 
Hinton, 1987) that this implies the delta rule 

A Wi,j = ck LR (C&k - Oi,k)G”,k 

where di,k is the desired output for pattern k of the ith unit, and oi,k is the 
actual output, if the output of each unit is simply the weighted sum of its in- 
put. LR is a sufficiently small learning rate. In the case of an autoassocia- 
tor, the desired output is the input, that is, di,k=ai,k. 

Consider an autoassociator trained according to either the Hebb or the 
delta rule. Initially, in a learningphase, a set of input activation vectors (call 
the Mh such vector ak) are successively applied. Each learning vector could 
represent, for example, a particular string generated by a finite state gram- 
mar. After each vector, the weights matrix, W, is changed according to the 
learning rule. Then, in a testing phase, the ability of the autoassociator to 
predict each activation value of a test vector ak can be determined. The 
vector of predicted (or output) activations for the kth test vector is given by 

pk=wBk. 

’ With this version of the Hebb rule. wo can increase without limit. This is not a problem 
for the use of the Hebb rule in this article, but a Iearning rule might appear more natural if it 
leads to stable wu after some period of exposure to an ergodic sequence. The following rule 
could be used for this purpose: W/J,,,+ I = w ij,,,+LR(aiaj- w/J,& where w~J,,, is the weight 
between the ith andjth units on trial n, and LR is a small learning rate; W~J will be stable over 
a long sequence of trials when it equals the expected value of aiaj over trials. Note that the 
pattern of W~J produced by this rule after a sufficiently large number of trials will equal the 
pattern produced by the simpler rule given in the text after a single iteration through all strings. 
Thus, the simpler rule is actually used in this article to model grammar learning. 
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As will be explained in the next section, if ak is close to a “central ten- 
dency” extracted by the autoassociator, then pk will closely match ak. The 
degree of match can be assessed by the correlation between ak and pk (spe- 
cifically, by the cosine of the angle between ak and pk). For example, the 
autoassociator may have been trained on grammatical strings in the learning 
phase. If it had learned the constraints that apply between letters in a gram- 
matical string, it would predict each activation value for vector ak more 
accurately if ak represented a grammatical rather than nongrammatical 
string. Thus, the variation in the correlation between ak and pk could be used 
by the autoassociator to classify grammatical and nongrammatical strings. 

If the W produced by a Hebb or delta rule produced a similar pattern of 
classification performance as produced by subjects, how would our under- 
standing of artificial grammar learning (and hence, learning in general) be 
increased? Understanding the type of concept acquired by the autoassocia- 
tors is essential if our understanding of what the associator is learning is to 
go beyond a simple enumeration of its weights. The next section attempts to 
characterize the sort of knowledge acquired by Hebb and Delta rule auto- 
associators. 

Nature of the Hebb and Delta Rules 

(a) The Hebb Rule. The i, jth entry of the W of a Hebbian autoassociator 
reflects how frequently units i and j both had positive activations or both 
had negative activations. That is, W constitutes an approximate sample 
covariance matrix for the units (Anderson, 1983). The eigenvectors4 of a 
correlation matrix give the principal components of principal components 
analysis (PCA). Thus, the principal eigenvectors of W will contain appreci- 
able loadings for features that are mutually highly correlated. Extracting 
this underlying structure in the patterns may be regarded as a form of con- 
cept formation. Indeed, Child (1970), who wrote a book on factor analysis, 
compared extracting factors to a child forming concepts. 

A key difference between W and the correlation matrix used by PCA is 
that the entries in W are strictly covariances only if the mean activation of 
each unit over learning trials is zero. The entries in W are correlations only 
with the further requirement that the standard deviations of the activations 
of each unit are 1. These requirements are not easily met in a natural coding 
scheme. For example, a readily interpretable coding scheme is for a unit to 
have an activation of 1 if the feature it codes (e.g., a particular letter in a 

’ a is an eigenvector of matrix M if Ma =Xa. where X is a constant (called the eigenvalue). 
Thus, determining the eigenvectors of the weights matrix W of an autoassociator amounts to 
determining which vectors the autoassociator will successfully complete (to a scalar multiple). 
Characterizing the eigenvectors of W amounts to characterizing the sort of knowledge acquired 
by the autoassociator. 
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particular position) is present in an exemplar, and an activation of 0 (or - 1) 
otherwise. The entries in W will then reflect not only the covariance between 
the activations of two units, but also their frequency of occurrence. Thus, a 
unit will be strongly represented in the dominant eigenvector not only if its 
activation correlates highly with the activations of other units (as in PCA), 
but also if it has a high base rate of occurrence. This difference to PCA is 
desirable if the autoassociator is to be sensitive to base rate effects. 

By analogy with PCA, if there are only a few eigenvectors of W with ap- 
preciable eigenvalues, these principal eigenvectors may be regarded as having 
extracted the “central tendencies” of the exposed exemplars. In this sense, 
the Hebbian autoassociator may be regarded as having learned a “concept.” 
But how might this knowledge of the concept actually be expressed? 

The vector of output activations across all units for the kth input pattern 
is given by 

ok = wak. 

If the exemplars learned by a Hebbian auto associator are coded as ortho- 
gonal vectors, then the auto associator will be able to reproduce each input 
vector entirely (to a scalar multiple) without interference from the others. 
That is, the ak will form the eigenvectors of W. In the artificial grammar- 
learning task, the exemplars possess a strong family resemblance structure 
defined by the finite state grammar. Any scheme for coding the exemplars 
that captures this family resemblance structure must represent the exem- 
plars in a nonorthogonal way. Thus, with such a coding scheme, there is 
likely to be a dominant eigenvector that almost entirely captures the variance 
in all the exposed exemplars. Test strings that are highly “prototypical,” 
that is, close to the dominant eigenvector, will be little changed (to a scalar 
multiple) by multiplication by W. That is, the correlation between input and 
output activations will be close to 1. If; however, a test string is not close to 
the dominant eigenvector, the output vector will nonetheless be pulled 
towards the eigenvector,’ and so the correlation between input and output 
vectors will be somewhat less than 1. The variation in the correlation between 
input and output vectors can be used as a means for classifying test strings 
as “grammatical” or not. 

To summarize, a Hebbian auto associator provides a measure of the cen- 
tral tendencies of a set of exemplars in terms of PCA. Test strings can be 
classified according to how well they match the “principal components” of 
the studied exemplars, where the “principal components” have been modi- 
fied by base rate effects. 

(ZJ] The Delta Rule. The delta rule is an iterative method of producing the 
standard regression coefficients for predicting each unit from the other 

’ Strictly, towards the eigenvector, with the largest eigenvalue, to which it is nonorthogonal. 
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units (see Stone, 1986), as may be expected from the fact that it produces 
the least mean square solution. Thus, in contrast to the Hebb rule, the wii 
produced by the delta rule for the jth input unit will partly reflect how well 
the ith output unit is already predicted by other input units, just as for 
regression coefficients. 

As for the Hebb rule, let the vector of output activations for the kth in- 
put pattern be given by ok= Wak, and let the ak be classified as “grammati- 
cal” according to their correlation with their ok. In contrast to a Hebbian 
auto associator, the weights matrix, W, produced by a delta rule auto asso- 
ciator is not a covariance matrix but a matrix of regression weights. Thus, in 
contrast to a Hebbian autoassociator, a delta rule autoassociator does not 
acquire knowledge that can be interpreted in terms of PCA. 

As for a Hebbian autoassociator, output activations will equal input ac- 
tivations only if the input activations are eigenvectors of W. Thus, charac- 
terizing the eigenvectors of W would enable a characterization of what is 
learned by the autoassociator. If the exemplars learned are coded as linearly 
independent,6 then, when learning asymptotes, any test exemplar that is a 
linear combination of the learning exemplars will be an eigenvector of W 
with eigenvalue equal to 1. All such test exemplars would be classified as 
“grammatical.” Any pattern that is not a linear combination of the learn- 
ing exemplars would not be an eigenvector of W. Thus, to the extent that a 
test exemplar deviated from a linear combination of learning exemplars, it 
would be classified as “nongrammatical.” If the learning exemplars are 
linearly dependent, it is not a priori clear how to characterize the dominant 
eigenvector in the general case. More will be said on this topic in the section, 
“Properties of Simultaneous Delta Rule Models.” 

The Delta Rule, the Exemplar Model, and Human Concept Formation. 
Recently, it has been argued that the delta rule is relevant in understanding 
human concept formation. The previous applications of the delta rule to ex- 
perimental concept-formation paradigms are now briefly reviewed. 

