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1. Introduction 

Implicit learning — broadly construed, learning without awareness — is a complex, 

multifaceted phenomenon that defies easy definition. Frensch (1998) listed as many as 

eleven definitions in an overview — a diversity that is undoubtedly symptomatic of the 

conceptual and methodological challenges that continue to pervade the field 40 years 

after the term first appeared in the literature (Reber, 1967). According to Berry and 

Dienes (1993), learning is implicit when we acquire new information without intending to 

do so, and in such a way that the resulting knowledge is difficult to express. In this, 

implicit learning thus contrasts strongly with explicit learning (e.g., as when learning how 

to solve a problem or learning a concept), which is typically hypothesis-driven and fully 

conscious. Implicit learning is the process through which we become sensitive to certain 

regularities in the environment (1) without trying to learn regularities (2) without 

knowing that one is learning regularities, and (3) in such a way that the resulting 

knowledge is unconscious . 

 

Over the last twenty years or so, the field of implicit learning has come to embody 

ongoing questioning about three fundamental issues in the cognitive sciences, namely (1) 

consciousness (how we should conceptualize and measure the relationships between 

conscious and unconscious cognition); (2) mental representation (in particular the 
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complex issue of abstraction); and (3) modularity and the architecture of the cognitive 

system (whether one should think of implicit and explicit learning as being subtended by 

separable systems of the brain or not). Computational modeling plays a central role in 

addressing these issues. 

2. Implicit cognition: The phenomena 

Everyday experience suggests that implicit learning is a ubiquitous phenomenon. For 

instance, we often seem to know more than we can tell. Riding a bicycle, using 

chopsticks or driving a car all involve mastering complex sets of motor skills that we find 

very difficult to describe verbally. These dissociations between our ability to report on 

cognitive processes and the behaviors that involve these processes are not limited to 

action but also extend to high-level cognition. Most native speakers of a language are 

unable to articulate the grammatical rules they nevertheless follow when uttering 

expressions of the language. Likewise, expertise in domains such as medical diagnosis or 

chess, as well as social or aesthetic judgments, all involve intuitive knowledge that one 

seems to have little introspective access to. 

 

We also often seem to tell more than we can know. In a classic article, social 

psychologists Nisbett and Wilson (1977) reported on many experimental demonstrations 

that verbal reports on our own behavior often reflect reconstructive and interpretative 

processes rather than genuine introspection. While it is often agreed that cognitive 

processes are not in and of themselves open to any sort of introspection, Nisbett and 
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Wilson (1977) further claimed that we can sometimes be “(a) unaware of the existence of 

a stimulus that importantly influenced a response, (b) unaware of the existence of the 

response, and (c) unaware that the stimulus has affected the response”. (p. 231).  

 

Demonstrations of dissociations between subjective experience and various cognitive 

processes have now been reported in many domains of cognitive science. For instance, 

dissociations have been reported between conscious awareness and memory. Memory for 

previous events can be expressed explicitly, as a conscious recollection, or implicitly, as 

automatic, unconscious influences on behavior. Numerous studies have demonstrated 

dissociations between implicit and explicit memory, both in normal participants  (see 

Schacter, 1987) as well in special populations. Amnesic patients, for instance, who 

exhibit severe or total loss in their ability to explicitly recall previous experiences 

(conscious recollection) nevertheless retain the ability to learn novel procedural skills or 

to exhibit sensitivity to past experiences of which they are not conscious.  

 

Findings of “learning without awareness” have also been reported with normal 

subjects (Cleeremans, Destrebecqz, & Boyer, 1998). It is Arthur Reber, in a classic series 

of studies conducted in 1965 (see Reber, 1967), who first coined the term “mplicit 

learning” (though the phenomenon as such was discussed before Reber, for example, in 

Clark Hull’s Ph.D. dissertation, published in 1920). Implicit learning contrasts with 

implicit memory in that implicit learning focuses on generalization to new stimuli rather 
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than sensitivity to processing the same stimulus again as such. Implicit learning also 

contrasts with subliminal perception in that it can involve consciously perceived stimuli.  

 

Implicit learning research has essentially been focused on three experimental 

paradigms: Artificial Grammar Learning (henceforth, AGL), dynamic system control, 

and Sequence Learning (henceforth, SL). Additional paradigms that will not be discussed 

further include probability learning (Millward & Reber, 1968), hidden covariation 

detection, (Lewicki, 1986), acquisition of invariant characteristics (Lewicki, Hill, & 

Czyzewska, 1992), or visual search in complex stimulus environments (Chun & Jiang, 

1999). 

 

In Reber’s seminal study of AGL (Reber, 1967), subjects were asked to memorize 

meaningless letter strings generated by a simple set of rules embodied in a finite-state 

grammar (Figure 1). After this memorization phase, subjects were told that the strings 

followed the rules of a grammar, and were asked to classify novel strings as grammatical 

or not. In this experiment and in many subsequent replications, subjects were able to 

perform this classification task better than chance despite remaining unable to describe 

the rules of the grammar in verbal reports. This dissociation between classification 

performance and verbal report is the finding that prompted Reber to describe learning as 

implicit, for subjects appeared sensitive to and could apply knowledge that they remained 

unable to describe and had had no intention to learn. 
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INSERT FIGURE 1 HERE 

In a series of studies that attracted renewed interest in implicit learning, Berry and 

Broadbent (1984; 1988) showed that success in learning how to control a simulated 

system (e.g., a “sugar factory”) so as to make it reach certain goal states was independent 

from ability to answer questions about the principles governing subject’s inputs and the 

system’s output: Practice selectively influenced ability to control the system, whereas 

verbal explanations about how the system works selectively influenced ability to answer 

questions.  

 

Today, another paradigm — Sequence Learning — has become dominant in the study 

of implicit learning. In SL situations (Clegg, DiGirolamo, & Keele, 1998), participants 

are asked to react to each element of a sequentially structured visual sequence of events 

in the context of a Serial Reaction Time (SRT) task. On each trial, subjects see a stimulus 

that appears at one of several locations on a computer screen and are asked to press as 

fast and as accurately as possible on the key corresponding to its current location. Nissen 

and Bullemer (1987) first demonstrated that subjects progressively learned about the 

sequential structure of a repeating series of stimuli in spite of showing little evidence of 

being aware that the material was structured so. To establish that RT savings reflect 

sequence knowledge rather than mere familiarization with the task, a different sequence 

is typically presented during an unannounced transfer block, expected to elicit slower 
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reaction times to the extent that people use their knowledge of the sequence so as to 

anticipate the location of the next event. Cleeremans and McClelland (1991) used a 

different design in which the stimulus’s location was probabilistically determined based 

on a finite-state grammar similar to that shown in Figure 1, and in which non-

grammatical stimuli were randomly interspersed with those produced by the grammar.  

Numerous subsequent studies have indicated that subjects can learn about complex 

sequential relationships despite remaining unable to fully deploy this knowledge in 

corresponding direct tasks. 

 

Most of the modeling work has focused on the AGL and the SL tasks and this chapter  

will therefore be focused on these paradigms (see Dienes & Fahey, 1995; Gibson, 

Fichman, & Plaut, 1997; Lebiere, Wallach, & Taatgen, 1998; Sun, 2002, for simulations 

of process control tasks). Both the AGL and SL tasks involve learning sequential 

dependencies and so involve similar computational problems. To put the computational 

modeling work in perspective and to highlight the challenging methodological and 

conceptual issues that characterize the domain, however, the next section is dedicated to 

discussing how to explore implicit learning empirically. 

3. Demonstrating that implicit learning is implicit 

The findings briefly reviewed above all suggest that unconscious influences on behavior 

are pervasive. This raises the question of how to best characterize the relationships 

between conscious and unconscious processes, and in particular whether one should 
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consider that mental representations can be unconscious. Settling the conceptual question 

of what conscious awareness is would help settle the methodological question of how to 

measure it. But there is no general agreement concerning what it means for an agent to be 

conscious of some state of affairs. There is a sense in which any perception of an object 

involves one being conscious of it. Thus, if by looking, a person can discriminate the 

presence or absence of an object then they are, in that sense, conscious of it being there. 

