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Role of Specific Instances in Controlling a Dynamic System

Zoltan Dienes and Richard Fahey

University of Sussex

This article examines the claim that the learning of a dynamic control task is mediated by a lookup
table consisting of previously successful trials on the task. Consistent with the predictions of a
lookup table, in 2 experiments participants tended to give the same response to situations in which
they had previously been successful rather than unsuccessful. Further, in both experiments,
participants knowledge did not generalize to new dissimilar situations, unless the dynamic control
task was governed by a highly salient rule. A version of G. Logan’s (1988) instance theory, which
assumes that participants store each successful response as a separate instance linking the situation
to the response, was able to quantitatively match a range of measures of participants’ performance
with one free parameter, except in the case in which the control task was governed by a salient rule.
In a complementary way, an alternative rule-based model could only match participants’
performance when the control task was governed by a highly salient rule.

One of the major frameworks for understanding human
learning has been in terms of the storage and deployment of
specific exemplars or instances (e.g., Broadbent, Fitzgerald, &
Broadbent, 1986; Brooks, 1978; Estes, 1986; Hintzman, 1986;
Kruschke, 1992; Logan, 1988, 1990; Medin & Schaffer, 1978;
Nosofsky, 1984; Perruchet, 1994; for a recent contrasting
approach see Nosofsky, Palmeri, & McKinley, 1994). Accord-
ing to models of this type (called memory array models by
Estes), people can learn to assign exemplars to categories
(Brooks, 1978; Kruschke, 1992; Medin & Schaffer, 1978;
Nosofsky, 1984), to predict successive elements in a sequence
(Perruchet, 1994), to develop automatic or skilled action
(Logan, 1988, 1990), or to control complex systems (Broadbent
et al., 1986) by storing individual instances in memory. Re-
sponses to new test items can then be made on the basis of
similarity with the stored instances. According to these models,
abstraction is not an active process that occurs mainly at the
time of learning. Rather, rule-governed behavior emerges
from the way that test items are compared with stored
instances.

Memory array models have compellingly been applied to
concept formation paradigms, and particularly those involving
complex or ill-defined concepts. Medin and Schaffer (1978)
showed how participants’ classification of test items was
sensitive to the similarity of the test items to specific training
items and not just to the average structure (the prototype) of
all training items. Further, they showed how memory array
models, like participants, can sometimes be sensitive to aver-
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age structure: A memory array model could classify the
prototype of a set of training stimuli better than any of the
training stimuli, not because a prototype was explicitly ab-
stracted during learning but because the prototype was similar
to many of the training stimuli. Indeed, Nosofsky, Kruschke,
and McKinley (1992) found that the one model that accounted
for both sensitivity to individual training exemplars and to their
collective probability structure was a memory array model and
not a model that abstracted prototypes. Brooks (e.g., 1978) has
persistently shown how participants can learn to classify
instances generated by a finite-state grammar, not by abstract-
ing rules of the grammar but by comparing test items with
stored training examplars. Whether this is the only or even the
typical strategy of participants learning artificial grammars is
currently a point of debate (see, for example, Dienes, 1992;
Reber, 1989), but the view that in these experiments partici-
pants store simply exemplars and their fragments remains an
appealing position (cf., for example, Mathews, 1991; Per-
ruchet, 1994).

Logan (1988, 1990) argued that the formation of automatic
skills in general could be understood in terms of the storage of
specific instances. For example, on a lexical-decision task, the
repeated exposure of a specific letter string results in progres-
sively faster responses. On the first exposure to the letter
string, the participant brings to bear whatever general strate-
gies are available for classifying the string as a word or
nonword. This exposure and the response given are then
stored as an instance, according to Logan. On the second
exposure to the same letter string, the same general strategies
can start to apply, but in addition the instance encoding the
previous exposure is retrieved and can control response.
Whichever process (general strategy or instance retrieval) is
fastest controls the response; thus, reaction times speed up on
average. Logan argued that much skilled action can be
understood in terms of simple memory retrieval in the same
way.

One area in which memory array models have been sug-
gested but not yet thoroughly explored is the control of
complex systems (e.g., Berry & Broadbent, 1984, 1987, 1988).
In the dynamic control tasks used by Berry and Broadbent, the
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participant controls the level of one variable (e.g., workforce in
a simulated sugar production factory) to reach target values on
another variable (e.g., the amount of sugar production).
Participants acquire considerable knowledge about how to
control such systems, as indicated by their progressive ability to
reach and maintain target values. There is evidence that this
knowledge is not in the form of rules about how the system
works. First, participants are unable to predict what a given
change of workforce will have on sugar production (e.g.,
Broadbent et al., 1986), suggesting that participants do not
have a working mental model of how the system behaves
(although such a model does emerge with extensive practice;
Sanderson, 1989). Second, asking participants to search for the
rules underlying system behavior sometimes deteriorates per-
formance (Berry & Broadbent, 1988; cf. Stanley, Mathews,
Buss, & Kotler-Cope, 1989), suggesting that participants do
not generally learn in an analytic way.

Broadbent et al. (1986) suggested that in learning a dynamic
control task a participant could construct a lookup table that
would determine the appropriate action by matching the
current situation to the most similar of the entries already in
the table. Lookup tables can be regarded as being on one end
of a continuum of abstractness of knowledge induced by a
learning mechanism. Learning by the acquisition of a lookup
table means that participants learn by tending to give the same
responses to old situations that were followed by a successful
outcome. There is no absolute definition of old situation. The
usefulness of the notion of a lookup table depends on there
being some simple way of construing the task such that
participants perform consistently on old situations and at
chance on new situations. The less preprocessing that goes into
determining whether a situation is old, the less abstract the
knowledge is. The “purest” lookup table might store each
situation separately, with each perceptual feature of the
situation equally weighted (cf. attention weights in memory
array models; Estes, 1986; Nosofsky, 1984). Situations can be
defined in progressively more abstract ways, until the lookup
table blends imperceptibly into a more general rule-based
model. On the other end of the continuum of abstractness of
knowledge would be a system that induces rules like “respond
half way between target sugar production and its current
value” and “start at the extremes and work towards the
middle.” We do not claim that there is a sharp distinction
between lookup tables and other mechanisms; we do, however,
attempt to show that participants’ learning can be understood
in terms of a lookup table in which situations are simply
defined in terms of the features provided by the experimenter
and that the induction and application of more abstract rules
play a very minor role in the learning, at least over the numbers
of trials considered in this article.

A lookup table was formally instantiated in a model by
Cleeremans (reported in Marescaux, Luc, & Karnas, 1989).
The model built a lookup table relating situations to specific
responses. If the current situation was matched in the table,
then the associated response was made; otherwise, different
responses were given with some baseline probabilities (all
responses were equilikely in Cleeremans’s case). If a response
led to the target output, then the response was entered in the
table.

Marescaux et al. (1989) attempted to test several predictions
of the model. One prediction was that the participant should
perform well on a specific-situation task in which the partici-
pant is presented with hypothetical situations that he or she
has come across before and given a correct response to (e.g.,
“If you had just employed 400 workers and if the sugar
production was then 8,000 tons, what should you do next to
bring the sugar production to target?”); the participant should
not perform so well in other situations in which there is as yet
no entry in the lookup table. This prediction was confirmed.
Another prediction was that there should be consistency of
response to the same situation. To quantify consistency of
response, Marescaux et al. defined concordance as the percent-
age of times that participants gave the same response in the
specific-situation task as in learning. Thus, Marescaux et al.
predicted that concordance should be high for situations
participants had been correct on during training; indeed, this
concordance was 57%.!

Marescaux et al.’s (1989) evidence for a lookup table is
suggestive but not conclusive. The finding that participants
perform better on previous situations in which they reached
the target rather than other sorts of situations would be
expected from almost any theory. If the participant has
partially valid knowledge (e.g., a partially valid rule), then
selecting just those situations for which the knowledge worked
well before will tend to lead to good performance again. The
finding that the participants had a concordance of 57% for
situations previously given a correct response needs to be
compared with a baseline concordance expected if partici-
pants’ responses were not sensitive to the situation and also
with the concordance for situations previously given an incor-
rect response. For example, if participants always used a single
response there would be a concordance of 100% without any
sensitivity to the situation. Further, there needs to be a sizable
difference between concordances for situations previously
given correct and incorrect responses for a lookup table to
work. A rule-based system, on the other hand, may produce
very little difference between these concordances. For ex-
ample, the consistent application of a partially valid rule may
lead to equal concordances for situations given correct and
incorrect responses; learning a new partially valid rule may
produce incorrect responses to situations in which the partici-
pant had previously been correct. Although a lookup table
requires a difference between concordances for situations
given correct and incorrect responses, a rule-based system
does not, as we demonstrate later. The finding of a difference
between concordances for situations previously given correct
and incorrect responses obviously does not in itself rule out
more general rule-based systems. On the other hand, finding a
close match between concordances to situations previously
given correct and incorrect responses would be difficult for a

! Another prediction tested by Marescaux et al. (1989) was that
knowledge obtained with one target level of sugar production should
not transfer to another target; this prediction was also supported (for
previous consistent results, see Berry & Broadbent, 1987; McGeorge
& Burton, 1989, Experiment 1; for contrary results, see McGeorge &
Burton, 1989, Experiment 2; Sanderson, 1989; the reasons for this
discrepancy are not clear).
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lookup table approach because it is that difference that drives
learning.