A number of studies have compared the delta rule with an exemplar model 
(described later) in accounting for human concept formation. Estes, Camp- 
bell, Hatsopoulos, and Hurwitz (1989), Gluck and Bower (1988), and Shanks 
(1990, Experiments 1 and 2) used a task in which subjects classified patterns 
of symptoms into one of two diseases, one of which was more common than 
the other. The delta rule network used to model this task by all three studies 
consisted of an input unit for each symptom connected to a single output 
unit coding the disease category. All three studies found that subjects’ 
asymptotic classification data of complete symptom patterns were close to 
matching the normative Bayesian values, as predicted both by the network 
model and by the exemplar model (with no forgetting; this model is described 

6 That is, no input vector can be formed by a linear combination of the other input vectors. 
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later). Thus, the models did not differ in terms of the learning outcome, but 
they did differ in their trial-by-trial predictions of the learning process, for 
the stimuli employed. At asymptote, the error produced by the delta rule 
network on any given trial will be small, and so the weights will not fluctuate 
much across trials. At asymptote, the predictions of the exemplar model 
will be changed each trial by the acquisition of a new exemplar, regardless 
of the error in its prediction. Thus, due to local sequence effects, the predic- 
tions of the exemplar model may deviate more widely than the network 
model from Bayesian matching on any given trial. 

Estes et al. (1989) found that subjects’ trial-by-trial performance could 
be better accounted for by the network rather than exemplar model, mainly 
because of the deviations from Bayesian matching predicted by the exem- 
plar model. The stability of the delta rule’s predictions at asymptote differ- 
entiates it from the Hebb rule as well as from the exemplar model. It would 
be useful to develop stimuli that distinguished the models in terms of the 
learning outcome; this is achieved in this article by using artificial grammars 
(see also, Shanks, 1990, Experiment 3). 

Medin and Edelson (1988) also presented results consistent with the delta 
rule as a model for concept formation. Their results also illustrate the im- 
portance of considering how absent features are encoded in determining the 
predictions of a delta rule model. Subjects classified symptom patterns into 
diseases, some of which were more common than others. Under some con- 
ditions, subjects showed an inverse base rate effect (i.e., incorrectly regarded 
the rare disease as more probable), and under other conditions, subjects 
showed a normative base rate effect. Medin and Edelson (1988) argued that 
a delta rule model could account for this pattern. Markman (1989) pointed 
out that the delta rule could only do so if the absence of a feature or disease 
is coded as - 1 (and not as 0). Coding the absences of a feature as - 1 
means that the absence of the feature can have an effect on the activation of 
output units. The absence of a frequent feature can have a large negative 
effect on activation of output units, thereby producing an inverse base rate 
effect. 

The relevance of these studies to modelling artificial grammar learning 
might be questioned because the performance of a network is as much deter- 
mined by its architecture as by the learning rule used; with artificial grammar 
learning, the appropriate architecture would be an auto associator rather 
than the simple network used by Gluck and Bower (1988). Nonetheless, the 
relative success in the simple case examined by Gluck and Bower indicates 
that the delta rule should not be dismissed in examining artificial grammar 
learning. Furthermore, McClelland and Rumelhart (1985, 1986) argued for 
a delta rule autoassociator in understanding human concept formation. 
They found that the autoassociator could extract a central tendency or 
prototype from a set of patterns that were random distortions of the proto- 
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type (cf. Anderson, 1983), and that it could do this for several different 
prototypes simultaneously. Also, representations of specific exemplars 
could coexist in the same set of connections with knowledge of the proto- 
type. The ability of the model to store nonorthogonal prototypes and pat- 
terns was dependent on the use of the delta rather than Hebb rule. These 
qualitative results are encouraging in considering modelling artificial gram- 
mar learning with a delta rule autoassociator. 

Details of the Connectionist Models 
Now the models specifically used in this article to model artificial grammar 
learning are considered. The models were all variants of an autoassociator. 
That is, the model attempted to predict each feature of the exemplar applied 
based on some set of the remaining features of that exemplar. 

Criteria for assessing the performance of connectionist models have not 
yet crystallized in the literature. One strategy is to select parameter values 
for the models that optimize their performance, and to report the perfor- 
mance with these parameter values. Another strategy will be adopted here. 
Predictions will be derived from simple models; at least one of the predic- 
tions will be parameter free. The influence of key assumptions in the model 
will be assessed by comparing the model’s predictions with and without 
each assumption. The models differed according to four assumptions: the 
learning rule used, and coding of letter features, the coding of absent 
features, and the use of successive versus simultaneous prediction. These 
assumptions are discussed in turn. 

1. The Learning Rule Used. The two rules used were the Hebb rule and 
the delta rule. During learning, the Hebb rule is parameter free. The pattern 
of weights produced does not depend on a learning rate, the number of itera- 
tions through the training strings, or the sequence of string presentation. 

Two learning parameters need to be considered for the delta rule: LR, 
the learning rate, and NI, the number of iterations through the exemplars. 
Before asymptotic performance, the sequence of string presentation may also 
be important. As long as LR for the delta rule is below a maximum value 
(see Stone, 1986, for what this is), it does not influence the final pattern of 
results, only how long it takes to get there. Thus, a parameter-free version 
of the delta rule can be produced by determining the asymptotic pattern of 
weight. In practice, the asymptotic weights were determined by setting LR 
at .01 or -02 and running the model for 500-1000 iterations (evidence is 
presented in Appendix B that the weights were indeed asymptotic under 
these conditions). Note that there is a peak after fewer than six iterations in 
the ability of the model to classify, but the pattern of classification does 
change after this point. Thus, for each delta rule model, its predictions were 
tested, first, with asymptotic weights, and second, with weights produced 
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by six iterations (in the experimental data used to assess the models, subjects 
were exposed to the strings six times), with the strings presented in the same 
order as for subjects, and with the approximately optimal learning rate for 
that model. “Optimal” means the learning rate that appeared to maximize 
classification performance, as determined by a rough ‘&hand” exploration 
of LR space. The first type of delta rule model will be called “asymptotic,” 
and the second type “preasymptotic.” 

2. The Coding of Letter Features. The material presented to the models 
was the same material presented to subjects; see Table 1 for a list of the ac- 
quisition and test strings. The strings to be learned were up to six letters in 
length, and each letter position could be filled (or not filled) with any of five 
different letters according to the rules of the grammar; see Figure 1 for these 
rules. In single-letter models, 30 units were used, 1 unit for each letter in 
each position. In digram models, in addition to single-letter coding, digrams 
were also coded. As with single letters, the same digram in different posi- 
tions was coded by a different unit. Thirty-seven units were used to code the 
37 allowable digrams, with 1 unit corresponding to 1 digram. Five addi- 
tional units coded nonallowable digrams, 1 unit for each of the five possible 
digram positions. Thus, in total, 72 units were used for digram models. 

Digram coding allows the model to learn interactive relations between 
the letters. Interactive relations were not common in the grammar used, but 
they did exist; for example, an R preceded by a V can only be followed by 
an X; but an R preceded by an X can only be followed by an R or M. 

3. The Coding of Absent Features. In all models, if a feature was present, 
the unit coding it was given an activation of 1. If a feature was absent, the 
unit coding it could have an activation of 0, for one type of model, or - 1, 
for the other type of model. In the first case, the model is sensitive to the 
frequency of co-occurrence of features; that is, to the frequency of (pi +pi), 
where pi indicates the presence of the ith feature, and pi of the jth feature. 
In the second case, the model can be additionally sensitive to contingency 
between features, that is, to the frequency of (pi-t- -pi), or vice versa, as 
well as of (pi+pi). The two types of model will, therefore, be called co- 
occurrence and contingency models, respectively. 

In a Hebb co-occurrence model, wu is a direct tally of the frequency of 
co-occurrence of features i andj (coded for by units i andj, respectively). In 
a delta rule co-occurrence model WV is a measure of the extent to which the 
occurrence of feature j uniquely predicts the occurrence of feature i. In a 
Hebb contingency model, wu will be decremented if feature i is present but 
not feature j, or vice versa. In fact, in this model, ~0 is a direct measure of 
the extent to which features i and j behave similarly, that is, of the sum of 
the frequencies of (pi+pj) and of (-pi+ -pj) minus the sum of the fre- 
quencies of (pi + -pi) and of (-piS.pj). In a delta rule contingency model, 
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again, of course, it is only the unique prediction of contingency that is im- 
portant for WC. 

