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Modality Independence of Implicitly Learned Grammatical Knowledge

Gerry T. M. Altmann, Zoltan Dienes, and Alastair Goode

University of Sussex

In each of 4 experiments exemplars of an artificial grammar were presented in one modality (e.g.,
sequences of tones differing in pitch in Experiments 1 and 2, or sequences of spoken syllables in
Experiment 3, or sequences of arbitrary graphical symbols in Experiment 4), but the subsequent
classification task was performed on novel sequences in another (e.g., sequences of letters in
Experiments 1 and 2, sequences of arbitrary graphic symbols in Experiment 3, and sequences of
written syllables in Experiment 4). Prior exposure to the grammar improved classification of novel
stimuli, even across modalities. Participants who received either no preexposure or were exposed
to pseudorandom sequences showed no such improvement. Consequently, part of the learning
process can take place prior to any exposure to the domain within which categorization is to take

place.

Knowledge of the regularities underlying variation in the
external environment plays a central role in the workings of the
human cognitive system. Without this knowledge, the cognitive
system would be unable to perform even the simplest of tasks.
The acquisition of such knowledge is thus crucial to the
emergence of cognitive ability. The aim of this article is to
address, within the context of artificial grammar learning, a
specific issue concerning the acquisition process: Is acquisition
modality specific, or can knowledge of regular variation in one
modality underlie sensitivity to regular variation in another?
Thus we ask whether modality dependence (and indeed
domain dependence, defined below) constrains the acquisition
and application of the grammatical knowledge.

In a number of studies, Reber and others have demon-
strated that exposure to sequences of letters generated by an
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artificial grammar enables participants to perform at signifi-
cantly above chance when subsequently discriminating be-
tween new sequences that either do or do not obey the rules of
the grammar (e.g., Dienes, Broadbent, & Berry, 1991; Mathews
et al,, 1989; Reber, 1967, 1969). Despite performing above
chance, participants were generally unable to freely report the
rules they had used during this classification task, and on those
occasions when they could, the rules they described did not
adequately explain their improved performance (Dienes et al.,
1991; Mathews et al., 1989). Participants who either had not
received prior exposure to any grammatical exemplars (cf.
Mathews et al., 1989) or were given exposure to sequences
generated by a different grammar (cf. Dienes et al., 1991;
Reber, 1969) did not perform as well when given the same
discrimination task. These studies demonstrated that knowl-
edge about some subset of the variation permitted by an
artificial grammar can be learned, without the need to expose
participants to the actual rules of that grammar. All that is
required is to expose participants to the consequences of those
rules. In the remainder of this article we refer to the knowl-
edge that has been acquired as the grammar, and in the context
of grammar learning this expression is thus shorthand for
knowledge about some subset of the lawful variation in the input.

Recently, there has been considerable interest in elucidating
the nature of the knowledge that is abstracted from the
exemplars given in the preexposure phase. Reber (1969)
argued that what is acquired is abstract grammatical knowl-
edge; Perruchet and Pacteau (1990) have suggested instead
that participants are sensitive to little more than knowledge
about the particular bigrams that can occur in the letter
sequences typical of these studies; Mathews (1990) argued that
the knowledge acquired is in fact far richer than simple
bigrams and includes information concerning the spatial posi-
tioning of these bigrams relative to other elements in the
strings (i.e., the knowledge is perhaps better classified in terms
of distributions of “ngrams”). The representational issue is
complicated by the fact that whatever the nature of the
knowledge that is acquired in artificial grammar learning, it is
remarkably insensitive to changes in the “vocabulary” on
which basis the knowledge was first acquired. Reber (1969)
and Mathews et al. (1989) have shown that so long as the
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Figure 1. The finite-state grammar used in Experiments 1 and 2.