This sense of being ‘conscious of’ methodologically leads one to using direct forced 

choice tests as measures of awareness. If a person can discriminate whether an object is 

moving up or down when forced to say ‘up’ or ‘down’ on each trial, then in the sense we 

are talking about, the person is conscious of the object’s direction of movement. In a 

similar way, if a person can discriminate whether a set of stimuli shared common 

features, one should conclude that they are conscious of that regularity. In this sense, 

subjects in implicit learning experiments are conscious of many regularities (e.g., Dulany, 

Carlson, & Dewey, 1984; Perruchet & Pacteau, 1990). For example, in AGL, subjects 

can indicate relevant parts of strings of letters that make them grammatical or non-

grammatical (Dulany et al., 1984) and they can say whether particular bigrams 

(sequences of two letters) are allowed by a grammar or not (Perruchet & Pacteau, 1990). 

In SL, subjects can recognize parts or all of the sequence as old or new (e.g., Shanks & 

Johnstone, 1999). Further, in this sense of being conscious of regularities,  the process of 

becoming conscious of the regularities can be simulated by computational models that 

learn to make the same discriminations as people do, as will be described in Section 4. 
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However, the useful distinction between implicit and explicit knowledge may not 

hinge on whether or not one is conscious of a regularity. It may hinge on whether a 

person is conscious of the regularity with a conscious rather than unconscious mental 

state. For example, in the sense we have been using, a blindsight patient is conscious of 

whether an object is moving up or down because the patient can discriminate direction of 

motion. But the seeing by which the patient is conscious of the object is not conscious 

seeing: The blindsight patient is conscious of the object with an unconscious mental state; 

one could say that the patient is sensitive to the object. 

 
As a matter of general terminology, some people reserve the phrase ‘conscious of’ 

to cases where one is conscious of something by a conscious mental state; others use the 

phrase more generally, as we do here. In any case, there is now the problem of 

determining in what a mental state’s being conscious consists. The conceptual answer to 

this question suggests both the methodology for determining whether people have 

conscious or unconscious knowledge in an implicit learning experiment, and the sort of 

computational model needed for simulating conscious rather than unconscious 

knowledge. Three approaches to defining the conscious status of mental states will be 

considered. 

 
One approach claims that a mental state’s being conscious is its being inferentially 

promiscuous, globally accessible (Baars, 1988; Block, 1995), or part of a suitable global 
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pattern of activity (Tononi & Edelman, 1998). According to this approach, a person has 

conscious knowledge of a regularity if that knowledge can be expressed in different 

ways, for example in verbal report or in different structured tests (Lewicki, 1986; Reber, 

1967). The knowledge in implicit learning experiments is typically difficult to express in 

verbal report; indeed, this is the original finding that prompted Reber to conclude his 

AGL paradigm elicited unconscious knowledge. Further, the knowledge generated in 

implicit learning experiments can often be expressed only in some structured tasks but 

not others. For example, Jiménez, Mendez and Cleeremans (1996) measured the 

expression of knowledge learned through an SRT task using both reaction time and the 

ability to subsequently generate the sequence. Through detailed correlational analyses, 

they were able to show there was knowledge that was only expressed through the reaction 

time responses, but not through the sequence generation measure. The knowledge was 

thus not globally available. This type of study is more concincing that those using free 

report, as free report is often taken after a delay, without all retrieval cues present, and 

gives the subject the option of not reporting some conscious knowledge (Dulany, 1968).  

Thus, knowledge may be globally available yet not elicited on a testthat is insensitive or 

not asking for the same knowledge (Shanks & St. John, 1994). These issues can be 

addressed, for example, by asking subjects topredict the next element under the same 

conditions that they reacted to it, as Jimenez et al did. Computational models based on 

defining a conscious mental state in terms of global access include those of Tononi 

(2005) and of Dehaene and collaborators  (e.g., Dehaene, Sergent, & Changeux, 2003), 

but will not be discussed further here. 
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Another approach is to identify conscious knowledge with knowledge that can be 

used according to one’s intentions (Jacoby, 1991). This is a restricted form of inferential 

promiscuity that Jacoby operationally defines by his Process Dissociation Procedure. In 

the process dissociation procedure, a subject is asked in two different conditions 

(‘inclusion’ and ‘exclusion’) to do opposite things with a piece of knowledge. If the 

knowledge can be used according to opposing intentions, the knowledge is taken to be 

conscious (and unconscious otherwise). For example, Destrebecqz and Cleeremans 

(2001) applied the process dissociation procedure to SL, asking trained participants to 

either generate a sequence that resembled the training sequence (inclusion) or a sequence 

that was as different as possible from the training sequence (exclusion). Results indicated 

that while subjects could include the sequence when instructed, under certain conditions, 

participants were unable to exclude familiar sequence fragments, thus suggesting that 

they had no control over the knowledge acquired during training. Subjects could use the 

knowledge according to the intention to include but not the intention to exclude. Use was 

thus not determined by intentions. Destrebecqz and Cleeremans concluded that this 

knowledge was best described as implicit, for its expression was not under conscious 

control. They also produced a computational model of performance in the process 

dissociation task, discussed below (see also Tunney & Shanks, 2003; Vokey & Higham, 

2004). 
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A third approach is to identify conscious mental states with states one is conscious 

of (Rosenthal, 2006); that is, with higher order states (i.e., mental states about mental 

states). On this approach, one must know that one knows for knowledge to be conscious. 

This approach suggest the use of subjective measures of awareness, such as confidence 

ratings. For example, a person may say, for each discrimination they perform in an AGL 

task, whether they were just guessing or whether they knew the correct answer. Two 

common criteria based on the confidence responses are the guessing and zero correlation 

criteria. According to the guessing criterion, if people can discriminate above chance 

when they believe they are guessing, the knowledge is unconscious. According to the 

zero correlation criterion, if people cannot discriminate with their ‘guess’ and ‘know’ 

responses between when they did and did not know, the knowledge is unconscious. 

According to both criteria, the knowledge acquired in AGL and SL paradigms is partly 

unconscious. The problem for computer simulation is to determine how a network could 

come to represent its own states as internal states and specifically as knowledge states. 

The problem is not trivial and as yet not fully resolved (Cleeremans, 2005). 

 

Despite the considerable methodological advances achieved over the past decade or 

so, assessing awareness in implicit learning and related fields remains particularly 

challenging. There is no conceptual consensus on what a mental states’ being conscious 

consists in, and hence no methodological consensus for determining the conscious status 

of knowledge. While the central issue of the extent to which information processing can 
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occur in the absence of conscious awareness remains as controversial today as it was 40 

years ago, the conceptual and methodological tools are certainly more refined today. 

 

A further challenge is to determine how to best interpret dissociations between 

conscious and unconscious knowledge in terms of systems or processes. Dunn and 

Kirsner (1988) pointed out that even crossed double dissociations between two tasks do 

not necessarily indicate the involvement of separable, independent processes. Many 

authors have described non-modular architectures that can nevertheless produce double 

dissociations. Plaut (1995) explored these issues in the context of cognitive 

neuropsychology. In a compelling series of simulation studies, Plaut not only showed that 

lesioning a single connectionist network in various ways could account for the double 

dissociations between concrete and abstract word reading exhibited by deep dyslexic 

patients, but also that lesions in a single site produced both patterns of dissociations 

observed with patients. In other words, the observed dissociations can clearly not be 

attributed to architectural specialization, but can instead be a consequence of functional 

specialization (functional modularity) in the representational system of the network.  