Note that coding the absence of a feature as - 1 rather than 0 implies the 
active coding of the absence of a feature by the subject. This is plausible 
when subjects are exposed to stimuli with a only small set of well-learned 
features. It is possible that in the grammar used (see Figure l), the absence 
of a feature was as noticeable to subjects as its presence. 

4. Successive Versus Simultaneous Prediction.. In successive prediction, 
each unit only received activation from units in previous positions. This 
might correspond to the case where the subject reads each stimulus from left 
to right. For successive models, a single, permanently active, “initial unit” 
was used to predict features in the first position. Thus, these models had 31 
units for single-letter coding, and 73 units for digram coding. In simulta- 
neous prediction, each unit was connected to all other units. This would 
correspond to the case where the subject used both previous and succeeding 
letters to constrain the identity of the letter in any given position. 

All four assumptions were fully crossed to produce 16 different types of 
model. Apart from the differences discussed, all models followed the same 
procedure. In the learning phase, the model was exposed to each of the 20 
grammatical acquisition strings used in Dienes et al. (1991) and Dulany et 
al. (1984). For each string, weights were changed according to the learning 
rule involved. One iteration through the strings was used for the Hebb rule 
models, six iterations for the pre-asymptotic delta rule models, and 500-1000 
iterations for the asymptotic delta rule models. In the test phase, the model 
classified each of the 25 grammatical and 25 nongrammatical test strings 
used in Dienes et al. and in Dulany et al. To do this, the weights matrix of 
the model, W, was used to predict the activation of each unit based on the 
other units (all other units, or only previous ones, depending on the model) 
to produce a vector of predicted activations for the kth test string, pk, 

If ak is close to a “central tendency” extracted by the network, then pk will 
closely match ak. Thus, the cosine, (COS) of the angle between ak and pk 
was calculated, where COS = ak-pk/jakl lpkl. 

In order to convert the cosine into a response probability, the procedure 
adopted by Estes et al. (1989), Gluck and Bower (1988), McClelland and 
Elman (1986), and McClelland and Rumelhart (1986) was employed. The 
probability of responding “grammatical” to a string was taken to be the 
sigmoid function, 

p(“g”) = l/(1 + e-kco+ T) 

where k is a scaling parameter and T is a threshold; k gives a degree of 
freedom in adjusting predicted to actual, overall response probabilities. T 
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is adjusted to give equal numbers of “grammatical” and “nongrammatical” 
responses (a program iteratively tries different T values, calculates the 
average p(“g”) for all test strings, and then adjusts T slightly upwards if 
the averagep(“g”) is less than SO, and adjusts Tslightly downwards if the 
averagep(“g”) is more than .50. It is assumed that subjects would do this 
on-line, adjusting their thresholds according to how many “grammatical” 
responses they have given so far). 

From thep(“g”) for each string, the proportion of strings expected to be 
(1) classified correctly overall (PC), (2) classified correctly twice in a row 
(CC), (3) classified correctly once and in error once (CE), and (4) classified 
in error twice in a row (EE) over two classification blocks could be calcu- 
lated. If k could be adjusted to give the same pattern of values for PC, CC, 
CE, and EE as’ were obtained in Dienes et al. (1991) and Dulany et al. 
(1984), this would provide an existence proof that the models could match 
overall characteristics of the experimental data given appropriate parameter 
tweaking. If, for a given model, there was no value of k for which the expe- 
rimental patterns of values could be obtained, then the model would be 
clearly inadequate. 

From the cosine for each string, a rank order of difficulty for gram- 
matical and nongrammatical strings was constructed for each model. For 
the Hebb rule and asymptotic delta rule models, these rank orderings were 
parameter-free predictions of the models. For pre-asymptotic delta rule 
models, the parameters were not determined by their influence on the rank 
orderings. As long as the rank orderings are different for different models, 
the correspondence between experimentally obtained and predicted rank 
orderings can be used to test the different models competitively. 

Memory-Array Models 

Introduction. One key point of debate in the implicit learning literature 
has been whether implicit knowledge is best represented in an abstract way 
(e.g., Reber, 1989; Reber & Allen, 1978) or in terms of the storage and 
deployment of exemplars (e.g., Brooks, 1978; Ericsson & Simon, 1984, p. 
114). Brooks (1978) showed that subjects can use analogy to stored exem- 
plars to classify at above-chance levels. Reber and Allen (1978) argued that 
this was not the normal strategy of subjects. They presented subjects either 
with a paired associate learning task (each string was paired with a city 
name) or a task that simply involved observing strings. They observed several 
differences in the way subjects subsequently categorized grammatical and 
nongrammatical strings; the results do suggest two different strategies, but 
do not rule out an exemplar model of both. 

McAndrews and Moscovitch (1985) sought to determine whether rule- 
based or exemplar-based information was a more important determinant of 
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classification performance in artificial grammar learning. Grammaticality 
and similarity to studied strings were manipulated independently. Similarity 
was measured (inversely) by the smallest number of differences in letter 
positions to any studied string. Grammaticality and similarity were found to 
account for a roughly equal amount of variance in classification perfor- 
mance. McAndrews and Moscovitch concluded that there was evidence for 
the abstraction of rule-based information. However, an exemplar model 
could account for the effects of both similarity and grammaticality. The 
grammaticality effect may arise because each letter position of a grammati- 
cal item is likely to be the same as the letter position of a large subset of 
stored exemplars (though nonidentical subsets for different letter positions); 
on the other hand, some letter positions of nongrammatical items may be 
different to the letter positions of any stored exemplars. The issue is best 
resolved by actually running simulations of different models. Whether 
exemplar models like those of Estes (1986) or Hintzman (1986) can account 
for the pattern of classification performance under observational learning 
conditions is an open question. 

Details of the Memory-Array Models. Three types of memory-array 
model were considered: The exemplar model of Estes (1986; also, Medin & 
Schaffer, 1978), the feature-array model of Estes (1986), and the multiple 
trace model of Hintzman (1986). These are discussed in turn. 

(a) The Exemplar Model of Estes (1986) and Medin and Schaffer (1978). 
According to the exemplar model, exemplar information is stored as an 
array of feature values. In the simplest model, all acquisition exemplars are 
stored perfectly. The first step in categorizing a test exemplar is to deter- 
mine its similarity to each of the acquisition exemplars. This computation is 
done by entering a parameter, si (0lsi-z l), for each feature i where the test 
and acquisition exemplars have different values, entering a 1 for each 
feature with common values, and taking the product. Thus, if the test and 
acquisition exemplars differ on n features, then the computed similarity is 

or s”, if Si=s, for all n. So, si can be regarded as reflecting the salience of 
the contrast between different values of the ith feature: The lower si is, the 
greater the salience. The probability of categorizing a test exemplar as 
“grammatical” is a function of the sum, A, of its similarities to all acquisi- 
tion exemplars: 

p(“g”)= l/(1 +eeu +T) 

as for the connection&t models. 
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The exemplar model could be implemented by a connectionist model 
with an input layer and two layers of hidden units in the following way: The 
string to be classified is applied to the input layer, where each unit 
represents one feature (an activation of + 1 for the presence of a feature and 
- 1 for its absence). In the next layer up, there is one hidden unit for each 
stored exemplar. The weights to each hidden unit represent the feature values 
of that exemplar (+ 1 or - 1). These hidden units would be pi units, multi- 
plying together the weighted input from all its connections (a weighted input 
of - 1 would be converted to a value s) to produce their output activations. 
With only two categories (grammatical or not), the next layer would contain 
only one hidden unit (an ordinary sigma unit) which simply summed the 
activations of ail the other hidden units. The activation of this unit deter- 
mines the probability of classifying a given input string as “grammatical.” 

Medin and his colleagues provided considerable evidence that the multi- 
plicative relationship used in combining similarities for (experimenter- 
defined) features is important in accounting for classification performance 
across a range of tasks. This multiplicative relationship allows the model to 
be sensitive to correlations between features, and not just their independent 
effects. Note that this, aspect of the exemplar mode1 distinguishes it from 
prototype theories and also networks using the Hebb or delta rules, which 
employ an additive combination of information. That is, the prototype and 
Hebb and delta network models can only solve line&y separable classifica- 
tion tasks: The category to which an exemplar belongs must be predictable 
from a linear combination of the features values used to encode the exemplar. 