Marescaux, DeJean, and Karnas (1990) suggested an addi-
tional prediction of the lookup table model: If participants
learn purely by a lookup table, then their performance on new
situations should be at chance. In fact, participants performed
above chance on randomly selected situations, leading Mares-
caux et al. to conclude that there was some rule learning.
However, chance was calculated by assuming purely random
responses. Participants did not randomly respond on the
control tasks, even on the first few trials before any learning
could have taken place (Dienes, 1990; Marescaux et al., 1989);
correcting for participants’ response biases can substantially
change chance predictions. Calculation of a correct chance
level for new situations is important because this final predic-
tion of a lookup table model is particularly discriminating: Use
of a lookup table means that the knowledge only applies to old
situations or those sufficiently similar.

The two experiments reported in this article addressed these
problems by measuring concordances for situations previously
given correct responses and also for situations previously given
incorrect responses and by comparing both of these to an
appropriate baseline. Participants’ performance on new situa-
tions was also compared with an expected chance level that
took into account participants’ initial strategies. In Experiment
1, we explored the predictions with the sugar production task
(Berry & Broadbent, 1984); in Experiment 2, we explored the
predictions with two versions of the person interaction task
(Berry & Broadbent, 1988). In the Computational Model
section of the article we investigate whether the exact effect
sizes obtained for learning and concordances are in the range
required by a specific lookup table model (Logan, 1988). Also
in this section, by way of contrast, the performance of an alternative
rule-based model is compared with participants’ data.

The Sugar Production Task

Participants in Experiment 1 were trained on the sugar
production task introduced by Berry and Broadbent (1984).
Participants were asked to imagine that they were in charge of
a sugar production factory. They were told they could change
the amount of sugar produced by changing the size of the
workforce. Their goal was to achieve and maintain a target
sugar output of 9,000 tons. The starting workforce was 600
workers, and starting level of sugar output was 6,000 tons. On
each trial, participants entered a number between 1 and 12 on
the computer keyboard to represent the number of hundreds
of workers they wished to use on that trial. The level of sugar
production on Trial n was determined by the equation P, = 2 -
W — P,_; + N, where P, is the number of thousands of tons of
sugar output on Trial n, W is the number of hundreds of
workers used by the participant, and N is noise (N could be -1,
0, or +1 with equal probability). Note that the optimal
response varies only according to the previous level of sugar
production: it is given by W= P, _;/2 + 4.5.

If the equation resulted in a sugar output of less than 1,000
tons, then the output was simply set at 1,000 tons; similarly, if
the equation resulted in an output of greater than 12,000 tons,
then it was set at 12,000 tons. Participants were aware of these
lower and upper limits. Because of the noise, N, in the

equation, participants’ responses could be counted as correct if
they resulted in an output on target or one level off, although
participants were not aware of this loose method of scoring.

Experiment 1
Method

Participants. The participants were 24 paid volunteers aged be-
tween 18 and 35 years from the Sussex University Experimental
Psychology participant panel. Eighteen participants attempted to
control the sugar production factory (experimental participants); the
remaining 6 simply described how they thought they would control the
factory (strategy participants).

Procedure. Experimental participants were tested on two sets of 40
trials of the sugar production task. On each trial, participants saw a
graph indicating the level of performance on all previous trials of that
set. A horizontal line indicated the target performance. In addition,
written information about the level of workforce and the level of sugar
production for the last trial was presented above the graph (see
Figure 1). This was the same display used by Berry and Broadbent
(1984) and Marescaux et al. (1989).

The computer kept a record of all situations that the participant
came across. A situation could be defined as the current level of sugar
production, or the workforce entered on the last trial, or by the
combination of the two. We tabulated the situations into those for
which the participant entered a workforce that resulted in the target
sugar output or only one level off (i.e., situations followed by a correct
response) and those that were followed by an output more than one
level from target (i.e., situations followed by an incorrect response). A
loose method of scoring was used because of the noise, N, in the
equation determining sugar output described above.

Next, participants performed the specific-situation task used by
Marescaux et al. (1989). In this task, participants were shown possible
situations consisting of written information about the current level of
sugar output and the workforce used on the last trial; in addition, the
three previous levels of production were graphically displayed (this
was the procedure used by Marescaux et al., 1989). Participants were
told to enter the next level of workforce they thought would achieve or
maintain the target level of output, on the basis of their previous
experience of controlling the factory. The same target level was used as
in the training phase. Participants were told that after each situation,
the next situation to be shown would be unrelated to the workforce
they had just entered; it would simply be another possible situation,
and thus, they would get no feedback on how successful they were. The
old situations were all 40 situations experienced in the last block of
training trials. In addition, 40 combinations of workforce and sugar
production were presented that had not been experienced in either
block. These additional combinations were separately determined for
each participant by randomly selecting from all possible combinations
of workforce and sugar production that had not been experienced as
combinations by that participant.

As well as the specific-situation task, participants also performed a
recognition task. The recognition task was not relevant for the issues
addressed in this article and is analyzed in Dienes and Fahey (1994).
The specific-situation and recognition tasks were tested in counterbal-
anced order.

Results

The degrees of freedom for some of the subsequent analyses
were less than (total number of participants, minus one)
because the raw data file for 1 participant was missing.

Initial learning. Participants’ mean numbers of trials cor-
rect on the first and second blocks of the sugar production task
are shown in the first two rows of Table 1, in the participants
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Figure 1. (A) Shows a typical display seen by participants in Experiment 1, and (B) shows a typical
"display seen by participants in Experiment 2. VR = very rude; R = rude; VC = very cool; C = cool; I =
indifferent; P = polite; VP = very polite; F = friendly; VF = very friendly; A = affectionate; VA = very

affectionate; L = loving.

column. An output one off target was counted as correct. The
difference between the first and second blocks was significant,
t(17) = 4.78, p < .0005.

Concordance. Concordance is the percentage of times that
participants gave the same response in the specific-situation
task as in learning. We calculated concordance for situations
followed by a correct response by comparing the participants’
response to a situation in the specific-situation task with the
responses given to all occurrences of that situation in the
training phase that were followed by the target or were one
level of sugar production off. The proportion of times that the
responses were the same was determined and averaged over all
relevant situations in the specific-situation task. We calculated
the concordance for situations followed by an incorrect re-
sponse in a corresponding way.

It is not known a priori how situations were psychologically
defined for participants. For example, participants may or may
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Table 1
Sugar Production Task
Participants Logan Rule based
Condition M SD M SD M SD
Performance
Block 1 19 37 8.1 3.8 8.0 47
Block 2 153 8.0 13.2 55 134 6.2
Concordance
Baseline .19 .08 15 .04 .18 04
Sugar output
Correct 33 23 32 .10 31 12
Incorrect 21 27 13 .05 13 .04
Workforce
Correct .38 24 37 .07 .31 12
Incorrect 27 a1 .26 .06 24 04
Combination
Correct .37 26 .49 13 37 15
Incorrect .28 .16 .29 .08 .20 .20
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not have been sensitive to the level of sugar production, and
they may or may not have been sensitive to the level of
workforce. Thus, concordances were defined separately for
situations defined in terms of sugar production and for
situations defined in terms of workforce. The means are
displayed in Table 1 in the participants column.

We calculated a baseline concordance by determining the
proportions of each of the 12 possible responses in the sugar
production task overall and also in the specific-situation task
overall. Multiplying together the proportions for the same
response in the different tasks gives the probability of the
participant using that response twice, assuming the responses
are independent, that is, there is no relation with the situation.
By adding all 12 such probabilities, an overall concordance
baseline can be determined for each participant. The mean
baseline concordance is shown in Table 1. Concordance for
situations previously given a correct response was greater than
baseline both when situations were defined in terms of sugar
production, £(16) = 2.70, p = .016, and when situations were
defined in terms of workforce, t(16) = 3.41, p = .0056. That is,
participants’ responses were associated with situations.