These issues are also debated in the context of implicit learning research. Computational 

modeling plays a key part in resolving such issues, just as it has in other domains. The 

process of implementing core conceptual ideas concerning the nature of conscious versus 

unconscious states together with ideas concerning the nature of human learning, testing 

implementations against human data, revising core concepts, and so on, cyclically, will 

help the field get beyond simple dichotomies. The brain is both in a sense one system, yet 
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it is also inhomogeneous. The verbal question of how many learning systems there are is 

in danger of being vacuous. If God were to tell us how many learning systems there were 

with a single number (one? two? three?), we would have learnt nothing. What we really 

need to know are the principles by which a working computational model of human 

learning could be built. It is early days yet, and models of implicit learning have focused 

more on the mechanisms of learning rather than on the conscious vs unconscious 

distinction (but see Sun, 2002). Future developments are eagerly awaited here. 

4. Computational Models of implicit learning  

Computational modeling has played a central role in deconstructing early verbal theories 

of the nature of what is learnt in implicit learning paradigms (1) by offering “proof of 

existence” demonstrations that elementary, associative learning processes (as opposed to 

rule-based learning) are in fact often sufficient to account for the data, (2) by making it 

possible to cast specific predictions that can then be contrasted with those of competing 

models, and (3) by making it possible to explore how specific computational principles 

can offer novel, unitary accounts of the data.  

 

Detailed computational models have now been proposed for all three main paradigms 

of implicit learning. Two families of models are currently most influential: Neural 

network models, and fragment-based, or “chunking” models. Both approaches find their 

roots in  exemplar-based models (Estes, 1957; Hintzmann, 1986; Medin & Schaffer, 



 

 

Cleeremans & Dienes: Cambridge Handbook of Computational Cognitive Modeling (Chapter 15)  
15 

 
 
 

1978), which had already captured the central intuition that rule-following behaviour can 

emerge out of the processing of exemplars in a germane domain — categorization.  

 

Neural network models typically consist of simple auto-associator models (Dienes, 

1992) or of networks capable of processing sequences of events, such as the Simple 

Recurrent Network (henceforth, SRN) introduced by Elman (1990) and first applied to 

SL by Cleeremans and McClelland (1991).  

 

Fragment-based, or “chunking” models (e.g., Perruchet and Vinter, 1998), in contrast, are 

variants of exemplar-based models that assume that learning results in the acquisition of 

memory traces such as whole exemplars or fragments thereof.  

 

While no type of model can currently claim generality, both approaches share a number 

of central assumptions: (1) learning involves elementary association or recoding 

processes that are highly sensitive to the statistical features of the training set, (2) learning 

is viewed essentially as a mandatory by-product of ongoing processing, (3) learning is 

based on the processing of exemplars and produces distributed knowledge, and (4) 

learning is unsupervised and self-organizing. 

 

More recently, hybrid models that specifically attempt to capture the relationships 

between symbolic and subsymbolic processes in learning have also been proposed. Sun 

(2002), for instance, has introduced models that specifically attempt to link the 
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subsymbolic, associative, statistics-based processes characteristic of implicit learning 

with the symbolic, declarative, rule-based processes characteristic of explicit learning. 

 

These different models have been essentially directed at addressing the questions of 

(1) what can be learned implicitly, and of (2) what are the computational principles 

characteristic of the mechanisms involved in implicit learning. In discussing the models , 

a third, important question will also be considered: How does one determine whether a 

model provides a good explanation of human learning? This issue is particularly acute in 

the domain of implicit learning, for there are often competing and overlapping accounts 

of the data. As an example, consider what could be learned based on having memorized a 

few letter strings from a finite-state grammar (Figure 2). People could learn about the 

rules that govern string generation; they could memorize a few frequent fragments of the 

training strings; they could learn about the statistical features of the material (e.g., the 

probability that each letter follows others); or they could simply memorize entire strings. 

Each of these possibilities would result in better-than-chance performance in a 

subsequent task asking participants to make decisions concerning the grammaticality of 

novel strings, and it remains a significant methodological challenge to design 

experimental situations that make it possible to successfully discriminate between the 

different competing accounts. Computational modeling is of great help in this respect for 

it forces the modeler to be explicit about his theory, but modeling raises its own challenge 

when it comes to comparing different models with a joint set of empirical data. 
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INSERT FIGURE 2 HERE 

Section 5 is dedicated to considering the extent to which demonstrated dissociations 

between conscious and unconscious knowledge in people should be interpreted as 

reflecting the involvement of separable learning systems. Here, the basic features of the 

connectionist, chunking, and hybrid approaches are examined in turn.  

 

Connectionist Models of implicit learning 

The first fully implemented connectionist models of implicit learning are found in the 

early efforts of Dienes (1992) and of Cleeremans and McClelland (1991). While authors 

such as Brooks (1978) and Berry and Broadbent (1984) had already suggested that 

performance in implicit learning tasks such as AGL or Process Control may be based on 

retrieving exemplar information stored in memory arrays (see the Chapter by Logan, this 

volume), such models have in general been more concerned with accounting for 

performance at retrieval rather than on accounting for learning itself. The connectionist 

approach (see the Chapter by Thomas and McClelland, this volume), by contrast, has 

been centrally concerned with the mechanisms involved during learning since its 

inception, and therefore constitutes an excellent candidate framework with which to think 

about the processes involved in implicit learning. Because long-term knowledge in 

connectionist networks accrues in connection weights as a mandatory consequence of 

information processing, connectionist models capture, without any further assumptions, 

two of the most important characteristics of implicit learning, namely (1) the fact that 
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learning is incidental and mandatory, and (2) the fact that the resulting knowledge is 

difficult to express. A typical connectionist network, indeed, does not have direct access 

to the knowledge stored in connection weights. Instead, this knowledge can only be 

expressed through the influence that it exerts on the model’s representations, and such 

representations may or may not contain readily accessible information (i.e., information 

that can be retrieved with no or low computational cost, see (i.e., information that can be 

retrieved with low or no computational cost, see Kirsh, 1991). 

 

An important distinction in this regard is the distinction between supervised and 

unsupervised learning. O’Reilly and Munakata (2000) have characterized this distinction 

as a contrast between model learning (Hebbian, unsupervised learning) and task learning 

(error-driven, supervised learning). Their analysis is framed in terms of the different 

computational objectives the two types of learning fulfill: Capturing the statistical 

structure of the environment so as to develop appropriate models of it on the one hand, 

and learning specific input-output mappings so as to solve specific problems (tasks) in 

accordance with one’s goals on the other hand. While many connectionist models of 

implicit learning have used supervised learning procedures, often, such models can also 

be interpreted as involving unsupervised learning (e.g., auto-associator networks). 

 

Turning now to specific connectionist models of implicit learning, we will consider 

first a simple autoassociator as applied to AGL; then the more powerful SRN, which has 
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been applied to both SL and AGL tasks; and finally the memory buffer model, which has 

also been applied to both SL and AGL tasks. 

 

The autoassociator network. Dienes (1992) proposed that performance in an AGL task 

could be accounted for based on the idea that, over training, people incidentally 

accumulate knowledge concerning the structure of the exemplars of the domain, and 

subsequently use that knowledge to make decisions concerning the grammaticality of 

novel exemplars in the transfer task. Dienes compared several instantiations of this basic 

idea in auto-associator networks trained with either the Hebb Rule or the Delta Rule. 

 

In auto-associator networks, the task of the model is simply to reproduce the input 

pattern on its output units. The first problem in constructing a neural network is to decide 

how to encode the input. Dienes’ models had no “hidden” units and used simple localist 

representation on both their input and output units, that is, each unit in the network 

represented the occurrence of a particular letter at a particular position in a string, or the 

occurrence of a particular bigram. The second problem is to decide what pattern of 

connection to implement. Dienes had each unit connected to all other units. That is, the 

network attempted to predict each unit based on all other units in the network. Finally, 

one has to decide what learning rule to use. Dienes used either the Hebb rule or the delta 

rule. The learning rules were factorially crossed with different coding schemes.  
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The two learning rules produce different types of knowledge. The Hebb rule, that is, 

the notion that “units that fire together wire together”, learns the association between two 

units independently of any association those units may have with other units. After 

Hebbian learning the weights are like first-order correlations. The delta-rule, by contrast, 

involves competition between units in making predictions, so the weights are like 

multiple regression coefficients. The consequence was that for bigram models, the delta 

rule network could perfectly reproduce the training strings used and also any new string 

that could be formed by adding or subtracting any training strings. That is, simple 

associative learning produced rule-like behaviour, that is, perfect reproduction of any 

linear combination of the training strings without that rule being explicitly represented 

anywhere in the network — definitely one of the most important insights gained through 

connectionist modeling in this context.  