Medin and Schwanenflugal (1981) showed that subjects learned nonlin- 
early separable classification tasks just as easily as linearly separable ones. 
Furthermore, Medin, Altom, Edelson, and Freko (1982) found that even 
when a classification task could be solved in a linearly separable way, sub- 
jects still preferred test exemplars that preserved correlations. Kemler- 
Nelson (1984; see also Kemler-Nelson, 1988; Ward dc Scott, 1987) showed 
that incidental but not intentional learners found a nonlinearly separable 
task easier than a linearly separable one. This is interesting because of the 
incidental conditions under which subjects typically learn artificial gram- 
mars. Although these data are consistent with an exemplar model of con- 
cept formation, they do not rule out Hebb or delta rule models if these 
models include an initial nonlinear process that presents combinations of 
experimenter-defined features to the Hebb and delta rule networks (e.g., 
consider the digram coding employed in the connectionist models earlier). 

Four exempIar models were considered: exl , ex2, ex3, and ex4. For all of 
them, the features used to code each exemplar were the 30 letter-position 
features used for the single-letter connectionist models. The four models 
differed according to how si changed with letter position. For exl , si =s = . 1 
for all i (the exact value of s made little difference to the model over the 
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range .OOl-.5). This model assumed that all letter positions were equally 
salient to the subjects. For ex2, si increased linearly with letter position, from 
.l for Letter Position 1 and -6 for Letter Position 6. This model assumed 
that the initial letters were most salient and the final letters least salient. For 
ex3, si varied quadratically with Letter Positions 1 to 6, with a minimum of 
.l for Letter Positions 1 and 6, and a maximum of .6 for Letter Positions 3 
and 4. This model assumed that Letter Positions 1 and 6 were most salient 
to subjects. And for ex4, Si varied quadratically with the beginning and end 
of the test exemplar, regardless of the absolute letter position. This model 
assumed that the beginning and end letters (at whatever absolute letter posi- 
tion) were most salient. 

(tr) The Feature-Array Model of Estes (1986). The feature probability 
array model of Estes (1986) uses the same memory array as the exemplar 
model. Categorization relies on the “perceived frequencies,” f;, of each 
feature value i contained in the test exemplar over all acquisition exemplars. 
Hence, $ is incremented by 1 for each acquisition exempIar containing fea- 
ture value i, and by S, 0~s~ 1, for each exemplar not containing feature 
value i. The probability of classifying a test exemplar is a function of 

where i is over all the feature values characterizing the test exemplar: 

p(“g”) = l/(1 + eWkL+ T), 

as before. 
The feature-array model could be represented by a network with an input 

layer whose units code the features of the test string (with activations of + 1 
and - 1 for the presence and absence of a feature, respectively), and a single 
pi hidden unit, whose weights are the fi. The hidden unit would multiply 
together only the positive weighted inputs. 

The features used to code each exemplar were the 30 letter-position 
features used for the single-letter connectionist models and the exemplar 
models. 

Estes (1986) showed that when each cue of a pattern independently pre- 
dicts category membership with a given probability, the feature- and exem- 
plar-array models fare equally well in accounting for subject performance. 
However, as for the connectionist models, the feature-array model cannot 
predict learning when it is only combinations of the features encoded by the 
model that predict category membership; in this situation, the exemplar- 
array model fares better (Estes, 1986). 

(c) The Multiple Trace Model of Hintzrnan (1986). The MINERVA 2 
model of Hintzman (1986) was an attempt to show how abstract concepts 
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could be acquired and represented in a system that stored only episodic 
traces. Briefly, when a probe is presented to primary memory, it activates all 
traces in secondary memory according to how similar they are to the probe. 
This results in an echo with intensity and content returning to primary 
memory. Echo intensity depends on the total amount of secondary memory 
activation triggered by the probe, and forms the basis of judgements of 
familiarity. Echo content depends on which particular features in secondary 
memory are strongly activated. 

Traces are stored as feature lists where 1 codes the presence of a feature 
and - 1 its absence. If Pi represents the value of thejth feature of the probe, 
and r~ represents the value of the jth feature of trace i, then the similarity 
of the probe to trace i is given by the correlation between the two vectors, 
that is 

&=(1/N) i$l PjTij 

where N is the number of relevent features. So far, similarities have been 
combined additively across different features; the degree of activation of 
trace i is 

Ai=Si3. 

The cubic function increases the signal to noise ratio in the echo (see Hintz- 
man, 1986). Raising Si to a power greater than 1 also introduces some multi- 
plicative terms between similarities from different features, as in Medin and 
Schaffer’s (1978) model. 

Intensity is found by summing activation over all m traces 

The activation of each feature in the echo (i.e., echo content) is 

Cj= icl Ai7'~. 

Hintzman (1990) indicated how MINERVA 2 could be implemented as a 
two-layer connectionist model, with one input-output layer and a layer of 
hidden units. The features of an input, for example, a test string, are 
represented by the activation of the input-output units. Each hidden unit 
represents one trace, with the weights representing feature values. The acti- 
vation of each hidden unit is a cubic function of its net input. This activa- 
tion passes back down to the input-output layer, summating the activation 
from all hidden units, to produce the echo. 

Hintzman (1986) showed that MINBRVA 2 could simulate a number of 
results from the concept-formation literature: Better classification of proto- 
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types than old exemplars with a delayed test (Posner & Keele, 1970), effects 
on classification of category size and of the extent of the distortion used to 
generate exemplars from prototypes (Homa & Vosburgh, 1976), and the ef- 
fect of within-category similarity among exemplars (Eli0 &Anderson, 1981). 

For this article, MINERVA 2 was used to classify exemplars based on 
either echo intensity or echo content. In both cases, it was assumed that all 
m = 20 acquisition exemplars had been stored. Each of the 50 test exemplars 
were used as probes. When echo intensity was used to classification was 
given by 

p(“g”) = l/(1 +e-k1+ T) 

as with the connectionist models. In this equation, k could be regarded as 
referring to the number of traces stored of each exemplar. Because I is simply 
the sum of the activations of each trace, increasing the numbers of each 
trace by a factor k would increase I by a factor k as well. When echo content 
was used, the correlation C between the probe and the echo content was 
calculated, and classification was given by 

p(“g*‘) = l/(1 + e-kc+ r). 

In this case, increasing the numbers of each trace would leave the pattern of 
the content unchanged, and hence k could not refer to the numbers of each 
trace. 

The basis of classification (intensity vs. content) was crossed with type of 
feature coding (single letters alone vs. single letters and digrams to produce 
four versions of the model. 

For all memory-array models-the exemplar array, feature array, and 
MINERVA 2 models--k was adjusted so as to produce PC, CC, CE, and EE 
values as close as possible to experimental values. The rank ordering of ex- 
emplar difficulty depended on the parameter si for the exemplar- and fea- 
ture-array models, but was a parameter-free prediction of the MINERVA 2 
models. 

The reader is referred to Appendix A for data indicating the extent to 
which the different connectionist and memory-array models made different 
predictions about the rank order of exemplar difficulty. In essence, the 
Hebb rule, delta rule, and Estes (1986) models made substantially different 
predictions to each other, and the co-occurrence-contingency and succes- 
sive-simultaneous assumptions also introduced substantial variation in the 
predictions. On the other hand, all the MINERVA 2 models made similar 
predictions to the Hebb contingency models, and the single-letter models 
made similar predictions to the digram models. 

EVALUATION OF THE MODELS 

Models were evaluated in terms of the PC, CC, CE, and Ee values they 
could produce, and also in terms of the rank ordering of exemplar difficulty 
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that they predicted. The use of rank order of exemplar difficulty allows a 
direct test of the different learning processes in the models independent of 
the particular probability function employed to produce PC values. This use 
of nonparametric rather than parametric tests allows more general conclu- 
sions about the nature of the models. A parametric test, like least squares, 
would test the learning process and probability function as a whole for each 
model, and would thus be less informative about why a particular model 
worked and others did not. (Was it the learning process in the model or the 
interaction of the learning process with the probability function? Can we be 
sure that our parameter search was complete? This can be a difficult ques- 
tion for some connectionist models. Might the model produce any behavior 
we wish just by tweaking parameters?) NonetheIess, to indicate that a para- 
meterization is possible, the most successful mode1 according to the non- 
parametric tests will be fitted against the empirical data using least squares. 