underlying grammars are the same, it matters little whether
the letters used to make up the exemplars in the learning phase
are the same as those used as the basis for establishing that
learning has taken place (whether in a subsequent classifica-
tion task—Mathews et al.—or in a continuation of a memoriza-
tion task, with errors to criterial learning as the dependent
variable—Reber). In other words, changing the vocabulary
makes little difference if the underlying syntax remains the
same. Clearly, a model that is based on the extraction of the
distributional characteristics of the individual, specific, letters
would not be enough to explain this transfer effect. The
acquired knowledge might be better characterized in terms of
the distributional characteristics of something akin to form
classes (in which the individual letters are viewed as words
belonging to a syntactic form class), or it might be better
characterized in terms of an abstract grammar (with the same
assumption concerning the relationship between letters and
syntactic form class). In either case, one might argue that some
level of underlying structure is implicated. On the other hand,
Brooks and Vokey (1991) suggested that transfer between
letter strings from different vocabularies could have taken
place in these studies partly because of some abstract similarity
between the letter strings in the test phase and stored
representations of the individual exemplars presented in the
learning phase, with transfer across letter sets being due to the
formation of abstract analogies computed separately on an
item-by-item basis (cf. Whittlesea & Dorken, 1993). Before
returning to this issue (we present data inconsistent with a
strict item-by-item account in Experiment 3), we consider an
extension of the original Reber finding.

The finding that vocabulary sets can be changed between the
learning and classification phases of these studies raises an
interesting and important question: What relationship be-
tween the vocabulary sets must obtain for learning to transfer
between them, other than a common underlying structure (a
requirement even if transfer is by analogy)? Another way of
framing this same question is to ask whether, and to what
extent, the knowledge that is acquired in implicit artificial
grammar learning is available for use across different domains.
For present purposes, we can define two input domains as
being different to the extent that the vocabularies used to
describe the input signals do themselves differ, and (crucially)
the relevant mapping between them is not known a priori.

Thus, if two input signals can only be described by using
different sets of descriptors, and there is no a priori relation-
ship between the elements of the different sets, then we define
the two signals as belonging to different domains. A strong
example of cross-domain transfer of implicit knowledge would
be one in which the two domains occur in different modalities.
For instance, can knowledge about which patterns are permis-
sible in the visual (e.g., orthographic) domain influence the
process of discerning patterns in the auditory (e.g., tonal)
domain? That is, will exposure to a set of grammatical
exemplars in one modality improve classification of a test set
(relative to controls with either no prior exposure or exposure
to a different grammar) in the other modality?

Experiment 1

In this first experiment, a grammar generated simple melo-
dies or sequences of letters. The aim was to see whether prior
exposure to, for instance, the melodic exemplars would im-
prove classification of the letter sequences, and vice versa.
Classification consisted of distinguishing between sequences
that were either grammatical or ungrammatical. Two control
conditions were used: one in which participants received no
prior exposure, and another (used only in the case of prior
exposure to melodies and subsequent classification of letter
sequences) in which participants were preexposed to exem-
plars from a different grammar. If cross-domain transfer takes
place, then the participants given prior exposure to the
grammar, irrespective of the modality in which this takes place,
should show improved classification relative to participants in
the two control conditions.

The precise translation used to map melodic sequences onto
letter sequences is of critical importance: If tonal distance
mapped onto alphabetic distance (e.g., the letter sequence
ABC mapping onto the melodic sequence cde, BCD onto def,
and so on), the mapping between tones and letters could be
sufficiently transparent that the sequences would violate the
criterion for constituting separate domains (described above).
We therefore ensured that the mapping between tones and
letters was random and that alphabetic distance did not, and in
fact could not, correspond to tonal distance.

Method

Participants.  Forty-six University of Sussex undergraduates partici-
pated in the study.

Stimuli. The grammar was identical to that used in a number of
earlier implicit learning studies (e.g., Dienes et al, 1991; Dulany,
Carlson, and Dewey, 1984; Reber, 1967) and is shown in Figure 1. The
same stimuli were used as given in Dienes et al. and Dulany et al.