 

All networks could classify test strings as well as people could: That is, all networks 

tended to reproduce grammatical test strings more faithfully than non-grammatical test 

strings. This raises a methodological problem: Why should one model be preferred over 

another as an account of human implicit learning? This question will be considered in the 

context of examining the different models of implicit learning that have been developed.  

 

A key aspect of this problem is that networks in general have free parameters – 

numbers, like the learning rate, that have to be assigned some value for the network to 

give simulated behaviour. The delta rule network for example requires a learning rate; 
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different learning rates lead to different behaviours. Dienes dealt with this problem by 

producing parameter-free predictions. With a sufficiently small learning rate and 

sufficiently many training epochs the delta rule converges in the limit to producing 

multiple regression coefficients. The Hebb rule was parameter free in any case because it 

is a one-shot learning rule. The parameter-free models were tested by determining how 

well they predicted the order of difficulty human subjects had with classifying the strings. 

The delta rule model could predict the order of difficulty better than the Hebb rule1. 

 

The delta-rule autoassociator models passed the tests they were subjected to, but they 

have a couple of serious weaknesses. First, those models entail that people can learn to 

predict a letter in one position by the letters in any other position, no matter how far 

away; distance is irrelevant. But this entailment is false: People find long-distance 

dependencies in AGL hard to learn (Mathews et al., 1989). Second, those models entail 

that the association between two letters in two positions should not generalise to knowing 

the association between those letters in different positions. This entailment is very 

                                                
1 Dienes (1992) also considered variants of exemplar-based models (Estes, 1957; Hintzmann, 1986; 

Medin & Schaffer, 1978). These will not be elaborated on further here, but such models all share the 

assumption that grammaticality decisions are taken based on an item’s similarity with the stored exemplars, 

accumulated over training with the material. These models turned out not to be good at predicting the order 

of difficulty of the test items, given the coding assumptions used. 
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unlikely. Cleeremans and McClelland (1991) simulated implicit learning with a 

connectionist model that dealt with both these problems. 

 
The Simple Recurrent Network. Cleeremans and McClelland (1991) simulated 

performance in the SRT task. The network, Elman (1990)’s Simple Recurrent Network 

(SRN, see Figure 3), is a three-layer backpropagation network that is trained to predict 

each element of a sequence presented on its input units (see also the Chapter by Thomas 

and McClelland, this volume). Thus, on each trial, element t of a sequence is presented to 

the network (by activating a single input unit), and the network has to predict element t+1 

of the sequence by activating the corresponding output unit. To make this prediction task 

possible, the network is equipped with so-called context units, which, on each time step 

through the sequence, contain a copy of the network’s pattern of activity over its hidden 

units. Over time, the network learns to use these representations of its own activity in 

such a way as to refine its ability to predict the successor of each sequence element. 

Detailed analyses of the network’s performance in learning sequential material have 

shown that the SRN’s responses come to approximate the conditional probability of 

occurrence of each element in the temporal context set by its predecessors (Cleeremans, 

Servan-Schreiber, & McClelland, 1989).  

INSERT FIGURE 3 HERE 
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Servan-Schreiber, Cleeremans and McClelland (1991) have shown that learning 

progresses through three qualitatively different phases when the network is trained on 

material generated from a finite-state grammar such as the one illustrated in Figure 1.  

 

During a first phase, the network tends to ignore the context information. This is a 

direct consequence of the fact that the patterns of activation on the hidden layer  —  and 

hence the context layer  —  are continuously changing from one epoch to the next as the 

weights from the input units (the letters) to the hidden layer are modified. Consequently, 

adjustments made to the weights from the context layer to the hidden layer are 

inconsistent from epoch to epoch and cancel each other. In contrast, the network is able to 

pick up the stable association between each letter and all its possible successors. In a 

second phase, patterns copied on the context layer are now represented by a unique code 

designating which letter preceded the current letter, and the network can exploit this 

stability of the context information to start distinguishing between different occurrences 

of the same letter  —  different arcs in the grammar.  Finally, in a third phase, small 

differences in the context information that reflect the occurrence of previous elements can 

be used to differentiate position-dependent predictions resulting from length constraints.  

 

The internal representations that result from such training can be surprisingly rich and 

structured. Cluster analysis of the patterns of activation obtained over the network’s 

hidden units after training on material generated from the probabilistic finite-state 

grammar revealed that the internal representations learned by the network are organized 
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in clusters, each of which corresponds to a node of the finite-state grammar. This turns 

out to be the most efficient representation of the input material from the point of view of 

a system that continuously attempts to predict what the next element will be, since 

knowing at which node a given sequence fragment terminates provides the best possible 

information concerning its possible successors. Just as the simple autoassociator 

considered by Dienes (1992) in some sense acquired abstract knowledge, so did the SRN. 

Cleeremans (1993) suggested it is useful to think of abstractness as lying on a continuum, 

and that verbal disputes over whether implicit knowledge is or is not abstract may be ill 

formed. The knowledge acquired by the SRN, in any case, has a level of abstractness 

somewhere between that of rote learning exemplars and learning the finite-state grammar 

propositionally. 

 

As a model of human performance in SRT tasks, the SRN model has been shown to 

account for about 80% of the variance in the reaction time data (Cleeremans & 

McClelland, 1991). To capture reaction time data, one simply assumes that the 

normalized activation of each output unit is inversely proportional to reaction time. This 

is obviously a crude simplification, made necessary by the fact that back-propagation is 

unable to capture the time-course of processing. Other connectionist models have been 

more successful in this respect, such as Dominey’s “Temporal Recurrent Network” 

(Dominey, 1998). 
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In modeling people’s behavior with the SRN, there are a number of free parameters, 

including the learning rate, number of hidden units, and momentum. There is no easy way 

of obtaining parameter-free predictions. This is a methodological issue that will be 

addressed shortly in terms of what it means for assessing the SRN as an account for 

human learning. 

 

The SRN model has also been applied to AGL tasks. For instance, Boucher and 

Dienes (2003) contrasted the SRN with a fragment-based model.  Similarly, Kinder and 

Shanks used the SRN to model AGL in considering the question of how many learning 

systems there are (see Section 5) .  

 

Both AGL and the SL task require the subject to learn sequential dependencies so it is 

not surprising that the same model has been brought to bear on the two tasks. It is an 

interesting question to what extent learning principles are the same in different domains 

of implicit learning. There is one key difference between AGL and SL stimuli, however. 

In AGL, the whole string is typically presented at once; in SRT, there is only one element 

of the sequence presented at a time. In fact, in AGL, performance decreases when the 

string is presented sequentially rather than simultaneously (Boucher & Dienes, 2003), 

implying that some modification of either coding or learning is needed when modelling 

standard AGL with the SRN. This point has not yet been addressed. 
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Dienes, Altmann and Gao (1999) considered a simple adaptation of the SRN in order 

to model the phenomenon of transfer between domains. Significantly, Reber (1969) 

showed that people trained on a finite-state grammar with one set of letters can classify 

new strings using a different set of letters (but the same grammar). The problem for the 

standard SRN is that the knowledge embedded in the connection weights is linked to 

particular letters. If new input units were activated, no previous learning would be 

relevant. Indeed, Marcus (2001) has regarded the inability to generalize outside the 

training space to be a general problem for connectionist models. Dienes et al. (1999) 

solved this problem by introducing an extra encoding layer between the input units and 

the hidden units, as shown in Figure 4.  

INSERT FIGURE 4 HERE 

In the training phase the network adjusts weights between the “domain one” input units 

all the way up to the “domain one” output units. The weights from the encoding layer to 

the hidden units, and from the context units to the hidden units — called the “core 

weights” — encode structural properties of the stimuli not tied to any particular letter set. 