In terms of situations defined by the level of sugar produc-
tion, the concordance was significantly greater for situations
given a correct response (0.33) rather than an incorrect
response (0.21), #(16) = 2.12, p < .05 (Wilcoxon p = .06,
two-tailed; see Table 1). In terms of situations defined by the
same sugar production but a different workforce, the concor-
dance for situations given a correct response was 0.27
(SD = 0.20) and that for situations given an incorrect response
was 0.16 (SD = 0.12). It can be seen that the difference
between concordances for situations given correct or incorrect
responses was virtually identical when the situation was
defined by a different workforce rather than the same work-
force (0.12 cf. 0.11, ¢ < 1); that is, participants were sensitive
to sugar production in the situation, regardless of the work-
force.

We conducted a similar analysis for the participants’ sensitiv-
ity to the workforce in the situation. When the situation was
simply defined by the level of workforce, the concordance was
significantly greater for situations given a correct response
(.38) rather than an incorrect response (.27), £(16) = 2.30,p <
.05 (Wilcoxon p < .05, two-tailed; see Table 1). The concor-
dances for situations defined by the same workforce but a
different sugar production were .39 (SD = .30) and .27
(SD = .12). Note that the difference between the concor-
dances for situations given a correct response and for those
given an incorrect response was virtually identical, whether the
situation included a different sugar production or the same
sugar production (.11 cf. .12, ¢ < 1); that is, participants were
sensitive to workforce in the situation, regardiess of the sugar
production.

Performance on new compared with old situations. This
section compares participants’ actual performance on new and
old situations with those predicted by participants’ explicit
knowledge. The Appendix describes how we calculated explicit
knowledge.

The percentage of loosely correct responses on the specific-
situation task was determined for situations consisting solely of

levels of sugar production the participant had not come across
before and levels of workforce that the participant had not
come across before.? A lookup table approach predicted
participants would only perform as well as the explicit strategy
allows on these new situations. Six participants had completely
new situations of this sort. The mean performance is shown in
Table 2 (participants column). Because these new situations
were not necessarily a random sample from all possible
situations, we calculated a predicted performance for just
these situations, assuming that participants used the explicit
strategy described in the Appendix. The actual performance
was .00, and the predicted performance was .02.3 That is,
participants’ performance was no better on new situations than
that predicted by the explicit strategy.

The old row in Table 2 (participants column) shows partici-
pants’ performance on situations containing a level of sugar
production that the participants had come across before and
given a correct response to (sugar production was used
because it was the only aspect of the situation relevant to
producing a correct response). All participants had situations
of this sort, but the raw data file for 1 participant was missing.
The performance on these old situations was significantly
greater than performance predicted by the explicit strategy for
these situations (.32 compared with .14), 1(16) = 5.11, p <
.001, and also significantly greater than performance on new
situations, t(5) = 8.80,p < .001.

To summarize, participants performed better than the
explicit strategy would predict only in old situations in which
they had previously been correct and not in new situations.

Discussion

Experiment 1 addressed the question of whether partici-
pants learn to control the sugar production task by forming a
lookup table. As we argued in the introduction, the usefulness
of the notion of a lookup table depends on there being some
simple way of construing the task such that participants
perform consistently on correct old situations and at chance on
new situations. Then we have a straightforward way of under-

2 Situations that were one level different from old correct situations
were excluded. This is because there may be generalization between
similar situations. This possibility was analyzed by a further analysis of
the increase in concordance for situations previously given a correct
rather than an incorrect response. This increase was determined for
situations in training that were one, two, or three levels (of sugar
production or workforce) distant from a given situation in the
specific-situation task. The increase declined significantly with dis-
tance, F(2, 32) = 4.77,p < .05. At a distance of one, the increase, .12,
was marginally significant, p < .10, numerically smaller at a distance of
two (.06), and negative at a distance of three (—0.05, nonsignificantly
different from zero). The decline of the increase with distance did not
interact with whether situations were defined by sugar production or
workforce (p > .10).

3 This result was replicated in the experiment reported by Dienes
and Fahey (1994). They tested participants on a specific-situation task
that presented participants only with levels of sugar production (i.e.,
no information was given about workforce). On new levels of sugar
production, only 1 participant out of 14 scored above zero.
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Table 2
Performance on New and Old Situations on the
Specific-Situation Task

Participants Logan Rule based

Condition M SD M SD M SD
Sugar production task
New .00 .00 13 16 .37 .16
Old 32 15 34 21 .40 14
Person U
New 23 16 24 06 .28 16
Old .54 26 60 32 32 22
Person S
New 41 32 25 06 48 .09
Old .80 20 72 26 .86 19

standing participants’ learning. The results of the experiment
indicate that participants’ learning of dynamic control tasks
can indeed be understood in this way by defining situations in
terms of the elements of the immediately preceding trial. First,
participants were consistent in their responding to a situation
for which they were previously correct, and to a greater extent
than their consistency in responding to situations for which
they were previously incorrect. Further, the data indicate that
participants were not just sensitive to unique combinations of
workforce and sugar production, but rather they were indepen-
dently sensitive to both workforce and sugar production.
Second, participants correctly responded at above baseline
levels in the specific-situation task only for situations contain-
ing a level of sugar production that they had previously given a
correct response to; participants responded at baseline levels
to new situations. Participants did not appear to learn any
rules that they could generalize to new situations.

Experiment 2

Our confidence in the generality of the findings of Experi-
ment 1 could considerably be strengthened if it could be shown
that participants still behave as if they were using a lookup
table when controlling a system obeying a very simple rule. In
Experiment 2, unlike Experiment 1, we used a task in which
the correct response was the same no matter what the situation
was. That is, the only rule participants needed to learn (for
optimal performance) in Experiment 2 was to press repeatedly
a certain key. In Experiment 2 we also investigated the
conditions under which mechanisms other than lookup table
learning may come into play.

Berry and Broadbent (1988) and Hayes and Broadbent
(1988) introduced two versions of a person interaction task that
they argued were learned in quite distinct ways. The person
interaction task involves the participant telling a computer
personality, Ellis, how friendly the participant is being to Ellis,
and Ellis responds in turn with a certain level of friendliness.
The participants’ aim was to keep Ellis at a target level of
friendliness. The two versions of the task (Person S and Person
U) differed according to the rule linking Ellis’s behavior to the
participants’. Berry and Broadbent argued that the rule was
salient in the case of Person S and nonsalient in the case of

Person U. Consistently, they found that after initial experience
with the task, instructions to search for the rule connecting
Ellis’s responses to the participants improved performance
with Person S and deteriorated performance with Person U.
Further, participants could predict what Ellis would do next
reasonably accurately for Person S but not for Person U. Berry
and Broadbent argued that Person U was learned by unselec-
tively storing contingencies in a lookup table but that Person S
was learned by formulating and testing more general rules. If
this claim is true, then participants learning Person U (but not
necessarily Person S) should show the characteristic difference
between concordances for different types of situations, as
predicted by a lookup table. Further, knowledge of Person S
should generalize to new situations, but knowledge of Person
U should not generalize to new situations dissimilar to old
ones.

The Person Interaction Task

Friendliness varied along a 12-point scale ranging from (1),
very rude, rude, very cool, cool, indifferent, polite, very polite,
friendly, very friendly, affectionate, very affectionate, to loving
(12).

Berry and Broadbent (1988; see also Green & Shanks, 1993;
Hayes & Broadbent, 1988; Sanderson, 1990) used two equa-
tions for controlling Ellis’s behavior, a “salient” equation and a
“nonsalient” equation. The salient equation was E; = S, —
2 + N, where E, is a number between 1 and 12 representing
Ellis’s behavior on the 12-point scale on Trial n, S, is the
participant’s behavior on the 12-point scale on that trial, and N
is noise (—1, 0, or +1 with equiprobability). The nonsalient
equation was E, = §,-; — 2 + N. Because of the noise, a
response of Ellis up to one off target was counted as correct.
Note that for the nonsalient equation, Ellis’s behavior depends
not on how the participant just responded on that trial but on
how the participant responded one trial back. The target value
for both tasks was polite, so the optimal strategy for both tasks
was simply to enter friendly no matter what the situation.

Method

Participants. The participants were 69 paid volunteers aged be-
tween 18 and 35 years from the Sussex University participant panel.
Forty-eight were experimental participants who interacted with Eliis,
and 21 were strategy participants who were only shown the instructions
to the task.