The k parameter used to scale response probabilities in all the models was 
adjusted so as to maximize PC with the constraint that EE - EC = .05. In gen- 
eral, increasing k would increase both PC and EE’. If the maximum PC so ob- 
tained for a model exceeded empirically obtained values, then, with suitable 
parameter tweaking, the models’ values could be made to match experimen- 
tal values (by reducing k and/or adding noise to deteriorate performance). 
On the other hand, if the maximum PC was below empirically obtained 
values, then no parameter tweaking could rescue the model. As a guide for 
deciding a reasonable lower limit for PC, the confidence limits were calcu- 
lated for the best group in Dienes et al. (1991; these were the single-task 
subjects of Experiment 2). Their mean PC was .69, and the lower limit of 
their 95% confidence limit was .65. Thus, any model that produced a maxi- 
mum PC below .65 would be unsatisfactory as a model of artificial grammar 
learning. 

Pre-asymptotic delta rule models were tested against the RANK1 rank 
ordering; all other models were tested against the TOTAL rank ordering. 
The reason for testing the different models against different data is that the 
pre-asymptotic models were sensitive to the order of presentation of the 
exemplars, and the order used for the pre-asymptotic models was the same 
as that used by the subjects in Dienes et al. (1991), but not the same as that 
used by Dulany et al. (1984). Thus, only the RANK1 data was appropriate 
for the pre-asymptotic models. On the other hand, the other models were 
not sensitive to presentation order, and the TOTAL rather than RANK1 
data gives a better estimate of the subjects’ rank order of exemplar diffi- 
culty independent of presentation order. 

’ Thus, these models might seem to predict that PC and EE should be correlated. Unfortu- 
nately, increasing LR in the delta rule models can increase PC and decrease EE. before learning 
asymptotes, thereby introducing a negative correlation. However, there should be a positive 
correlation when subjects’ learning asymptotes; this would be an interesting prediction for 
future studies to test. 
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TABLE 3 

Classification by Hebbion Models 

Co-occurrence Contingency 

Single Digrom Single Diagram 

succ Sim succ Sim succ Sim succ Sim 

PC .70 .73 .67 -83 .56 .65 .55 .64 

cc .57 .61 .54 -76 .37 .51 -34 .47 

CE .12 .ll .13 -06 .19 .14 .21 .16 

EE .18 .16 -19 -11 .25 .21 .25 .21 

Note. PC is the proportion of strings correctly classified; CC is the proportion correctly 
classified twice in a row: CE is the proportion correctly classified once correctly and once in 
error; and EE is the proportion classified in error twice in a row. 

TABLE 4 

Rank Correlations Between String Difficulty for Subiects and Hebbian Models 

Single Digram 

succ Sim succ Sim 

Co-occurrence 

Grammatical 

Nongrammatical 

Contingency 

Grammatical 

Nongrammatical 

-.24 - -26 --.19 - .20 

.48 -52 .44 .54 

- .08 - .29 - .06 -.26 

-.14 .12 .20 .08 

Note. r(crit).a=.34, one-tailed, or .4O, two-tailed. 

The Hebbian models are considered first, then the delta rule models, and 
finally the memory-array models. 

Hebbian Models 
Table 3 shows the PC, CC, CE, and EE values for the different Hebbian 
models. The PC values produced by the contingency Hebbian models (which 
code the absence of a feature as - 1 rather than 0) are too low, and so these 
models are not adequate models of artificial grammar learning. The co- 
occurrence models pass this initial test. 

Table 4 shows the correlations between the rank ordering of string diffi- 
culty predicted by the Hebbian models and TOTAL. The co-occurrence 
models couId significantly predict the rank order of nongrammatical string 
difficulty. However, neither they nor the contingency models could predict 
the empirical rank order of grammatical string difficulty. Thus, none of the 
Hebbian models are adequate models of artificial grammar learning. 

Delta Rule Models 
Table 5 shows the PC, CC, CE, and EE values produced by the asymptotic 
delta rule models, and Table 6 shows the values for the pre-asymptotic delta 
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TABLE 5 

Classification by Asymptotic Delta Rule Models 

Co-occurrence Contingency 

Single Digram Single Diagram 

succ Sim succ Sim succ Sim succ Sim 

PC .73 .75 .72 .7B .73 .70 .67 .7B 

cc .62 -66 .60 .69 -63 .5B .53 .69 

CE .11. .lO .12 .09 -11 .13 .14 .09 

EE -16 .15 .16 .14 .16 .18 .19 .13 

Note. PC is the proportion of strings correctly classified; CC is the proportion correctly 
classified twice in a row; CE Is the proportion correctly classified once correctly and once in 
error; and EE is the proportion classified in error twice in a row. 

TABLE 6 

Classification by Pre-asymptotic Delta Rule Models 

Co-occurrence 

Single Digram 

succ Sim succ Sim 

Contingency 

Single Diagram 

succ Sim succ Sim 

PC .72 .87 .72 .87 .72 .79 -71 .81 
cc .61 .83 .61 .83 .61 .72 .59 .73 
CE .12 .04 .ll .04 .ll .08 .12 .07 

EE .16 -09 .17 .09 .16 .13 .17 .12 

Note. PC is the proportion of strings correctly classified: CC is the proportion correctly 
classified twice in a row: CE is the proportion correctly classified once correctly and once in 
error; and EE is the proportion classified in error twice in a row. 

rule models. All the delta rule models could produce reasonable values for 
PC. Interestingly, in many cases, as the ability of the delta rule models to 
complete the acquisition strings improved (from pre-asymptotic to asymp- 
totic; see Appendix B), their ability to generalize to new strings deteriorated. 
Brooks (as reported in McAndrews & Moscovitch, 1985) suggested an exem- 
plar model interpretation of this pattern of performance; the results here 
show that the pattern is not in itself indicative of an exemplar model. 

Tables 7 and 8 show the correlations between the predicted and actual 
rank order of string difficulty for the asymptotic and pre-asymptotic models, 
respectively. The actual rank ordering was TOTAL for the asymptotic models 
and RANK1 for the pre-asymptotic models. 

The successive-simultaneous distinction (i.e., whether features were pre- 
dicted only by previous features in the string or by all features in the string) 
was of most importance in distinguishing the different delta rule models: 
The successive models were unable to predict the rank order of grammatical 
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TABLE 7 

Rank Correlations for String Difficulty Between Subjects and Asymptotic Delta Rule Models 

Single Digram 
succ Sim succ Sim 

Co-occurrence 

Grommotical 
Nongrammatical 

Contingency 
Grammatical 

Nongrammatical 

.02 

.34 

.Ol 

.16 

.57 

.40 

.56 

.52 

-.02 
.32 

-.17 

.12 

.61 
53 

.69 

.3a 

Note. r(crit).a=.34, one-tailed, or -40, two-tailed. 

TABLE B 

Rank Correlations for String Difficulty Between Subjects 
and Pre-asymptotic Delta Rule Models 

Single 

succ Sim 

Co-occurrence 
Grammatical -.15 -36 
Nongrammatical .50 -52 

Contingency 
Grammatical --.14 -57 

Nongrammatical .06 s2 

Note. r(crit).a=.34, one-tailed, or .4O, two-tailed. 

Digram 

succ Sim 

--.12 .42 

54 .53 

-.13 -44 

.04 .36 

strings; the simultaneous models could significantly predict the rank order 
of both grammatical and nongrammatical strings. Indeed, for grammatical 
strings, the difference in the size of correlation between corresponding 
modeIs differing only with respect to the successive versus simultaneous dis- 
tinction was significant (all pst -01) for all eight comparisons (the eight 
comparisons are obtained by crossing co-occurrence versus contingency, 
single versus digram, and asymptotic versus pre-asymptotic) using William’s 
test for nonindependent correlations (see Howell, 1987, p. 243). 

The single-Ietter-digram and co-occurrence-contingency distinctions did 
not influence the ability of the autoassociator to predict the rank order of 
string difficulty. The difference in the size of correlation between correspond- 
ing models differing only with respect to the digram versus single-letter dis- 
tinction was not significant (all ps> -10) for any of the 16 comparisons 
using William’s test. The difference in the size of correlation between corre- 
sponding models differing only with respect to the co-occurrence versus 
contingency distinction was significant (pc .05) for only 2 of the 16 com- 
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TABLE 9 

Classification by Memory-Array Models 

Estes (1986): exl ex2 ex3 ex4 fre 

PC .71 .78 .56 .63 .56 

cc ho .69 .33 .48 .36 

CE .13 .09 .22 .16 .19 

EE .17 .15 .22 .22 .25 

MINERVA 2: DI DC SI SC 

PC .63 .73 .62 .72 

cc .47 .62 .45 .61 

CE .16 .11 .17 .ll 

EE .21 .16 .21 .16 

Note. PC is the proportion of strings correctly classified: CC is the proportion correctly 
classified twice in a row; CE is the proportion correctly classified once correctly and once in 
error: and EE is the proportion classified in error twice in a row. For the MINERVA 2 models: 
I=categorization by intensity; C=categorizatton by content; S=single-letter coding; D= 
digram coding. 

parisons (none of the 8 comparisons for grammatical strings was significant, 
ps > .lO).E 

Memory-Array Models 
Table 9 shows the PC, CC, CE, and EE values produced by the memory- 
array models. The exl and ex2 exemplar models, and the MINERVA 2 
models that classified by content rather than intensity, showed adequate PC 
values. The other models were not adequate in this respect. 