In testing, the “domain two” input units are activated, and activation flows through the 

core weights to the output units. The core weights are frozen and the network learns the 

weights from the core part of the network to the input and output units in the new 

domain. Thus, the network learns how to best map the new domain onto the structures 

already present in its core weights. In this way, the network can indeed generalize outside 
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of its training space, and show various detailed properties shown by people (including 

infants) in transfer between domains in AGL. While the freezing of the core weights is 

simplistic, it shows connectionist networks can generalize beyond their training space. 

The freezing idea is similar to that of a switching device that determines how and when 

neural networks interface with each other (Jacobs, Jordan, & Barto, 1991). 

 

Dienes et al. (1999) showed that the augmented SRN could predict a number of 

characteristics of human performance to within the 95% confidence limits of the effects. 

Fitting any more accurately would be fitting noise. Still, we must confront the 

methodological problem that the model has many free parameters. The required 

qualitative behaviour of the model was not restricted to a small region of parameter 

space. Nonetheless, simply showing a model can fit some behaviour is a weak scientific 

test. In general, if a model could produce a wide range of behaviour when the parameters 

are chosen appropriately, in what sense can the model explain any specific behaviour? 

Compare the exhortations of Popper that a theory that can explain everything explains 

nothing, and likewise the more a theory rules out, the more it explains. The discussion of 

the memory buffer model will methodologically squarely face up to these exhortations. 

 

The Memory Buffer Model. The SRN is just one way, albeit an elegant way, of 

instantiating a memory buffer. The context units allow the SRN to learn (fallibly) how far 

into the past it needs a memory in order to reduce error. The SRN can be contrasted with 

a fixed memory buffer model, similar to the SRN in operating characteristics, learning 
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rule, etc, except for how time is coded. The architecture of the memory buffer model is 

similar to the SRN except that it has no context units (see Figure 5).  

INSERT FIGURE 5 HERE 

Rather than storing information about the previous events in the recurrent context units, 

the input units of the memory buffer model not only encode the input presented at time t, 

but also at time t-1, t-2, and t-3. The size of the memory buffer is specified by the number 

of time steps that are encoded. Moreover, the number of time steps that have been 

encoded will determine definitively the length of the non-local dependency that can be 

learnt. The simplicity of this means of encoding time (i.e. unfolded in space) has often 

recommended itself to researchers (see Sejnowski & Rosenberg, 1987, who developed 

NETtalk). Cleeremans (1993) fit a buffer network, coding four time steps into the past, to 

the reactions times of people learning the SRT task. He found people became gradually 

sensitive in their reaction times to information contained up to four time steps into the 

past, and the buffer network could behave in a similar way. The SRN and the buffer 

model were about equally good in this respect. He found that where the buffer model 

(with a buffer of four time steps) and the SRN made different predictions, and where the 

data differed significantly in that respect, the buffer model performed better than the 

SRN. Specifically, both the buffer model and people could learn a certain probabilistic 

difference over random intervening material, whereas the SRN could not. 
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Human learning in general requires a buffer. Aspects of language and music that can 

be learned in the lab rely on non-local dependencies, i.e. dependencies which take the 

form of two dependent items that are separated by a varying number of embedded items. 

Several studies have shown that under certain circumstances people can learn non-local 

dependencies that go beyond the learning of adjacent regularities. Kuhn and Dienes 

(2005) investigated the implicit learning of music with the AGL paradigm. People heard 

8-note tunes in which the first note predicted the fifth, the second the sixth, and so on. (In 

fact, to be precise, the last four notes were the musical inversion of the first four.) After 

sufficient exposure, people came to like melodies respecting these mapping rules rather 

than other melodies. Some of the test melodies respecting the mapping rules had repeated 

sequences of notes from the training strings (the fragment set) and others were made from 

new note bigrams (the abstract set). People liked both sets equally; they had learnt the 

long-distance dependencies and this requires people had a buffer. But what sort of buffer 

do the mechanisms that subtend implicit learning use? 

 

Kuhn and Dienes (2007) investigated how the SRN and the buffer network would 

learn the material. They found they with suitable encoding and parameter values both 

networks could fit the subjects level of performance. Figure 6 shows the behaviour of the 

SRN and memory buffer model over a full range of parameter values on both fragment 

and abstract test sets, with one input unit coding each musical note. The square in the 

figure represents a standard error above and below the human performance means. The 

SRN was relatively more sensitive to adjacent associations than long distance ones; the 
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fixed buffer model was equally sensitive to each. As people with these musical stimuli 

found the abstract and fragment sets equally difficult, the characteristic behaviour of the 

memory buffer model was more like that people than the characteristic behaviour of the 

SRN. In fact significantly more memory buffer models fell in the box defining human 

behaviour than SRN models.  

INSERT FIGURE 6 HERE 

With neural network models, one always has to consider whether different methods of 

coding the input would change the behaviour of the model. With different, more 

musically relevant coding schemes, more SRN models fell in the box defining human 

behaviour. That is, the SRN could fit the data. But there were always significantly more 

memory buffer models in the box than SRN models. The methodological moral is that in 

order to explain human data, find out if the model’s characteristic behaviour matches that 

of people. The point is thus not so much whether the model can “fit” the data; rather, it is 

whether the model can explain the data because its processing principles and hypotheses 

about encoding entail a characteristic behaviour that matches that of people. 

 

In sum, at this point, there is no clear “victor neural network model” of implicit 

learning. Perhaps the memory buffer model, though used in only two studies in the 

implicit learning literature, has an edge in SL and AGL applied to music. Future work 

needs to explore its use for AGL generally and whether it can be extended in the manner 
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of Dienes et al (1999) to allow transfer to different domains. However, it may be that 

different domains are learnt in different ways. People do not implicitly learn long 

distance contingencies with strings of letters very easily at all. What we learn about 

letters in everyday life is which letters chunk together, not what long distance 

dependencies there may be. 

 

Fragment-based models of implicit learning 

While connectionist models of implicit learning have been highly successful, one might 

argue that they fail to capture the fact that people, particularly in the AGL paradigm, 

typically perform a memorization task and hence end up consciously memorizing 

fragments, or chunks of the material.  There is ample evidence that this knowledge is 

available for verbal report (Reber & Lewis, 1977) and it is therefore but a short step to 

assume that this knowledge is what drives people’s ability to classify novel strings above 

chance (Perruchet & Gallego, 1997). These ideas are nicely captured by models that 

assume that learning involves accumulating fragmentary knowledge of the training 

material, and that performance at test involves using this knowledge to decide on the 

grammaticality of each novel string, for instance, by comparing its overlap in terms of 

fragments. The first such model was proposed by Servan-Schreiber and Anderson (1990) 

in the context of AGL. The model was called “Competitive Chunking” (CC). The central 

idea, well-known in the memory literature (Miller, 1956) but also in other domains 

(Newell, 1990) is that learning involves chunking of information: Production rules are 

combined so as to form larger units that execute faster; complex percepts are formed by 
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combining elementary features in different ways; items are committed to memory by 

organizing information so as to make it possible to exploit the redundancy of the material. 