Procedure. In the learning phase, experimental participants inter-
acted with Ellis for one block of 30 trials for Person S and one block of
50 trials for Person U. Hayes and Broadbent (1988) found that if
performance is taken as the number of correct responses in the last 10
trials, 50 trials of Person U is needed to produce the same perfor-
mance as 30 trials of Person §; to be consistent with previous studies,
we adopted this procedure. Participants in the visual learning condi-
tion saw two bar charts: one representing Ellis’s behavior on the
previous trial, and the other their behavior on the previous trial. A
horizontal line in Ellis’s chart indicated the target behavior (polite).
The bars moved up and down according to Ellis’s and the participant’s
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respective behaviors (see Figure 1). Participants in the auditory
learning condition did not see the computer screen. Zoitin Dienes
simply said “Your behavior was X; Ellis’s behavior was X.” The scale
of possible behaviors was placed in front of the participants to remind
them. All participants entered their response by typing in the corre-
sponding initials (e.g., VA for very affectionate).

The computer kept a record of all situations the participant came
across. A situation could be defined as the current level of Ellis’s
behavior, the participant’s behavior on the last trial, or a combination
of the two. The situations were tabulated into those for which the
participant entered a behavior that resulted in the target level of EHis’s
behavior or were only one level off and those that were followed by a
level of Ellis’s behavior more than one leve! from target.

After the learning phase, participants performed the specific-
situation task. In the specific-situation task, participants were shown
possible situations consisting of Ellis’s and the participant’s behaviors
on the preceding trial. Participants in the visual testing condition saw
the information displayed as bar charts; participants in the aunditory
testing condition heard the experimenter read the information out
loud. Participants were told to enter the behavior they thought would
achieve or maintain the target level of Ellis’s behavior, on the basis of
their previous experience of interacting with Ellis. The target level was
the same as that used in the training phase. Participants were told that
after each situation, the next situation to be shown would be unrelated
to the behavior they had just entered; it would simply be another
possible situation, and thus, they would get no feedback on how
successful they were being. Each participant was shown all combina-
tions of Ellis’s behavior and participant’s behavior experienced as a
combination in the training trials plus an equal number of new
combinations. The new combinations were determined separately for
each participant by randomly selecting from all possible combinations
of Ellis’s behavior and participant’s behavior that had not been
experienced as combinations by that participant.

As well as the specific-situation task, participants also performed a
recognition task. The procedure and results for the recognition task
are described in Dienes and Fahey (1994). The specific-situation and
recognition tasks were tested in counterbalanced order.

Design. The main manipulation was person (Person S vs. Person
U), but the modality with which information was presented was
manipulated in both the training phase and the specific-situation task:
Participants could read Ellis’s friendliness or they could be told it. This
manipulation is irrelevant to the point of this article and produced no
main effects or interactions (further details are described in Dienes
and Fahey, 1994).

In Experiment 2 we used a 2 X 2 X 2 (Person [Person S vs. Person
U] x Learning Modality [visual vs. auditory] X Specific-Situations
Task Modality [visual vs. auditory]) between-subjects design. Equal
numbers of participants were allocated to each of these cells. In
addition, there was a single group of strategy participants.

Results

Initial learning.  Participants were scored for the number of
trials correct in the first set of 10 trials and in the last set of 10
trials. Table 3 displays the means and standard deviations. A
2 X 2 X 2 x 2 (Block [first set of 10 trials vs. last set of 10
trials] X Person [Person S vs. Person U] X Learning Modality
[visual vs. auditory] X Testing Modality [visual vs. auditory])
analysis of variance (ANOVA) on the number of trials correct
indicated a significant effect of person, F(1, 40) = 1047,p <
005, and of block, F(1, 38) = 14.29, p = .0005. That is,
participants scored more trials correct for Person S (6.5) than
for Person U (4.9), despite the fact that participants received
more trials for Person U rather than Person S. Also, partici-

Table 3
Person Interaction Task
Participants Logan Rule based
Condition M SD M SD M SD
Person U
Performance

First 10 trials 4.3 25 4.3 2.4 3.2 1.9
Last 10 trials 5.5 2.1 5.0 2.7 3.0 2.3
Concordance

Correct 33 17 39 .18 21 .14
Incorrect 24 14 .30 .16 21 .10
Person S
Performance
First 10 trials 5.7 2.2 5.1 25 5.1 21
Last 10 trials 7.4 2.0 6.9 23 7.4 1.7
Concordance
Correct 40 17 41 14 42 .14
Incorrect 24 17 31 .18 .26 15

pants performed better on the last block (6.5) rather than on
the first (5.0). The interaction of block with person was not
significant, p > .10. The improvement from the first to the last
block was 1.3 for Person U, #(23) = 2.65, p < .05, and 1.7,

. 1(23) = 2.92,p < .01, for Person S.

The scores on the last block for Persons S and U were 7.4
and 5.5, respectively. Hayes and Broadbent (1988) reported
corresponding scores that were more closely matched (viz., 6.9
and 7.1, respectively). However, Sanderson (1990) reported
corresponding scores of 7.6 and 5.7, respectively, closer to the
values obtained in this article.

Concordance. Concordance is the percentage of responses
to old situations in the specific-situation task that was the same
as the response given originally to that situation. There were
insufficient data to look at the features of the situations
separately, so for this analysis, we consider a situation to be a
combination of Ellis’s behavior and the participant’s behavior.
The lookup table approach predicted that there would be a
higher concordance for situations that were previously given a
correct rather than an incorrect response in the learning
phase. Table 3 displays the means and standard deviations. A
2 X 2 X 2 x 2 (Situation Type [loosely correct vs. incor-
rect] x person [Person S vs. Person U] x Learning Modality
[visual vs. auditory] x Testing Modality [visual vs. auditory])
mixed-model ANOVA indicated a significant effect of situa-
tion type, F(1,40) = 13.26, p < .001. That is, the concordance
was greater for situations previously given a correct response
(.37) rather than an incorrect response (.25). There were no
other significant effects.

Performance on new and old situations in the specific-situation
task. This section compares actual performance on old and
new situations and compares actual performance with perfor-
mance predicted by an explicit strategy. The Appendix de-
scribes how we calculated predicted performance. There were
too few new participant or computer behaviors to have
sufficient power to test individually whether participants were
sensitive to each aspect of the situation. Thus, in the rest of this
section, situations were defined in terms of combinations of
participant’s and computer’s behaviors.

Table 4 shows the proportion of correct responses 1o
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Table 4

Specific-Situation Task: Performance on New Situations

n

1 2 4 5 6
Condition M SD M SD M SD M SD M SD M SD
Person
U 56 38 37 27 37 31 35 35 24 34 21 28
S .60 20 54 .26 47 24 32 27 42 .38 .68 42

Note. n is the difference (in levels of computer behavior, participants’ previous behavior, or both)
between the new situation and the nearest old correct situation. The maximum 7 can be is 22.

situations that had not occurred in training. We classified these
new situations according to how many levels different () they
were from the most similar old correct situation (different in
participant’s behavior, computer’s behavior, or both), We
calculated regression slopes for each participant to determine
the rate of drop off of proportion correct with distance, n = 0
to 6. For Person U, the mean slope was —.06, which is
significantly different from 0, 7(21) = 5.09, p < .0001. For
Person S, the mean slope was —.06, which is also significantly
different from 0, ¢(23) = 4.25, p < .0005. This effect of
similarity to old situations shows that participants had ac-
quired knowledge sensitive to specific situations for both
Persons U and S, despite the fact that the correctness of a
response to either Person was not dependent on situation.

Table 2 shows performance on new situations more than
four different from old correct ones (in the new row and
participants column) and performance on situations that had
only ever been loosely correct in training (in the old row).
Crucially, for Person U, performance on these new situations
was not significantly greater than predicted performance for
these situations that were based on explicit knowledge (.23
compared with .30). Conversely, performance on old correct
situations was significantly greater than that predicted for
these situations by explicit knowledge (.54 vs. .32), 1(21) =
3.61, p < .01. That is, consistent with the predictions of a
lookup table, for Person U, the participant’s acquired knowl-
edge applied only to situations (combinations of participant’s
and computer’s behavior) the participant had actually experi-
enced or those that were sufficiently similar.

For Person S, unlike Person U, performance on new
situations was significantly different from predicted perfor-
mance that was based on explicit knowledge (.41 compared
with .18), £(23) = 2.80, p < .05. Also, performance on old
correct situations was different from that predicted by explicit
knowledge (0.80 vs. 0.35), #(23) = 7.90, p < .001. Note also
that for Person S performance on new situations more than
four different from old correct ones (.41) was no different from
performance on situations exactly four different from old
correct ones (.42). That is, participants learning Person S may
have acquired some knowledge that was relatively situation
insensitive.