Hintzman (1986) suggested that the performance of MINERVA 2 could 
be improved in some situations if the echo returning from a probe is itself 
fed back to secondary memory to produce a new echo; this procedure can 
be repeated for a number of iterations. When this procedure was followed, 
renormalizing the content vector to a standard length after each iteration, 
the PC values for the MINERVA 2 models actually deteriorated. After one 
iterations, the PC for the intensity models fell to chance. After four itera- 
tions, the performance of the content models also fell close to chance. (A 
similar procedure can be followed for the connectionist models: W can be 
applied a number of times to the resulting p, renormalizing p to a standard 
length each time, until a stable state is reached. This essentially amounts to 
comparing each a to its nearest eigenvector. As for MINERVA 2, this pro- 

. The single simultaneous delta rule model was run again (asymptotically) with the absence 
of a feature coded by -0.5, rather than by - 1 (contingency model) or 0 (co-occurrence 
model). This may be a more plausible coding assumption (thanks to Arthur Reber for making 
this suggestion). This model correlated highly with both the contingency model (.78 and .97 for 
grammatical and nongrammatical strings, respectively) and the co-occurrence model (.74 and 
-89, respectively). It also correlated well with the TOTAL data (-43 and .55, respectively). 
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TABLE 10 

Memory-Array Models 
- 
Estes (1986): exl ex2 ex3 ex4 fre 

Grammatical - .08 -.14 -44 -.05 -.16 

Nongrammatical .41 .43 .lB .23 .08 

MINERVA 2: DI DC SI SC 

Grammatical - .22 -.12 - .30 - .08 

Nongrammatical .03 .17 -12 .27 

Note. For the MINERVA 2 models: I=categorization by intensity: C=categorizatiop by 
content; S=single-letter coding; D=digram coding. r(crit).a=.34, one-tailed, or .4O, 
two-tailed. 

cedure decreases PC values for all the models except the Hebb co-occurrence 
models, which are only marginally improved.) 

Table 10 shows the correlations between the predicted and actual rank 
order of string difficulty for the memory-array models. Exl and ex2 could 
significantly predict the rank order of nongrammatical string difficulty, but 
no memory-array model could predict the rank order of grammatical string 
difficulty. 

PROPERTIES OF SIMULTANEOUS DELTA RULE MODELS 

The only class of model that could produce adequate PC values and predict 
the rank order of both grammatical and nongrammatical strings was the 
simultaneous delta rule model. The fact that there were other models inade- 
quate in each of these respects indicates that the achievement is not trivial. 
It is worth noting that no other model could predict the rank ordering of 
grammatical string difficulty. 

In order to indicate how closely the simultaneous delta rule models could 
be made to fit the data with a parametric test, the probability of responding 
“grammatical” for each of the 50 exemplars was determined for different k 
values for the digram contingency model. The proportion of “grammati- 
cal” responses actually made to each exemplar was regressed against the 
model’s values. For a k of 8, the Pearson correlation was -73, and the error 
variance was 0.013. The goodness of the fit is indicated by the intercept 
(a = 0.07) being nonsignificantly different from 0 (p> .lO) and the slope 
(b = 0.81, SE, = 0.11) being nonsignificantly different from 1 (p> .05). The 
properties of simultaneous delta rule models are now explored further. Ini- 
tially, the dependence of their success on the arbitrary type of coding used is 
explored. Then, an attempt is made to characterize the type of knowledge 
acquired by the simultaneous delta rule autoassociators in as high level a 
way as possible. 
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The models all used a position-specific form of coding: One unit repre- 
sented each letter position. Thus, the same letter in different positions is as 
different to the model as different letters. Surely, this does not accurately 
represent the state of affairs in a subject’s head: It seems likely that a sub- 
ject might not clearly differentiate a T in the fourth position or a T in the 
fifth position. Furthermore, the models assumed that each letter position 
was accurately encoded by the subject on each trial, which may not be en- 
tirely correct. To address these problems, and thus to determine the gener- 
ality of the success of the simultaneous delta rule models, three additional 
types of coding assumptions were tried. First, it was assumed that not all 
letters were successfully encoded by the subject. Specifically, for the single- 
letter models, it was assumed that there was a 20% probability, in- 
dependently for each position, that the letter would not “be noticed,” and 
thus would be coded as absent. For any particular run of the pre-asymptotic 
models, the correlation of rank order of string difficulty between the model 
and subject data could be substantially reduced with this noisy rather than 
with accurate coding. Thus, an average was taken of the ranks of 10 runs of 
both the co-occurrence and contingency pre-asymptotic models. For the co- 
occurrence model, the noisy coding reduced classification performance 
from .87 to .70. The average rank ordering still correIated with subject data: 
The r, was -34 for grammatical strings and .51 for nongrammatical strings. 
For the contingency model, the noisy coding reduced classification perfor- 
mance from -79 to -70. The average rank ordering also still correlated with 
subject data: the r, was 40 for grammatical strings and .41 for nongramma- 
tical strings. In short, the models, even pre-asymptotically, were robust to 
random noise in the coding. 

A second coding scheme used coarse coding for position for each letter. 
Each letter was represented by a set of units. A letter in a given position was 
represented by a pattern of activation of this set of units. The same letter in 
another position was represented by a different pattern of activation, but 
the closer the positions were, the more the patterns overlapped. Thus, this 
form of representation treats the same letter in neighboring positions as 
very similar, and the same letter in positions far away as less similar. To im- 
plement specifically this scheme, each letter was represented by 11 units. 
There were 55 units in total, 11 for each of the five letters. Consider the set 
of units representing M. Their default activation was 0. If there was an M in 
the first position, then the Units 1 to 6 received an activation of 1. If there 
was an M in the second position, Units 2 to 7 received an activation of 1, 
and so on. If there was an M in more than one position, the overall activa- 
tion was simply the sum of the activations of the units for the M in each of 
the positions alone. This allows a unique coarse-coded representation of all 
the strings. For the asymptotic model, classification performance was .65. 
The correlation of string difficulty between model and subject data was -46 
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for grammatical strings and -46 for nongrammatical strings. For the pre- 
asymptotic model, classification performance was -68. The correlation of 
string difficulty between model and subject data was .33 for grammatical 
strings and -59 for nongrammatical strings. In short, with position coarse 
coded, the simultaneous delta rule produced rank orders of string difficulty 
similar to those of subjects. Very similar results were obtained if each posi- 
tion were represented by the activation of overlapping sets of two, three, 
four or five units instead of six. 

A third coding scheme did away with position-specific coding altogether 
in favor of local context sensitivity.g Each unit represented three letters, for 
example, one unit represented MVT (a V preceded by an M and followed by 
a T). Beginning and end markers were also used. Thus, the string “MTV” 
would be represented by activating units nMr, MTV, and rVn. This cod- 
ing scheme allowed a unique representation of almost all the strings (there 
were two exceptions: MTTTTV and MTTTV were not distinguished, and 
VXRRRR and VXRRR were not distinguished). There were 82 different tri- 
grams in all the grammatical and nongrammatical strings employed. Thus, 
82 units were used in the model. The presence of a trigram was represented 
by setting the activation of the corresponding unit to 1. 

With co-occurrence coding, the asymptotic model produced a classifica- 
tion performance of .75. The correlation of rank order of string difficulty 
between model and subjects was .29 for grammatical strings and 24 for 
nongrammatical strings. This is not very impressive; however, with the pre- 
asymptotic model-trained with the same sequence as subjects-classifica- 
tion performance was .74, and the correlations were 64 for grammatical 
strings and -35 for nongrammatical strings. With contingency coding, the 
asymptotic model produced a classification performance of .65. The corre- 
lations were .36 for grammatical strings and .OI for nongrammatical strings. 
The pre-asymptotic model produced a classification performance of -65. 
The correlations were .37 for grammatical strings and .16 for nongrammati- 
cal strings. In short, a model using context-sensitive coding produced simi- 
lar results as subjects with pre-asymptotic co-occurrence coding, but not 
contingency coding. 