In an AGL task, people asked to memorize meaningless letter strings chunk the material 

in short fragments (e.g., bigrams and trigrams). The Competitive Chunking model 

assumes that processing a letter string (or any other combination of elements) proceeds 

by recursively combining fragments of it until a single chunk can be used to represent the 

entire string. Thus for instance, a string such as TTXVPS might first be analyzed as 

(TT)X(VPS), then as (TT(X))(VPS), and then finally as ((TT(X))(VPS)). At this point, 

the entire string is represented as a single unit in the model and is said to be maximally 

familiar. Chunk formation in the model is a competitive process in which different 

potential chunks compete with each other: Each chunk receives bottom-up “support” 

from its constituent chunks, and its activation decays over time (see the Appendix for 

technical details). Servan-Schreiber and Anderson (1990) showed that competitive 

chunking offered a good account of performance in AGL tasks. More recently, Perruchet 

and Vinter (1998) have elaborated on these ideas by introducing a chunking model 

dubbed PARSER, based on similar principles (see the Appendix for further details 

concerning PARSER and a comparison with CC). While the model has so far not been 

applied in detail to implicit learning data, it shows great promise in capturing the fact that 

naturally come to perceive AGL strings as composed of chunks that they can report 

(Perruchet & Pacton, 2006; E. Servan-Schreiber & Anderson, 1990). 
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Boucher and Dienes (2003) contrasted the competitive chunker with the SRN as 

models of AGL. At one level both models learn the sequential dependencies produced by 

frequent bigrams and other chunks in the training strings. But their principles through 

which they lear are very different. The SRN is based on error-correction. If the bigram 

‘BV’ occurs frequently in training, the SRN learns to predict that whenever B occurs, 

then V is likely to happen next. If BV no longer occurs but BX does, the SRN unlearns 

the BV connection and now comes to predict X given a B has occurred. This is a form of 

“catastrophic interference” (McCloskey & Cohen, 1989) that some neural networks are 

subject to. On the other hand, once the competitive chunker has learnt BV, it can then 

learn that BX is a chunk without unlearning that BV is also a chunk. 

 

Boucher and Dienes presented people with training stimuli in which one bigram, BV, 

occurred in the first half of training and another in the last half.  In the conflict condition, 

the other bigram was BX. In a control group PX occurred in the last half instead of BX. 

The question is to what extent did people unlearn in the conflict condition. People were 

asked to endorse different bigrams at the end of the test phase. The SRN and competitive 

chunker models were trained and tested in the same way over a full range of parameter 

values. Figure 7 shows the relative tendency of  the models over a full range of parameter 

values to endorse bigram BV and also shows the mean value for people with confidence 

intervals. 
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INSERT FIGURE 7 HERE 

Note the SRN is spread out all over the space; the competitive chunker’s behaviour is 

more compact. Importantly, while the SRN models that could “fit” the data, it was the 

characteristic behaviour of the competitive chunker that best matched people’s behaviour. 

 

To summarise the main points so far,  connectionist modelling is an excellent way of 

exploring theories of implicit learning.  The SRN offers an elegant account of the data, 

but people show less interference and more sensitivity to long distance dependencies. 

Chunking models can capture the former, but not the latter (the long-distance 

dependencies learnt by Kuhn and Dienes’s subjects cannot be learnt by current chunking 

models). A memory buffer model can capture the latter point but not the former, as it 

depends on error correction. Thus, there remains a problem of getting one model to 

exhibit all characteristics of human implicit learning! Perhaps this state of affairs will act 

as a spur to people interested in computational  modelling. Finally,  simple but important 

point is worth stressing: In comparing models, do not merely attempt to fit the data. 

Instead, look at the characteristic performance of models.  

 

Hybrid Models of Implicit Learning 

While the connectionist and fragment-based models reviewed above have proven 

extremely successful in accounting for implicit learning data, none have successfully 

addressed the central issue of how implicit knowledge may turn into explicit knowledge. 
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This, however, is a central issue in the cognitive sciences (Smolensky, 1988). Clark and 

Karmiloff-Smith (1993) pointed out that connectionist networks (and, by extension, any 

association-based model) have no “… self-generated means of analyzing their own 

activity so as to form symbolic representations of their own processing. Their knowledge 

of rules always remains implicit unless an external theorist intervenes” (p. 504). It is 

therefore a genuine, singular challenge, as Pinker (1999) suggests, to figure out how to 

best combine symbolic and subsymbolic approaches to cognition. In this respect, there 

are essentially four possible points of view about this, humorously summarized (from the 

perspective of die-hard connectionists) by Clark and Karmiloff-Smith (1993, pp. 504-

505): 

 

(1) Give up connectionism entirely and revert to a thoroughly classical approach 

(despair) 

(2) Augment connectionist-style networks with the symbol structures of natural 

language (a representational leap) 

(3) Combine elements of connectionism and classicism in a single system 

(hybridization) 

(4) Use thoroughly connectionist resources in increasingly sophisticated ways (more 

of the same) 

 
Recently, several models of implicit learning have been specifically directed at 

addressing the synergy between implicit and explicit learning. This approach makes a lot 
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of sense, for participants, even when placed in experimental situations designed to 

minimize the possibility of their becoming aware of the relevant regularities, will always 

attempt to infer explicit, conscious rules based on their experience of the situation. 

Further, many often also turn out to know something that they can verbalize about the 

material. In other words, one cannot simply turn awareness off, and there are good 

reasons to believe that performance in typical implicit learning situations always involve 

a mixture of implicit and explicit learning. Sun and colleagues (1997; 2002; Sun, Slusarz, 

& Terry, 2005) has attempted to address this issue by proposing a hybrid model of 

implicit learning called CLARION. The model uses both bottom-up, neural-network-

based learning mechanisms and top-down, rule-based learning mechanisms. The model is 

thus genuinely hybrid and that it assumes continuous interaction between two separable 

components: One that is essentially symbolic in its representations and learning 

mechanisms, and another that is clearly sub-symbolic. Sun has applied CLARION to SL 

and process control tasks, simulating for instance in great detail the data of Curran and 

Keele (1993), which interestingly contrasted the influence of different instructions 

manipulating orientation to learn (i.e., incidental vs. intentional) in the task and the 

resulting differing degree of awareness of the material. Sun was able to capture these 

differences by manipulating the extent to which CLARION’s symbolic component is 

allowed to extract rules from its subsymbolic component.  

 

In the same spirit, Lebiere and collaborators (Lebiere et al., 1998; Wallach & Lebiere, 

2000) have proposed ACT-R (Anderson, 1993) models of performance in SL and in 
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process control tasks. Learning in ACT-R (see the Chapter by Taatgen and Anderson, this 

volume). assumes that information processing is driven by the interaction between 

declarative knowledge structures (e.g., chunks of the stimulus material) and procedural 

knowledge, which in ACT-R take the form of production rules that implement the 

system’s goals. The basic goal, for instance, in an SL situation, is to encode each stimulus 

and to respond to it using through a specific key. This and other productions operate on 

the declarative chunks acquired over training by the model, retrieving previously encoded 

chunks whenever appropriate to anticipate the location of the next stimulus. In such a 

model, explicit knowledge thus consists of the learned chunks, and implicit knowledge 

consists in the association strength between different co-occuring chunks that the model 

learns automatically.  

 

Despite the appeal of hybrid models in accounting for the complex interactions 

between implicit and explicit learning (Domangue, Mathews, Sun, Roussel, & Guidry, 

2004), detailed assessment of how well they compare with fragment-based and 

connectionist models in accounting for the human data must await further research.  

5. Theoretical and conceptual implications 

In this section, three central issues are addressed: Whether performance in implicit 

learning situations result in abstract knowledge, whether the data and the modeling 

suggest the involvment of single or multiple systems; and finally whether modeling is 

relevant to addressing the conscious vs. unconscious nature of the acquired knowledge. 
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Rules vs. Statistics. As discussed above, early characterizations of implicit knowledge 

have tended to describe it as abstract, based essentially on findings that subjects exhibit 

better-than-chance transfer performance, as when asked to make grammaticality 

judgments on novel strings in the context of AGL situations (Reber, 1989). Likewise, it 

has often been assumed that the reaction time savings observed in SRT tasks reflect the 

acquisition of “deep” knowledge about the rules used to generate the stimulus material 

(Lewicki, Czyzewska, & Hoffman, 1987). These abstractionist accounts have generally 

left it unspecified what the exact form of the acquired knowledge may be, short of noting 

that it must somehow represent the structure of the stimuli and their relationships, and be 

independent of the surface features of the material. The latter claim was further 

substantiated by findings that AGL knowledge transfers to strings based on the same 

grammar but instantiated with a different letter set, or even across modalities, as when 

training involves letter strings but transfer involves tone sequences.  