Discussion

The aims of Experiment 2 were, first, to determine whether
the results of Experiment 1 generalized to a control task that

could optimally be controlled by giving only one response and,
second, to determine whether different versions of the control
task that differ in the transparency of the underlying rule are
learned in different ways. Participants learning both Persons S
and U acquired situation-sensitive knowledge: Participants
performed best on old previously correct situations rather than
on new situations, and performance deteriorated on new
situations the more dissimilar they were to old correct ones.
Participants learning Person U but not Person S performed at
baseline levels on new situations dissimilar to old correct ones
by more than four levels. Interpretation of these results is
confounded by the fact that initial learning was greater for
Person S rather than for Person U, but one possibility is that
participants learned Person U entirely by a lookup table and
thus did not acquire any knowledge that applied to new
situations sufficiently dissimilar to old correct ones. However,
participants may have learned Person S perhaps partly by a
lookup table but also by acquiring knowledge that could apply
to many new situations. The idea that there could be two types
of learning in general—one exemplar based and one rule
based—is supported by the results of Nososfsy, Clark, and Shin
(1989). They fitted an exemplar-based model and a rule-based
model to the performance of participants classifying percep-
tual stimuli. The performance of participants asked to use
rules was fitted better by the rule-based rather than the
exemplar-based model; the performance of control partici-
pants, not so instructed, was fitted better by the exemplar-
based rather than the rule-based model (see also Shanks & St.
John, 1994).

We now consider whether a computational model of a
lookup table can reproduce the pattern of data found for
participants performing the sugar production and person
interaction tasks, and whether it can do so in a more satisfac-
tory way than an alternative rule-based model.

Computational Models
Logan’s (1988) Instance Theory

Logan (1988, 1990) presented a theory in which automatiza-
tion and repetition priming were construed as the acquisition
of a domain-specific database formed of separate representa-
tions, or instances, of each exposure to the task. According to
the theory, encoding into memory and retrieval from memory
are obligatory consequences of attention. The theory assumes
that each encounter with a stimuius is encoded and retrieved
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separately. When the participant performs a task, each stored
episode relevant to the current situation races against the
others and against any general problem-solving strategies
(explicit knowledge) applied to the task; the first one past the
finishing post controls performance. The race can be modeled
by assuming that each episode has the same distribution of
finishing times.

Logan (1988, 1990) showed that the model could give a good
fit to the means and variances of reaction times to repeated
presentations on a lexical-decision task. Logan (1992) investi-
gated reaction times to perform an alphabet arithmetic task, in
which participants were asked to verify equations of the form
A + 2 = C(i.e., Is C two letters higher than A?). Participants
initially counted through the alphabet to perform the task, but
with practice they came to remember which equations were
true and thus relied on memory retrieval. This change from a
general purpose strategy to memory retrieval is the process
that Logan defined as the development of automaticity. Logan
(1992) also investigated a dot-counting task in which partici-
pants were shown a number of dots on a grid and were to
report the numerosity. Participants improved on this task so
long as the same instances were repeated. Further, the means
and variances of the reaction time distributions of both the
arithmetic and the counting task closely fitted the predictions
of the theory.

The sugar production task. To model the sugar production
task, we assumed that whenever an action led to a sugar
production that was loosely correct,*® the situation together
with the response was stored. One instance was stored for the
link between the current sugar production and the action, and
a separate instance was stored for the link between current
workforce and the action, consistent with the previous results
that participants treat sugar production and workforce indepen-
dently. Explicit knowledge was represented by a constant
number, N, of instances that could be activated by any
situation and that specified the explicit strategy described in
the results for Experiment 1. Thus, on any given trial, all of the
explicit instances and any specific instances that matched the
current situation competed in a race. Because all of the
situations had the same distribution of finishing times, the race
was simply a random selection of one instance amongst the
available instances, regardless of their distribution. That is,
because responses rather than reaction times were being
modeled, the distribution of finishing times was not important.
Further, consistent with the theory, each encountered episode
was stored separately, regardless of whether that episode had
been encountered before.

When first controlling the sugar production factory, the
model would only apply the explicit strategy; however, as
specific episodes were stored, it became more and more likely
that responding would be controlled by specific previous
experiences. There is one parameter to vary: N, the number of
episodes representing explicit knowledge. For a high value of
N (N > 15), the explicit strategy was applied on virtually all of
the 80 trials, and the model’s learning was small compared with
participants (see Figure 2). For a low N (N < 5), the concor-
dance for situations previously given a correct response was
considerably higher than participants because the explicit
strategy did not provide much competition (also illustrated in
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Figure 2. The effect of number of explicit instances on the Logan
model simulating the sugar production task. For illustration, the figure
shows performance on the second block of trials and concordance for
situations that were defined by workforce and were previously given a
correct response to. The dotted lines show the participants’ 90%
confidence intervals for both performance and concordance. When the
number of explicit instances is small, concordance is too high; when
the number of explicit instances is high, performance is too low.

Figure 2). For each value of N, the model was tested 50 times,
each time starting with a different random seed. N was
adjusted to give a good fit to the data. With N = 10,
performance measures are shown in Tables 1 and 2. In Table 1,
all nine means, as well as the degree of learning and the
differences between corresponding concordances for situa-
tions previously given correct or incorrect responses, were
within the 90% confidence intervals of participants’ data.
Table 2 shows the performance in the specific-situation task on
old situations (defined by levels of sugar production to which
the model only ever gave the correct response in training) and
new situations (defined by levels of sugar production and
workforce, each of which had not been experienced in training;
see Footnote 2). The pattern was qualitatively similar to that of
participants. The model’s performance on old situations was
within the 90% confidence intervals of participants’ data.
Participants had no variability on new situations, so we could

4 When situation was defined by sugar production, the concordance
for situations that were loosely correct without ever having been
strictly correct (.27) was significantly greater than the concordance for
situations that had been incorrect (.18 for these participants), t(11) =
2.53,p < .05. That is, being loosely correct appeared to be as good as
being strictly correct in terms of reinforcing the response.

5 All instances in which situations exactly matched the current
situation, as well as all instances in which situations were exactly one
off from the current situation, competed in the race. This is consistent
with the results in footnote 2 that participants treat situations one off
from the current situation in the same way as if they matched exactly,
but those two off had only a minimal impact. This assumption was
important to the success of the model. If instances entered the race
only if they exactly matched the current situation, then for the same
level of learning as participants, concordances were significantly
greater than those of participants (ps < .05).
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not calculate confidence intervals for participants. However,
note that participants’ performance on new situations closely
matched that predicted by the explicit strategy for those
situations (see the Resudts section for Experiment 1), and, from
its assumptions, the model necessarily performed on new
situations exactly as the explicit strategy predicted.

Predictions of the Logan model can more directly be tested
on individual participants’ data by considering the relation
between concordance and repetition of a situation. Consider
the concordance to situations that were correct in training.
According to the Logan model, if there are N instances of the
explicit strategy, and the model has experienced O occurrences
of each feature of the current situation associated with the
correct response, and D instances coding a different response,
then the probability P of selecting an instance representing the
correct response is given by

P=0/(N+0 +D). )

If an explicit instance is selected, the concordance is that
expected on the basis of the explicit strategy; if a situation
instance is selected, then the same response as the old
situation is given. In general, if CE is the concordance
expected by using the explicit strategy, then the expected
concordance is

(concordance) = P + CE - N/(N + O + D). 2)

The effect of O on concordance was measured in the
training phase of participants’ data. For each trial of the
training phase, the number of previous occurrences, O, of each
of its features that were followed by the target (or a level of
sugar production one level off) was determined. For O < 3,a
restriction was that D should equal zero: This was to ensure
that the predicted concordance would increase maximally with
O. Participants did not have data for O > 3 given this
restriction, so for O = 5 the restriction was that D < 1, and for
O = 9 the restriction was D < 3. (Note that the only reason D
was varied was to allow there to be data to be modeled; D
values were chosen before model fits were determined.) The
concordance was then measured for the trial. For each
participant, concordance was then averaged separately for
each level of O. Figure 3 shows how concordance varied
with O.

We calculated estimates for the concordance expected by
using the explicit strategy for each situation and response by
performing 50 simulations of the explicit strategy and by
determining the probability that it would produce that re-
sponse in the situation. Thus, for each participant, the ex-
pected concordance for each situation could be calculated and
averaged over situations by using Equation 1. N was set at 10
for each participant. These model predictions are also shown
in Figure 3. There were no significant differences between
participants’ data and the models’ prediction for any O (¢ tests
with arcsine transformation and with a Wilcoxon signed-ranks
test). The correlation between participants’ means and the
model’s means was .91, p < .02.