In summary, implementation of three different coding assumptions con- 
firmed the usefulness of the simultaneous delta rule. Specifically, the simul- 
taneous delta rule could produce similar results as subjects with noisy as 
well as accurate coding of each letter position, with coarse coding of posi- 
tion, and with context-sensitive coding of each letter. 

This section now attempts to derive some symbolic rules that describe the 
behavior of the simultaneous delta rule models. This is important for three 
reasons. First, if the models can be described in a reasonably high-level way, 

p Thanks to James McClelland for suggesting this coding scheme. 
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a better understanding is obtained of the behavior of the models, and there 
is a greater chance that further predictions can be clearly derived from the 
models. Second, the more general the class of models that empirical results 
speak to, the more informative the results are (Broadbent, 1980). Thus, 
characterizing the knowledge acquired by simultaneous delta rule models in 
as general a way as possible would allow the results obtained here to speak 
to the whole class of models that satisfy the characterization. And third, the 
relationship of the characterization of the model’s knowledge to the model 
might correspond to the relationship between grammatical ruIes and the 
subject: The subject or the model obeys the rules, but does not represent 
them symbolically. This would be consistent with the failure of the subject 
to describe such rules in free recall. The question of what-if any-charac- 
terization or higher level description can be given to the knowledge acquired 
by the simultaneous delta rule models will be addressed here with respect to 
their predictions of rank order of exemplar difficulty. 

All the simultaneous delta rule models that used position-specific coding 
(i.e., not the trigram models) made very similar predictions for rank order 
of string difficulty for the test strings used, so characterizing the knowledge 
of one model will approximately do so for the others. Consider an asympto- 
tic model trained on linearly independent strings. All the training strings 
will form eigenvectors of the W for the model and so the training strings will 
all be considered perfectly grammatical by the model. In fact, any linear 
combination of the training strings will form an eigenvector of W, and so 
will also be considered as perfectly grammatical. 

For illustration, consider the acquisition strings used in this article, as 
shown in Table 1. Consider a single-letter model trained on the first 13 
strings, which are linearly independent. If String 3 (MTV) is subtracted 
from String 4 (MTVRX), the stem . ..RX remains (where a “.” indicates an 
empty position) and can be added to any three-letter string. If it is added to 
String 11 (VXM), for example, the linear combination VXMRX is obtained 
(which is nongrammatical by the finite state grammar). 

In general, if any two strings are the same in k positions and different in 
(n -k) positions, where n is the maximum length of the strings, and a third 
string is similar to any one of the two strings in each of the (n -k) positions, 
then a string formed from the third one by substituting the feature of the 
dissimilar for the similar original two strings in all (n-k) positions will 
also be accepted as “grammatical” by the model. Call this the principle of 
combination. 

The acquisition strings were linearly dependent for single-letter models, 
but were linearly independent for digram models. The effect of using 
digram coding with the above principle of combination is that no linear 
combination of acquisition strings will have illegitimate digrams, and so the 
correspondence between the set of strings judged “grammatical” that ac- 
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tually are grammatical, will, in general, be greater for the digram than for 
the single-letter models. This difference between digram and single-letter 
models was not well exploited by the test strings used, as almost all of the 
nongrammatical strings incorporated illegitimate digrams. Considering the 
strings shown in Table 1, the preceding principle of combination produces 
the following “rules” that are followed by the digram models: 

..TTVT= ..TVT (1) 

. ..VRX =...VT (2) 
MTV.. =vxv.. (3) 

..f. V =....vT (5) 

.TV = .TTVT (6) 

.XM = .xRR (7) 

. . . . X = . . ..XV (8) 

and so on. For example, Rule (1) is produced by taking the difference be- 
tween Strings 15 (VXTTVT) and 17 (VXTVT). Any string fitting the mold 
on the left or right side, where “.” means any letter, can be transformed to 
the mold on the other side (keeping the “.” letters constant), and will still be 
regarded as “grammatical” by the digram models. All these rules operating 
on grammatical strings will produce only grammatical strings. 

In general, a digram model will accept as “grammatical” nongrammatical 
strings if a finite state grammar is used with the following necessary and suf- 
ficient properties: (1) the same letter in the same position can occur through 
different routes; (2) the letter can be followed by at least one letter in com- 
mon through the different routes; and (3) the letter can be followed by at 
least one different letter through the different routes. With a suitable set of 
grammatical training strings, the digram model will accept as “grammati- 
cal” a string in which the common letter has been swapped for the different 
letter. The finite state grammar used here does not have these properties. 
Thus, all the rules abstracted by the model will be representative of the 
grammar. However, a model trained on only a subset of strings will not, in 
general, have a complete representation of the grammar. Interestingly, this 
is the state of affairs claimed by Reber (e.g., 1989) for subjects: They have 
representative but incomplete knowledge of the grammar. However, if the 
delta rule model is a valid model of subjects’ knowledge, then subjects will 
not abstract representative knowledge from a set of grammatical strings if 
an appropriate finite state grammar is used. 

A standard procedure given in elementary linear algebra books (see, e.g., 
Venit & Bishop, 1985) was used to determine the linear dependence of the 
test strings on the acquisition strings. All 70 strings were coded as column 
vectors in a 72 x 70 matrix. The row-reduced echelon form of this matrix 
revealed that 13 of the 25 grammatical test strings were linear combinations 
of the acquisition strings, but, of course, none of the nongrammatical test 
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strings were linear combinations. These 13 grammatical test strings were, of 
course, the 13 best-classified strings by the digram models. Eleven of these 
13 were among the 13 best-classified grammatical strings by the single-letter 
models, which approximate the digram models with this data set. Were 
these 13 strings anything special as far as subjects were concerned? In fact, 
11 of these 13 were among the 13 best-classified grammatical strings in the 
TOTAL data. This is what would be predicted by any model that consisted 
of all the rules that could be produced by combining the acquisition exem- 
plars according to the principle of combination described before. 

However, the delta rule models do more than just embody the rules: 
They can also classify, to varying degrees, grammatical strings that do not 
fit the rules. Consider the 12 grammatical test strings that were not linear 
combinations of the acquisition strings, and therefore did not follow from 
these rules. The rules in themselves do not speak to how these strings should 
be classified, but the delta rule models still do. Does the rank ordering of 
the delta rule models for these strings match that of subjects? The correla- 
tions between TOTAL and the rank order predicted by the co-occurrence 
and contingency digram models were .35 and -78, respectively (.50 is needed 
for significance at the 5% level), indicating some degree of match. Also, 
note the significant correlations between TOTAL and the predictions of the 
digram models for the nongrammatical test strings. Thus, the digram models 
provide a measure of the extent to which the rules are broken that matches 
the measure of subjects. 

To summarize, the digram simultaneous delta rule model trained on lin- 
early independent acquisition strings can be regarded as embodying (1) a set 
of incomplete but (for this grammar) representative rules, and also (2) a 
measure of deviation from the rules. If the measure of deviation can itself 
be characterized, then the empirical results for rank order of string diffi- 
culty would support all models of this class. Future research could usefully 
characterize the measure of deviation and also the knowledge of models 
trained on linearly dependent acquisition strings. 

CONCLUSION 

This article tested a range of connectionist and exemplar models for their 
ability to account for artificial grammar learning. The criteria used were the 
ability to produce adequate levels of PC and of (EE -EC), and to predict the 
rank order of both grammatical and nongrammatical strings. Only one class 
of model-the simultaneous delta rule model-could satisfy all the criteria. 
In fact, the simultaneous delta rule model was the only model that could 
predict the rank order of grammatical string difficulty. It was shown that 
the classification knowledge of the digram versions could be regarded as 
embodying representative but incomplete rules of the finite state grammar. 
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Although successful by the criteria of this article, it would not be diffi- 
cult to falsify simple models like the simultaneous delta rule autoassociator. 
For exampIe, without the addition of further processes, it would not be able 
to account for the transfer of knowledge from one letter set to another 
(Mathews et al., 1989; Reber, 1969). Also, certain aspects of the encoding 
characteristics appear arbitrary: The same letter in different positions is as 
different to the model as different letters in different positions (this problem 
was partially overcome by coarse-coding position and also by using trigrams 
independent of position). Finally, why should a subject start off with a uni- 
tary representation of each digram, as assumed by the digram models? 