 
However, as overviewed above, there now is considerable evidence that non-

abstractionist mechanisms are largely sufficient to account for the data. Brooks (1978) 

first suggested that subjects in AGL experiments were classifying novel strings based not 

on abstract knowledge of the rules, but simply based on the extent to which novel 

grammatical or ungrammatical strings are similar to whole exemplars memorized during 

training. Perruchet and Pacteau (1990) showed that the knowledge acquired in both AGL 

and SL tasks might consist of little more than explicitly memorized short fragments or 
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chunks of the training material such as bigrams or trigrams, or simple frequency counts—

which are perhaps the simplest form of abstraction. Both learning and transfer 

performance can then be accounted for by the extent to which novel material contains 

memorized chunks, as pointed out by Redington and Chater (1996; 2002), who 

emphasized that rule-like behaviour does not necessarily entail rule-based 

representations, — a point also made clear by many of the computational models 

reviewed here, such as Dienes et al. (1999)’s augmented SRN. 

 

Overall, while it is clear that the knowledge acquired in typical implicit learning 

situations need not be based on the unconscious acquisition of symbolic rules, significant 

areas of debate remain about the extent to which unitary, fragment-based or associative 

mechanisms are sufficient to account for sensitivity to both the general and specific 

features of the training material. Simulation models have generally been suggestive that 

such mechanisms can in fact sufficient to account simultaneously for both grammaticality 

and similarity effects, partly because some instantiations of these mechanisms produce 

knowledge that lies on a continuum of abstractness. They can produce sets of weights that 

specify very precise rule-like behaviour (Dienes, 1992), that form graded finite-state 

patterns (Cleeremans, 1993), and that learn the specific lags over which dependencies 

occur (Kuhn & Dienes, in press) (Boyer, Destrebecqz, & Cleeremans, 2005).  

 

The fact that both rule-based and exemplar-based approaches produce identical 

predictions over a large range of data is a significant issue that Pacton et al. (2001) 
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attempted to address by examining the untaught (and hence, incidental) acquisition of 

orthographic regularities over five years in a school setting. One prediction that rule-

based approaches make is that after sufficient training, any acquired rules should 

generalize perfectly. Any learning mechanism based on the operation of associative 

learning mechanisms, however, would predict that performance on novel material will 

always lag behind performance on familiar material (the transfer decrement) These 

conditions are impossible to obtain in the laboratory, which motivated Pacton et al.’s 

longitudinal study. They found that performance on novel material indeed tended to lag, 

by a constant amount, behind performance on familiar material, a result that reinforces 

the idea that what people learn when they learn incidentally is essentially associative, 

rule-like knowledge, rather than rule-based knowledge. 

 

Separable systems? Dissociations between implicit and explicit learning or processing 

have often been interpreted as suggesting the existence of separable memory systems. For 

instance, Squire and collaborators have shown that AGL is largely preserved in amnesia 

(e.g., Knowlton et al., 1992), to the extent that amnesic patients perform at the same level 

as normal controls when asked to classify strings as grammatical or not, but are impaired 

when asked to discriminate between familiar and novel instances (or fragments) of the 

strings. These results suggest  that the processes that subtend declarative and non-

declarative memory depend on separable brain systems respectively dedicated to 

representing either information about the specific features of each encountered exemplar 
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on the one hand  (the hippocampus and related structures), and information about the 

features shared by many exemplars on the other hand (the neocortex). 

 

In this case also however, computational modeling often casts the empirical findings 

in a different light. For instance, Kinder and Shanks (2001) were able to simulate the 

observed dissociations by tuning a single parameter (the learning rate) in an SRN trained 

on the same material as used in the behavioral studies, and therefore concluded that a 

single-system account is in fact sufficient to account for the data. The  finding arises from 

the fact that the classification task and the recognition task were based on different test 

stimuli. The classification test consisted of new grammatical and new ungrammatical 

strings. The recognition task consisted of old grammatical and new grammatical material. 

The discriminations turned out to be differentially sensitive to changes in learning rate. 

 

Not all learning by people consists of gradual change in sensitivity to distributional 

statistics, however. People consider possibilities and test hypotheses. The models 

overviewed in this chapter only function to model reality as it actually is. In the terms of 

Perner (1991), the models constitute ‘single updating models’. As new information comes 

in, the model updates itself in an attempt to match reality more closely. The weights try to 

match the statistical structure of the world and the input units the occurrent stimulus. 

People, however, can, in Perner’s terms, consider multiple models of the world; the real 

and the possible or the counterfactual. Our ability to engage with multiple models 

underlies much of our explicit learning. Integrating implicit and explicit learning 
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processes in a single model certainly deserves more work, following the example of Sun 

(2002). 

 

Conscious vs. unconscious knowledge. As discussed in the Introduction, there is no 

sense in which current computational models can say much about the distinction between 

conscious and unconscious knowledge as observed in implicit learning tasks or, for that 

matter, in any other task (but see Dehaene et al., 2003; Mathis & Mozer, 1996, for 

interesting attempts). Nevertheless, there have been a few attempts at capturing the 

functional consequences of the distinction in terms of performance on different tasks 

(e.g., Sun, 2002, as discussed above). For instance,  the SRN model as it stands fails to 

distinguish between anticipation and prediction responses, yet this difference is at the 

heart of the difference between the (largely implicit) facilitation observed when 

processing a sequence in the context of the SRT task and the (largely explicit) 

performance of participants asked to produce the same or a different sequence in the 

subsequent generation task. Destrebecqz and Cleeremans (2003) sought to address this 

limitation of the SRN by combining it with an auto-associator, so as to reflect the fact that 

people’s task during the SRT task merely consists of mapping the current stimulus onto 

the correct response, whereas in the generation task they are expected to predict the 

location of the next element. The model was successful in capturing human data obtained 

over a range of conditions that either facilitated or promoted the acquisition of conscious 

knowledge. Likewise, Destrebecqz (2004) was able to capture the effects of manipulating 

orientation to learn and information both in an SRT task and on the subsequent 
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generation task by pretraining an SRN to different degrees, thus reflecting the idea that 

differences in availability to consciousness in this task reflects differences in the strength 

of the stored representations. 

6. Conclusions 

Implicit learning has proven to be a rich domain not only for the exploration of the 

differences between information processing with and without consciousness, but also for 

the development of computational models of the mechanisms involved in elementary 

learning. Because implicit learning situations typically involve incidental instructions, the 

mechanisms of change in such situations necessarily involve unsupervised processes that 

characterize learning as a by-product of information processing rather than as hypothesis-

driven. Because the resulting knowledge is typically difficult to express, the most 

successful models all share the characteristic that they only involve elementary, 

associative learning mechanisms that result in distributed knowledge.  

 

Based on the principles of successful models of implicit learning, it is appealing to 

consider it as a complex form of priming whereby experience continuously shapes 

memory, and through which stored traces in turn continuously influence further 

processing. Implicit learning studies suggest that such priming is far more interesting than 

the mere reinstatement of specific past experiences: The processes that produce it lead to 

quasi-abstract knowledge structures that allow the interesting generalizations that are at 

the heart of implicit learning. 
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Finally, while both fragment-based and neural network models make it clear how 

sensitivity to the distributional properties of an ensemble of stimuli can emerge out of the 

processing of exemplars, they differ in whether they assume that the shared features of 

the training materials are represented as such or merely computed when needed. This 

locus of abstraction issue is a difficult one that is unlikely to be resolved by modeling 

alone. Overall thus, it appears that the knowledge acquired through implicit learning is 

best described as lying somewhere on a continuum between purely exemplar-based 

representations and more general, abstract representations — a characteristic that neural 

network models have been particularly apt at capturing. Further research is needed to 

develop unified models of implicit learning, and to gain insight into the computational 

principles that differentiate conscious from unconscious processing. 
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Appendix 
 

 

We present here the equations for the two main chunking models in the implicit learning 

literature, the Competitive Chunker (CC) of Servan-Scheiber and Anderson (1990) and 

the PARSER model of Perruchet and Vinter (1998). 