Finally, the importance to the modeling of assuming that
only correct situations were stored was tested by determining
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Figure 3.  For the sugar production task, what is shown in the figure is
how concordance varies with number of previous occurrences of the
features of the situation that were followed by the target (or were one
level of sugar production off). Participants’ data are plotted as squares,
and the predictions of the Logan model are plotted as stars.

the performance of the model when it stored all instances. If a
situation was incorrect, retrieval of that instance would lead to
application of the explicit strategy, ensuring only that the
response stored in the instance was not given. This model
could not perform the task as well as participants: The
irrelevant workforce situations provided too much noise by
proscribing responses that were in fact appropriate.

The person interaction tasks. Logan’s theory was applied to
Person U in the same way as it had been applied to the sugar
production task, except in this case situations were defined in
terms of combinations (of participants’ behavior and Ellis’s
behavior), and an cld situation previously given a correct
response could be activated by any current situation up to four
levels different from it, consistent with the previous data. The
explicit strategy was represented by N instances, as before. We
conducted sets of 100 simulations for N = 1 to 15. For N = 7,
the performance of the model is shown in Tables 2 and 3. In
Table 3, all four simulation means were within the 95%
confidence interval of participants’ data, as were the difference
between performance on the first and last 10 trials and the
difference in concordances. In Table 2, performances on new
and old situations, as well as the difference between them,
were within the 90% confidence interval of participants’ data.

Figure 4 shows how concordance varied with O for both the
participants and the model (D was always zero for these data).
There were no data for O > 3. The predictions of the Logan
model were all nonsignificantly different from the participants’
data (by using ¢ test with arcsine transformation or with a
Wilcoxon signed-ranks test). The correlation between partici-
pants’ means and model means was .94,

5 To allow for generalization (see footnote 2), we included previous
occurrences of a feature that were one level off (and were followed by
the target or were only one level off) in determining O.
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dance varies with number of previous occurrences of the situation that
were followed by the target (or were one level of sugar production off).
Participants’ data are plotted as squares, and the predictions of the
Logan model are plotted as stars.

Concordance
b3

L L 1

1 2 3

Number of occurrences

~ With the same parameter value, the simulation scores for
Person S are also given in Tables 2 and 3. N was varied between
1 and 15, but at no value did the simulation means fit the
participants. For higher N, the explicit strategy dominated the
model’s performance, and there was little learning. For all N,
the model’s performance on new situations lay below the 95%
confidence intervals of participants’ data. From its assump-
tions on new situations, the model necessarily performed
exactly as the explicit strategy predicted. On new situations,
participants performed significantly higher than the explicit
strategy predicted.

A Rule-Based Model

The performance of our implementation of Logan’s model
was compared with a rule-based model that learned in a
similar way. The rule-based model started with a number of
rules. The rules competed amongst themselves in a race to
control performance. The first rule past the finishing post was
the one that determined the response. If the application of a
rule led to the target, or one level of sugar production off,
another token of that rule was added to the set, increasing the
chances of that rule winning in the next race. All tokens of all
rules competed in every situation. This model was constructed
to be as similar to our implementation of Logan’s mode! as
possible, but with general rules controlling behavior rather
than specific situation-response links.

The sugar production task. The strategy participants in
Experiment 1 did not describe a sufficient variety of rules to
allow learning in the rule-based model. Therefore, we were
inspired by Sanderson (1990), who identified four different
types of rules that participants might use to control a dynamic
system. First, the task could be modeled as a closed-loop
system in which a participant always responds to the last
computer output in a manner proportional to system error
(error being target — output) about a pivot, that is, work-

force,.; = pivot + gain* (target — output,) + noise. If the
pivot is the target, and the gain is —0.5, then this strategy leads
to optimal performance in the sugar production task: work-
force,;; = 0.5* (target + output,). We called this the optimal
rule. If (target + output,) is odd, then workforce,, is randomly
rounded up or down.

The second rule suggested by Sanderson (1990) is to use the
workforce on the last trial as the pivot and use a gain of one:
workforce, ., = workforce, + (target — output,). This is similar
to the rule described by the strategy participants in Experi-
ment 1, namely, to increase work force according to the error.
We called this the workforce rule, after its pivot.

The third rule suggested by Sanderson (1990) is to ignore
the error, so that control is open loop. For example, work-
force = 9, whatever the situation. We called this the Open
Loop 9 rule. Workforce = 3 is the Open Loop 3 rule (if you had
to give just one response, 9 would lead to relatively high scores
and 3 to relatively low scores).

The final rule is to take workforce as the pivot but to set the
gain to zero: workforce,—; = workforce, + noise. We set the
noise to be randomly —1, 0, or +1. Note that changing
workforce by a small amount corresponded to the other rule
mentioned by the strategy participants. We called this the
small-change rule.

The relative number of tokens of the different rules needs to
be adjusted to get the right level of learning. Thus, there are
five free parameters, one for each of the optimal, workforce,
Open Loop 9, Open Loop 3, and small-change rules. For each
parameter value tried, we determined performance by averag-
ing over 50 simulated subjects. Performance for the two
learning blocks and the different concordance measures was
fitted to participants’ values. The results for one token of
optimal and four of each of the others are shown in Tables 1
and 2. In Table 1, the model’s results closely match those of
participants. In contrast, as shown in Table 2, the model’s
performance on new situations was quite unlike that of
participants: The model’s performance on new situations was
not substantially smaller than its performance on old situa-
tions. The Logan model, on the other hand, performed on new
situations only as well as the explicit strategy predicted.

The results show that the rule-based model can produce the
required pattern of concordances. The application of abstract
rules leads to consistent responding in the same situations, and
the relative weeding out of invalid rules can lead to greater
consistency in old correct rather than incorrect situations. On
the other hand, the tendency to give the same response in old
correct rather than incorrect situations is the mechanism of
lookup table learning, and so this tendency must be of a certain
magnitude for a given lookup table to learn. As we now see,
however, in the rule-based system, the size of the tendency can
be masked to an arbitrary degree. The rule only needs to
produce more correct than incorrect situations; it does not
need to produce greater consistency to correct than to incor-
rect situations for learning to occur.

The rule-based model can give qualitatively different pat-
terns of concordance, depending on parameter values. When
optimal was given 1 token, workforce 15 tokens, and the rest 0
tokens, the numbers of trials loosely correct in Blocks 1 and 2
were 8.9 and 13.0, respectively, closely matching that of
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participants. For situations defined by workforce, concordance
was reliably greater for situations previously given a correct
response (.31) rather than an incorrect response (.19), consis-
tent with the participants’ data. However, for situations
defined by a combination of workforce and sugar production,
concordance was reliably greater for situations previously
given an incorrect response (.54) rather than a correct re-
sponse (.48).

When optimal was given one token, Open Loop 3 twelve
tokens, and the rest zero tokens, the numbers of trials loosely
correct in Blocks 1 and 2 were 6.8 and 17.1, respectively,
closely matching that of participants. For situations defined by
a combination of workforce and sugar production, concor-
dance was reliably greater for situations previously given a
correct response (.58) rather than an incorrect response (.31).
However, for situations defined by workforce, concordance
was reliably greater for situations previously given an incorrect
(.34) rather than a correct response (.14).

In summary, the rule-based model can allow almost any
pattern of concordances; lookup tables need a certain positive
difference between concordance correct and incorrect. Partici-
pants’ data fell in the range required by lookup table models.
Note also that for the rule-based model, unlike the Logan
model, there was no simple way of predicting the change in
concordance for each participant with O (see Figure 2).

Person interaction task. Because strategy participants in
Experiment 2 gave a wide range of rules, these could directly
be used in the rule-based model. If all 21 rules were given one
token, the chances of a good rule being selected were too low
to allow adequate learning for either Person U or Person S.
Thus, we assumed that for any given participant, there were
only a few rules competing. Randomly selecting different
subsets of rules for different participants did not produce good
learning, and so more specific combinations of rules were
explored.

It was relatively easy to produce good learning for Person S
simply by combining a good rule with a bad rule. When the
worst rule and the best rule were combined (one token each),
the results for 100 simulated subjects are given in Tables 2 and
3. All seven means, the amount of learning, and the difference
between correct and incorrect concordances were within the
90% confidence interval of participants’ data. Note that the
rule model, unlike the Logan model, can match participants’
performance on both new and old situations for Person S.