A future direction for modelling artificial grammar learning may be to 
introduce a procedure for extracting features by creating useful higher level 
units out of lower level ones. This could be achieved by, for example, com- 
petitive learning algorithms with hidden units (Rumelhart & Zipser, 1986) 
or the algorithm used by Wolff (1975, 1977, 1980) to segment prose into 
meaningful units. A particularly useful architecture employing hidden units 
might be the recursive network of Elman (1990), used by Cleeremans and 
McClelland (1991) to model the sequential learning of a noisy finite state 
grammar in a reaction time paradigm. The use of hidden units might allow 
the creation of unitary representations of abstract structures in the grammar 
not tied to particular letters, a representation of the fact that the same letters 
in different positions are the same letters, and also the creation of unitary 
representations of digrams in a natural way. Perhaps the type of model used 
in this article is best regarded as a second stage operating on the emerging 
units created by a first-feature extraction stage. Servan-Schreiber and 
Anderson (1990) proposed an ACT* account of feature extraction as a suf- 
ficient model of artificial grammar learning. However, it remains an open 
question as to whether their model could predict, parameter free, the rank 
order of string difficulty as we11 as the simultaneous delta ruIe models. 

Another issue deserves comment. The models used in this article were 
particularly geared to artificial grammar learning. Future research needs 
to address the applicability of delta rule autoassociator to other learning 
paradigms. 
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APPENDIX A 

Relationships Between Models 
Appendix A indicates which models made different predictions. The connec- 
tionist models are considered first. Correlations relevant to each of the 
assumptions along which they varied are presented for the Hebb and asymp- 
totic delta ru!e models. Relationships involving the memory-array models 
are considered second. For all correlations, r(crit).os = .34, one-tailed, or 
-40, two-tailed. 

Connectionist Models 
TABLE 11 

Correlations Between Hebb and Asymptotic Delta Rule Models 

Single Digram 

succ Sim succ Sim 

Co-occurrence 
Grammatical .92 .21 .89 .22 

Nangrammatical .7B .68 .B9 .81 

Contingency 
Grammatical .26 .05 .47 .21 

Nongrammatical .48 .4B .54 .54 

Note. r(crit).m=. 34, one-tailed, or .40, two-tailed. 

TABLE 12 

Correlations Between Single-Letter and Digram Models 

Co-occurrence 

succ Sim 

Contingency 

succ Sim 

Hebb 

Grammatical .97 .98 

Nongrammatical .86 .97 

Asymptotic Delta 

Grammatical .93 .90 

Nongrammatical 987 .84 

Note. r(crit).m=.34, one-tailed, or .40, two-tailed. 

-98 .9B 

-97 .99 

-82 .71 

.77 .a5 
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TABLE 13 
Correlations Between Co-occurrence and Contingency Models 

Hebb 
Grammatical 

Nongrammaticat 

Asymptotic Delta 
Grammatical 

Nonarammatical 

Single Digram 
succ Sim succ Sim 

-.22 .13 - 44 - .Ol 

.06 .37 --.I5 .26 

.57 -95 -35 -79 

-55 .84 -38 .B4 

Note. r(crit).ss=.34, one-tailed, or .40, two-tailed. 

TABLE 14 

Correlations Between Successive and Simultaneous Models 

Co-occurrence Contingency 

Single Digram Single Digram 

Hsbb 
Grammatical 

Nongrammatical 

Asymptotic Data 

Grammatical 

Nonarammatical 

.96 .96 .91 -92 

.93 .96 .83 -85 

.45 .60 .56 .16 

.69 .77 -69 .77 

Note. r(crit).os=.34, one-tailed, or ~0, two-tailed. 

Memory-Array Models 

TABLE 15 

MINERVA 2 Models 

DI DC SI HC 

Grammatical Strings 

DI 

DC .8B 

SI .97 

SC .79 

Nongrammatical Strings 

DI 

DC .95 

SI .98 

SC .90 

-96 

-91 

.B8 .99 

.97 .82 .85 

.98 

.96 

.95 .99 

.97 .92 .93 

Note. I=categorization by intensity: C=categorizatian by content; 
S=single-letter coding: D=digram coding. HC=Hebb contingency 
single-letter simultaneous model as representative of the Hebb contin- 
gency models. r(crit).a=.34, one-tailed, or .40, two-tailed. 
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TABLE 16 

Memory-Array Models of Estes (19B6) 

exl ex2 ex3 ex4 freq 

Grammatical Strings 

ex2 .92 

ex3 .6B .41 

ex4 .BS .63 .B5 

freq .41 .12 .86 .72 

HC .69 .46 .90 .87 .89 

Nongrammatical Strings 

ex2 .80 

ex3 .72 .BO 

ex4 33 .B4 .97 

freq .59 .57 .8-l .75 

HC .70 .71 .87 .83 .96 

Note. HC=Hebb contingency single-letter simultaneous model, as 
representative of the Hebb contingency models. r(crtt).a=.34, one- 
tailed, or .40, two-tailed. 

APPENDIX B 

Asymptotic Delta Rule Models 
Appendix B indicates how it was determined that the asymptotic delta rule 
models actually achieved asymptotic weights. If a model was trained on 
linearly independent strings, then it should be able to complete each of them 
perfectly, that is, p should be identical to a. A standard procedure given in 
elementary linear algebra textbooks (e.g., Venit & Bishop, 1985) was used to 
determine the linear dependence of the training strings. A matrix was formed 
in which the coded strings formed columns. Thus, for single-letter models 
the matrix was 30 x20, and for digram models it was 72 x 20. The row- 
reduced echelon form of the matrix was determined by Jordan-Gauss elim- 
ination (using a Basic program suggested by Venit & Bishop, 1985). If the 
row-reduced echelon form of the matrix contains only elementary columns, 
then the strings are linearly independent, otherwise they are linearly depen- 
dent and the nature of the dependence is indicated by the row-reduced 
matrix (see Venit & Bishop, 1985). 

For the digram models (regardless of whether they were of the co-occur- 
rence or contingency type), the acquisition strings were linearly indepen- 
dent. Thus, p should be identical to a for all acquisition strings for the 
asymptotic simultaneous models, if they are truly asymptotic. Indeed, for 
the contingency model, this was true to six decimal places; and for the co- 
occurrence model, this was true to three decimal places. Thus, the simulta- 
neous digram models can be regarded as actually asymptotic. What about 
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the successive digram models? In this case, the linear independence of the 
acquisition strings is not relevant, because each feature is predicted only by 
features in previous positions. Thus, these models will be able to reproduce 
the acquisition strings perfectly only if the feature at each position is a 
linearly separable function of features in the previous position. Because this 
is certainly not true of features in the first position (the first letter can be 
one of two letters), these models will never be able to complete the training 
strings perfectly. In fact, for the contingency successive model, the average 
correlation between p and a over all acquisition strings was .88 (range 
.83-.95). However, because this correlation had remained constant to at 
least two decimal places over at least the last 100 iterations of learning, the 
successive digram models were also regarded as actually asymptotic. 

For the single-letter models (regardless of whether they were of the co- 
occurrence or contingency type), the acquisition strings were linearly depen- 
dent. Specifically, considering the ordering of the acquisition strings given in 
Table 1, String 14 (i.e., VXRRRR, call it e14) can be obtained by subtracting 
String 7 (MVRXRR, e7) from String 6 (MVRX, e6), and adding to String 12 
(VXRR, e12); similarly, e17=e2-el +e8-elO+e15, and e18=e4-el+ 
e8 - e10 + el5. Thus, the single-letter models will never be able to complete 
the acquisition strings perfectly. However, the correlations between p and a 
remained constant to at least two decimal places over at least the last 100 
iterations of learning, and so the single-letter models were also regarded as 
actually asymptotic. 

For the pre-asymptotic models, the correlation between p and a were less 
than for their asymptotic counterparts. For example, the correlations for 
the pre-asymptotic contingency digram simultaneous model ranged between 
.62 and -87, whereas for the asymptotic model they were virtually unity. 
Nonetheless, the rank orderings of string difficulty were comparble between 
asymptotic and pre-asymptotic models; Table 17 displays the correlations in 
rank order of string difficulty between asymptotic and pre-asymptotic 
models. 

TABLE 17 

Correlations Between Asymptotic and Pre-asymptotic Delta Rule Models 

Single Digram 

succ Sim succ Sim 

Co-occurrence 

Grammatical 

Nongrammatical 

Contingency 

Grammatical 

Nonarammotical 

.91 .75 .90 -76 

.80 .B7 .93 .B9 

.80 .B6 .90 -63 

.79 .88 .94 .91 

Note. r(crit).m=.34, one-toiled, or -40, two-tailed. 