 

Competitive Chunker. CC perceives a stimulus by successively chunking together the 

basic components of that stimulus until a single chunk represents it. So, using brackets to 

denote a chunk, the exemplar ‘MTVR’ might be perceived as first as ‘MTVR’ – i.e. as 

‘(M)(T)(V)(R)’, then ‘(MT)VR’, then ‘(MT)(VR)’ and finally ‘((MT)(VR))’. Once a 

stimulus is fully chunked it is said to be maximally familiar, or memorised.  

 

Initially CC is given elementary chunks, e.g.  letters. Each chunk has a strength. 

Strength is increased by one unit every time the chunk is used or recreated. However, 

strength decays with time. At any point in time, the strength of a chunk is the sum of its 

successive individually decaying strengthenings: 

 

strength = Σi Ti
-d                                                 (1) 

 

where Ti is the time elapsed since the ith strengthening and d is the decay parameter 

(0<d< 1). 



 

 

Cleeremans & Dienes: Cambridge Handbook of Computational Cognitive Modeling (Chapter 15)  
58 

 
 
 

 Given ‘MTVR’ it will consider all possible combinations of two adjacent existing 

chunks as possible new chunks, i.e. ‘MT’, ‘TV’, and ‘VR’. Each possibility has a support, 

given by the sum of the strengths of each of its subchunks. The probability that a new 

chunk will be formed is given by: 

 

(1 - e-c*support)/(1 + e-c*support)                                               (2) 

 

where c is the competition parameter, c > 0. Only one new chunk is formed at a time. 

Thus, the three chunks ‘MT’, ‘TV’ and ‘VR’ will compete with each other to be created. 

If ‘MT’ is formed as a chunk, next time the stimulus is seen, possible new chunks are 

‘MTV’, and ‘VR’, which will compete to be formed by the same process. 

 

When a stimulus is presented, the mere existence of a chunk that matches part of the 

stimulus does not mean it will be retrieved. The probability of retrieving a chunk is given 

by equation (2), the same equation as for chunk creation. Thus it may be that two 

competing chunks are retrieved, e.g. both ‘MTV’ and ‘VR’. In that case, the stronger 

chunk wins. The greater the value of c, the more likely it is that chunks will be retrieved, 

and hence the greater the probability of competition. After a first pass, another pass is 

made to see if the existing chunks can be perceived as higher-order chunks. At a certain 

point no further chunks are retrieved. At this stage, if the resulting percept is not one 

single chunk, a further chunk may be created, as described. 
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The familiarity of a stimulus is given by the number of active resulting from the 

perceptual process, e.g.: 

familiarity = e1-nactive                                                (3) 

This familiarity value can then be used to classify strings as grammatical, old, etc. 

 

PARSER. Like CC, PARSER begins with a set of primitives, e.g. letters. When 

presented with a string like ‘MTVRXX’ it randomly considers perceiving groups of 1, 2 

or 3 primitives reading from left to right. (PARSER differs from CC in parsing from left 

to right:  PARSER was originally used to model the perception of auditory strings and 

CC was developed to model visual strings.)  For example, if it randomly produced ‘1, 3, 

2’ it would see the string as (M)(TVR) (XX). Because TVR and XX do not exist as units, 

they become new perceptual units and are assigned weights (like CC’s strengths) (for 

example, all new units could be assigned weights of 1). ‘M’ already exists and its weight 

is incremented (by an amount a). At each time step all units are affected by forgetting and 

interference. Forgetting is simulated by decreasing all the units by a fixed value f. 

Interference is simulated by decreasing the weights of the units in which any of the letters 

involved in the currently processed unit are embedded (by an amount i). Once new units 

have been formed, they act in the cycle above just like primitive units. All units can 

contribute to perception so long as their weight exceeds a threshold (t). As for CC, the 

number of chunks a string is perceived as could be used to determine its familiarity. 
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Comparison. CC and PARSER both postulate that learning occurs by chunking in which 

(a) the use of a chunk increments its weight; and (b) each chunk decays in weight on each 

time step. They theoretically differ in that (c) PARSER, but not CC, has an interference 

process by which chunks that are not used but that contain an element that was used are 

decremented in weight. Because of (a) and (b), both models correctly predict that with the 

strengthening of common chunks and fading of infrequent ones, people will come to 

perceive stimuli as made of the commonly occurring chunks.  

 

PARSER’s interference parameter has two effects. One is that it tends to eliminate 

long items (long items are obviously very prone to interference, because many small 

items interfere with them). But perhaps more importantly, it makes PARSER sensitive to 

both forward transitional probabilities (the conditional probability of a second event 

given a first) and backward transitional probabilities (the conditional probability of a first 

event given a second).  CC is mainly sensitive to the frequency of co-occurrence of two 

items next to each other rather than transitional probabilities. The SRN is sensitive to 

forward but not backward transitional probabilities. Perruchet and Peereman (2004) 

showed that in rating the goodness of non-words as being words, people were sensitive to 

both forward and backward transitional probabilities, consistent with PARSER but 

neither with the SRN nor with CC. Further, in many statistical learning situations, people 

are sensitive to transition probabilities (e.g., Aslin, Saffran, & Newport, 1998). 

Conversely, Boucher and Dienes (2003) found support for CC over the SRN in artificial 

grammar learning because people were mainly sensitive to co-occurrence frequency. 
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Thus, it is likely PARSER could fit the Boucher and Dienes data by letting the 

interference parameter go to 0, but that would be an ad hoc solution because PARSER’s 

characteristic behavior is sensitivity to transition probabilities. Nonetheless PARSER 

provides a framework for future research to establish a meaningful way of indicating 

when its interference parameter should go to 0 and when it should not. 
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Figure captions 

 

Figure 1: A finite-state grammar (Reber, 1976) is a simple directed graph consisting of 

nodes connected by labeled arcs. Sequences of symbols can be generated by entering the 

grammar through a “begin” node, and by moving from node to node until an “End” node 

is reached. Each transition between a node and the next produces the label associated 

with the arc linking the two nodes. Concatenating the symbols together produces strings 

of symbols, in this case, letters of the alphabet. Finite-state grammars have been used 

both in the context of Sequence Learning studies and in the context of Artificial Grammar 

Learning studies. 

 
Figure 2: A representation of different computational approaches to Artificial Grammar 

Learning (see text for details). 

 
Figure 3: The Simple Recurrent Network (SRN) introduced by Elman (1990). The 

network takes the current element of a sequence as input, and is trained to predict the next 

element using back-propagation. Context units, which on time step contain a copy of the 

activation pattern that existed over the network’s hidden units on the previous time step, 

enable previous information to influence current predictions. 

 
Figure 4: The model of Dienes, Altmann and Gao (1999). Transfer between domains is 

achieved by augmenting an SRN network with “mapping” weights that make it possible 
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for the knowledge embedded in the “core” weights to be preserved and used for 

generalization when switching to a different set of stimuli. 

 
Figure 5: The buffer network. A fixed-width time window is implemented by input units 

dedicated for each time slot. 

 
Figure 6: Performance of the memory buffer network and of the SRN on music stimuli 

over a full range of parameters. The box shows a standard error above and below human 

means.  The buffer network is characteristically more like human behavior than the SRN 

is. See text for full explanation. 

 
Figure 7: Performance of the competitive chunker and SRN models in dealing with 

prediction conflicts. The competitive chunker is resistant to conflict whereas the SRN 

shows a range of sensitivity to it. Humans are resistant, like the competitive chunker.See 

text for full explanation. 
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Exemplar-based approaches
assume that whole instances are 

memorized during training. New 

exemplars can then be classified 

according to their similarity with 

either specific items or with the entire 

memorized database.

Fragment-based and chunking 
approaches exploit the redundancy of 

the training material by decomposing it 

into short chunks such as bigrams or 

trigrams. The resulting database can be 

organized hierarchically or not. New 

exemplars are classified according to 

how many chunks they share with the 

training material.

Rule abstraction approaches
produce symbolic knowledge of the 

material in the form of production 

rules, discrimination trees, or 

classifiers:

“Grammatical strings begin with T or 

P”

Distributional and statistical approaches 
(including neural network models), develop 

superpositional representations of the 

statistical constraints present in the material 

based on associative learning mechanisms.
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