For Person U, each of the good rules (i.e., a rule that, if
applied by itself, would lead to greater than § trials correct out
of 10 on average) was randomly combined with one of the bad
rules (a rule that is not good). No combinations of rules were
found that produced good learning for Person U. Tables 2 and
3 display the results for Person U by using the same rule
combination as had been used for Person S. The rule-based
model had problems learning Person U because, on the one
hand, the consequence of a rule did not occur on the next trial
but the trial after; on the other hand, which rule token was
applied on 1 trial was independent of the last trial. Thus, there
was no way of ensuring that tokens of successful rather than
unsuccessful rules would be increased. The Logan model was
equivalent in that which token was applied on one trial was
also independent of the last trial. However, which response

was given on one trial was not independent of the last trial:
The assumed rules of participants allowed only small changes
in responses. Because the Logan model stored specific re-
sponses (linked to situations) rather than rules, it could learn
Person U.

In summary, the rule-based model performed in a comple-
mentary way to the lookup table model. The lookup table
model could fit the data for Person U but not for Person S; the
rule-based model could fit the data for Person S but not for
Person U,

Discussion

For both the sugar production task and Person U, a
one-parameter implementation of a lookup table could closely
match participants’ results. We believe that this finding is the
most compelling support- for the lookup table approach.
Experimental data can always be interpreted in a number of
ways, but preference must surely be given to the simplest way.
An alternative rule-based model could not match the data so
closely as the lookup table model, despite having more
parameters.

Participants learning Person S outperformed the lookup
table model on new situations. This result is interesting
because previous authors have claimed that learning Person U
can occur by an automatic process of linking situations to
actions (Berry & Broadbent, 1988), but learning of Person S
involves noticing and testing more general rules. Consistently,
the results of the modeling show that participants’ learning of
Person U can be understood simply in terms of the storage of
specific exemplars but there may be a need to postulate a more
powerful induction process for Person S. A simple rule-based
model could fit the level of learning for Person S but not for
Person U. (A more sophisticated framework for looking at rule
learning is provided by Holland, Holyoak, Nisbett, & Thagard,
1989; see Druhan & Mathews, 1989, for an application to a
different learning paradigm.)

The modeling was guided by participants’ data in how
situations were represented. There was apparent inconsistency
across sugar production and person interaction experiments in
terms of whether the features of the preceding trial shouid be
represented independently (sugar production) or configurally
as combinations (person interaction). Medin and his col-
leagues (e.g., Medin, Altom, Edelson, & Freko, 1982; Medin &
Schaffer, 1978) have shown that participants are sensitive to
the configural properties of instances in classification tasks, so
it would not be wise to propose a general learning mechanism
that loses configural information. When learning the dynamic
control tasks, participants may store configural information in
instances (as suggested by the person interaction data) but
only partial overlap of the instance with the current situation
may be needed to activate the instance at least partially (as
suggested by the sugar production data). Activation by partial
overlap is perfectly consistent with theories such as Medin’s; in
fact, it is the use of partial overlap that allows exemplar
theories to generalize in classification tasks. When the Logan
model simulated controlling the person interaction task with
individual features rather than with combinations stored, the
means in Table 3 could be fitted (for Person U), so storing
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combinations or features was not crucial to the success of the
model. Another possibility is that different cover tasks (sugar
production or person interaction) induce participants to en-
code situations differently (featurally or configurally); this
could be tested by redoing the experiments with the cover tasks
switched.

General Discussion

This article has demonstrated how participants can learn to
control dynamic systems simply by storing the appropriate
responses for different situations. Experiments 1 and 2 showed
that, for two different dynamic control tasks, participants
tended to repeat the same response for situations in which they
have previously been correct rather than incorrect. Further,
participants performed at chance on new situations dissimilar
to old ones. We can understand participants’ learning on these
tasks simply in terms of the storage of specific exemplars; there
is no need to postulate a more powerful induction process.

Participants’ performance could be matched by a lookup
table that was based on Logan’s (1988) instance theory.
According to our application of Logan’s theory, if a response
was loosely correct, the situation would be stored with the
response as an instance. All instances were encoded, including
repetitions. Instances competed with each other and with the
explicit strategy by racing to control performance. With one
free parameter, representing the speed of the explicit strategy,
participants’ data from two experiments were separately fitted
to within their 95% confidence intervals. The model could not
fit participants’ performance on a task with a highly transpar-
ent rule; in this case, and only this case, a rule-based model
couid match participants’ performance.

So far in this article we have argued that a very simple
lookup table model can account for learning nonsalient rules
over a modest number of trials. Clearly, a more general
account of human learning will add complexities to this
picture. For example, the models reported .in this article
successfully accounted for participants’ behavior by assuming
previous knowledge could be represented by the equivalent of
less than a dozen instances, although there must have been
many thousands of instances that might have been construed
as relevant (e.g., real person interactions in the person
interaction task). Somehow people seemed able to limit their
search to a defined set of instances. A similar phenomenon
arises in the study of people’s semantic memory for facts
(Anderson, 1983): Usually, the more facts participants are
taught about a fictional person, the slower they are to retrieve
any one of them (the fan effect). However, participants can
group by topic so that the fan effect only emerges within each
topic. That is, participants appear to be able to restrict search
to those instances that are most relevant. Future research
could usefully explore how these restrictions are determined.

There is also evidence that participants who are not learning
by hypothesis testing can nonetheless learn to selectively
attend to dimensions that are relevant (Kruschke, 1993) and
generalize around training instances in ways not well predicted
by exemplar models (Dienes, 1992). It is likely that the modest
number of trials and the simple nature of the situations in the
dynamic control tasks (values along a dimension) allowed only

simple types of generalization of knowledge (i.e., to values of
the dimension numerically close to old stored values). Dy-
namic control tasks using situations with different types of
structure may lead to more interesting generalizations around
old situations.

This article has supported Broadbent et al.’s (1986) claim
that learning the dynamic control tasks can simply occur by
forming a lookup table. More generally, our article is consis-
tent with accounts of human learning that stress the deploy-
ment of stored exemplars (e.g., Medin & Schaffer, 1978) and
the use of fragmentary knowledge (Perruchet, 1994) in solving
complex tasks.

References

Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA:
Harvard University Press.

Berry, D. C., & Broadbent, D. E. (1984). On the relationship between
task performance and associated verbalizable knowledge. Quarterly
Joumnal of Experimental Psychology, 36, 209-231.

Berry, D. C,, & Broadbent, D. E. (1987). The combination of explicit
and implicit learning processes. Quarterly Journal of Experimental
Psychology, 39, 585-609.

Berry, D. C., & Broadbent, D. E. (1988). Interactive tasks and the
implicit-explicit distinction. British Journal of Psychology, 79, 251-
272.

Broadbent, D. E., Fitzgerald, P., & Broadbent, M. H. P. (1986).
Implicit and explicit knowledge in the control of complex systems.
British Journal of Psychology, 77, 33-50.

Brooks, L. (1978). Nonanalytic concept formation and memory for
instances. In E. Rosch & B. B. Lloyd (Eds.), Cognition and
categorization (pp. 169-211). Hillsdale, NJ: Erlbaum,

Dienes, Z. (1990). Implicit concept formation. Unpublished doctoral
dissertation, University of Oxford.

Dienes, Z. (1992). Connectionist and memory array models of artificial
grammar learning. Cognitive Science, 16, 41-79.

Dienes, Z., & Fahey, R. (1994). The role of implicit memory in
controlling a dynamic system. Unpublished manuscript.

Druhan, B., & Mathews, R. (1989). THIYOS: A classifier system
model of implicit knowledge of artificial grammars. Proceedings of
the 11th annual conference of the Cognitive Science Society (pp.
66-73). Hillsdale, NJ: Eribaum.

Estes, W. K. (1986). Memory storage and retrieval processes in
category learning. Journal of Experimental Psychology: General, 115,
155-174.

Green, R., & Shanks, D. (1993). On the existence of independent
explicit and implicit learning systems: An examination of some
evidence. Memory & Cognition, 21, 304-317.

Hayes, N. A., & Broadbent, D. E. (1988). Two modes of learning for
interactive tasks. Cognition, 28, 249-276.

Hintzman, D. L. (1986). “Schema abstraction” in a multiple trace
memory model. Psychological Review, 93, 411-428.

Holland, J., Holyoak, K., Nisbett, R., & Thagard, P. (1989). Induction:
Processes of inference, learning, and discovery. Cambridge, MA: MIT
Press.

Kruschke, J. K. (1992). An exemplar-based connectionist model of
category learning. Psychological Review, 99, 22-44.

Kruschke; J. K. (1993). Human category learning: Implications for
backpropagation models. Connection Science, 5, 3-36.

Logan, G. (1988). Towards an instance theory of automatization.
Psychological Review, 95, 492-527.

Logan, G. (1990). Repetition priming and automaticity: Common
underlying mechanisms? Cognitive Psychology, 22, 1-35.



SPECIFIC INSTANCES AND SYSTEM CONTROL 861

Logan, G. (1992). Shapes of reaction time distributions and shapes of
learning curves: A test of the instance theory of automaticity.
Joumal of Experimental Psychology: Learning, Memory, and Cognition,
18, 883-914.

Marescaux, P. -J,, Luc, F., & Karnas, G. (1989). Modes d’apprentissage
selectif et nonselectif et connaissances acquies au control d’un
processes: Evaluation d’un modele simule [Selective and nonselec-
tive modes of learning and acquiring knowledge in order to control
systems: Evaluation of a simulation model]. Cahiers de Psychologie
Cognitive, 9, 239-264.

Marescaux, P. -J., DeJean, K., & Karnas, G. (1990). Acquisition of
specific or general knowledge at the control of a dynamic simulated
system: An evaluation through a static situations questionnaire and
a transfer control task (Tech. Rep. No. 2PR2GK). Brussels Free
University, Belgium.

Mathews, R. C. (1991). The forgetting algorithm: How fragmentary
knowledge of exemplars can abstract knowledge. Journal of Experi-
mental Psychology: General, 120, 117-119.

McGeorge, P., & Burton, A. (1989). The effects of concurrent
verbalization on performance in a dynamic systems task. British
Journal of Psychology, 80, 455-465.

Medin, D. L, Altom, M. W,, Edelson, S. M., & Freko, D. (1982).
Correlated symptoms and simulated medical classification. Journal
of Experimental Psychology: Learning, Memory, and Cognition, 8,
37-50.

Medin, D. L., & Schaffer, M. M. (1978). Context theory of classifica-
tion learning. Psychological Review, 85, 207-238.

Nosofsky, R. M. (1984). Choice, similarity, and the context theory of
classification. Journal of Experimental Psychology: Learning, Memory,
and Cognition, 10, 104-114.

Nosofsky, R. M., Clark, S. E., & Shin, H. J. (1989). Rules and
exemplars in categorization, identification, and recognition. Journal

of Experimental Psychology: Learning, Memory, and Cognition, 15,
282-304.

Nosofsky, R. M., Kruschke, I. K., & McKinley, S. C. (1992). Combin-
ing exemplar-based category representations and connectionist
learning rules. Journal of Experimental Psychology: Learning, Memory,
and Cognition, 18, 211-233.

Nosofsky, R. M., Palmeri, T. J., & McKinley, S. C. (1994). Rule-plus-
exception model of classification learning. Psychological Review, 101,
53-79.

Perruchet, P. (1994). Learning from complex rule-governed environ-
ments: On the proper function of conscious and unconscious
processes. In C. Umilra and M. Moscovitch (Eds), Attention and
Performance XV: Conscious and nonconscious information processing
(pp.- 811-835). Cambridge, MA: MIT Press.

Reber, A. S. (1989). Implicit learning and tacit knowledge. Journal of
Experimental Psychology: General, 118, 219-235.

Sanderson, P. M. (1989). Verbalizable knowledge and skilled task
performance: Association, dissociation, and mental models. Journal
of Experimental Psychology: Learning, Memory, and Cognition, 15,
729-747.

Sanderson, P. M. (1990). Implicit and explicit control of a dynamic task:
Empirical and conceptual issues (Tech. Rep. No. EPRL-90-02).
Engineering Psychology Research Laboratory, University of Illinois.

Shanks, D. R., & St. John, M. F. (1994). Characteristics of dissociable
human learning systems. Behavioural and Brain Sciences, 17, 367
448.

Stanley, W. B., Mathews, R. C., Buss, R. R., & Kotler-Cope, S. (1989).
Insight without awareness: On the interaction of verbalization,
instruction, and practice in a simulated process control task.
Quarterly Journal of Experimental Psychology, 41, 553-577.

(Appendix follows on next page)



862 ZOLTAN DIENES AND RICHARD FAHEY

Appendix

Simulating Explicit Knowledge

The strategy participants in Experiments 1 and 2 were given the
instructions to the task and shown the starting situation. They were
asked to describe as fully as possible what strategies they would use in
performing the task. The purpose of collecting these data was to
provide a means of simulating how participants would perform on the
tasks in the absence of any learning. This simulation can then (a) be
used to assess if the experimental participants did better on different
types of situations than that predicted in the absence of any learn-
ing, and (b) be used in computational modeling of lookup tables and
rule models both as a means of generating responses when the lookup
table has no entries and as a means for generating rules for the rule
modei.

Sugar Production Task

All 6 strategy participants reported as their main strategy an
algorithm that is sensitive to both the sugar production and workforce
in the situation: If the sugar production was below target, they would
increase the work force; if the sugar production was above target, they
would decrease the work force. Four of the 6 participants made it clear
that the changes in workforce would be in steps on the order of about
100. Four of the 6 participants reported that they would start with a
workforce of 900; one of the other participants said 800.

These strategies could be modeled by the following assumptions:
First, if the sugar production is below (above) target, then respond
with a workforce that is different from the previous one by an amount
of 0, +100, or +200 (0, —100, or ~200). Second, for the very first trial,
start with a workforce of 700, 800 (consistent with the last assumption),
or 900. Finally, we added the assumption that if the sugar production is
on target, then respond with a workforce that is different from the
previous one by an amount of —100, 0, or +100 (with equal probabil-
ity). We scored the first 10 trials of the original participants’ perfor-
mance for consistency with these assumptions: 86% (SD = 17%) of
responses were in fact consistent, suggesting that the original partici-
pants did initially largely use the strategy that most new participants
said they would use. Further, consistent with the stated strategy, the
average magnitude of change in successive responses for participants
was 0.97 (SD = 0.45); that is, participants did not like to change their
responses by much more than one level of workforce.

Person Interaction Task

The 21 strategy participants gave a number of different types of
responses. In general, participants said that they would respond in
some region around polite or move above or below polite depending
on Ellis’s behavior. Each of the 21 strategies was implemented as a
separate algorithm (if a given strategy was named more than once, it
was separately implemented as many times as it was named). Each of
the strategies was applied to all of the situations (combinations of

Ellis’s behavior and participants’ previous behavior) actually experi-
enced by each participant on the specific-situation task. The mean
proportion correct (M = 0.29, D = 0.03) was the same for Person U
and Person S.

Similarly to the sugar production task, the average magnitude of
change in successive responses was scored for the first five trials of
each participant; the mean was 1.53 (SD = 0.96). That is, as for the
sugar production task, participants did not like to change their
response by much more than one or two steps. Also, participants
tended to stay with the same response if Ellis was loosely on target.
However, participants did not appear to change their response when
Ellis was not on target in the same way as the sugar production task;
there seemed to be little relation between the direction of change and
whether Ellis was above or below target. Rather, the tendency seemed
to be to simply move toward the polite region. When Ellis was loosely
on target, the percentage of responses that were exactly the same was
52%; when Ellis was not on target, participants gave the same response
only 23% of the time. When Ellis was not on target and participants
gave a different response, they moved toward polite 74% of the time.
This behavior was simulated in the following way. When Ellis was
loosely on target, the simulation repeated the same response 50% of
the time and gave a response one different (randomly up or down) the
remaining 50% of the time. For the trials that Ellis was not on target,
the simulation gave the same response 25% of the time. When Ellis
was not on target and the simulation gave a different response, 75% of
the time the simulation gave a response in a region around polite
(polite plus-or-minus two steps inclusive; all responses within that
region were equally likely); the rest of the time the simulation moved
away from polite randomly by one or two steps. We applied this
algorithm to all of the situations actually experienced by participants
on the specific-situation task. The mean proportion correct was .33
(8D = .08) for Person S and .29 (SD = .06) for Person U. These means
are not significantly different from the proportion correct obtained
with the 21 individual strategies. We used this algorithm, which
matched what participants actually did in the first few trials for
simulating explicit knowledge in the specific-situation task and for
simulating explicit knowledge in the Logan model that was previously
described in this article. The use of an explicit algorithm that involves
only small changes in successive responses is important for allowing
the model to learn Person U. Tending to give the same response again
if Ellis was on target allowed the model to reinforce the right response.
Tending to stay around the polite region gave the model a high
probability of trying the right response.
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