The grammar shown in Figure 1 was used to generate 40 sequences
that varied in length from between three and six letters. Twenty of
these were assigned to the learning set, and 20 to the classification set.
Five of the 20 exemplars in the learning set were added to the
classification test set, making a total of 25 test stimuli. A further 25
sequences were created that were ungrammatical and were matched
against the grammatical sequences for length and frequency of
occurrence of individual letters. These 25 ungrammatical sequences
were randomly interspersed amongst the 25 grammatical sequences
(also in random order) to create the full classification set. The two sets
of letter sequences were then translated into musical tones by using a
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random mapping of the tones to letters (c-M, d-T, e-R, g-V, a-X, in
which lowercased letters indicate the musical note, with c referring to
Middle C). We generated the melodies using a sampling keyboard
(generating simple sine waves at the appropriate frequencies at
approximately two beats per second). A final set of 20 ungrammatical
musical sequences, in which successive notes were chosen at random,
was also generated. These sequences were matched against the others
for length and frequency of occurrence of individual notes. We used
this set as a control condition in which participants are exposed to
exemplars from a grammar (or more correctly, a set of grammars each
capable of generating these exemplars) that differs from that which
was used to generate the target sequences in the classification set. We
used this condition as an additional control against which to compare
participants who were given exposure in the auditory domain before
testing in the orthographic domain.

Design. We used a mixed design with four groups. One group
(n = 12) acted as a control and was given no learning phase and
proceeded directly to the classification task. Two further groups
(n = 12 each) were exposed in the learning phase to either the letters
or the tones that had been generated by the same grammar. The same
(random) order of sequences was used for both the melodies and the
letter sequences and was fixed across all participants. All three groups
were given both classification tasks (i.e., tones and letters). Half of the
participants in each group were given the tones to classify first, and
half were given the letters to classify first. Thus, order of classification
task was fully counterbalanced. Subsequent analyses revealed that
there were no main effects of test order nor any interactions with test
order (all ps > 0.1); we therefore omit further discussion of this
counterbalancing procedure. To minimize any order effects in the
classification stimuli, we had half of the participants classify the stimuli
within each modality in one order, and we had the other half classify
the stimuli in the reverse order. No participant was given the same
ordering across the two modalities. A final group of participants
(n = 10) was exposed in the learning phase to the random tones and
was then required to classify only the orthographic sequences. This
condition was intended as a further control in the event that transfer
occurred between tones and letters. Again, hailf of the participants
classified the sequences in one order, and the other half classified the
sequences in the other order.

Procedure. Participants were presented with the musical stimuli
over headphones, with approximately 5 s between each stimulus
sequence. The tape ran for approximately 3 min. The letter sequences
were presented on a single sheet of paper. Except for the group that
only took part in the classification task, and depending on which of the
remaining three groups they were in, participants were first asked
either to listen to 20 melodies or to study the 20 letter sequences
appearing on a single sheet of paper. Participants were allowed to
inspect the letter sequences for between 3 and 4 min. If they inquired
as to the purpose of this, they were informed that they would be asked
some questions about the stimuli later. After they had listened to the
tape, or inspected the training set, they were told that the 20 exemplars
they had seen, or heard, had been generated by a computer program.
They were then told that they would now be given two sets of 50
sequences each and that half of these sequences were generated by the
same program and half were generated at random. Their task was to
classify which sequences had been generated by the same program and
which were random. When participants had to classify the melodic
stimuli, they wrote down their response after hearing each sequence.
When participants had to classify the letter sequences, they wrote their
response against each of the 50 sequences appearing on the response
sheet. Participants in the no-learning conditions were given both the
50 auditory stimuli and the S0 letter sequences in counterbalanced
order. They were told that half of the sequences had been generated by
the same program and that half had been generated at random. Their
task was to classify which were which.

Table 1
Percentage Correct of Classification Scores as a Function of
Learning Set and Test Set

Test set
Letters Tones
Learning set % SD % SD
Control (no learning) 50 11 49 1.0
No transfer (same as test) 59 1.7 57 1.2
Transfer (different to test) 54 1.3 56 0.8
Random tones 48 1.2

Results

The percentage correct of classification scores are shown in
Table 1.

A two-way analysis of variance (ANOVA) with variables test
set (letters and tones) and learning set (none, same modality as
test, and different modality from test) was performed on all but
the random tone data. There was no effect of test set
(F < 1.0), an effect of learning set, F(2, 33) = 26.20,p = .0001,
MSE = 19.60, and no interaction between learning and test set,
F(2,33) = 1.67, p > .2, MSE = 16.50. Planned comparisons
revealed significantly improved classification in the no-transfer
conditions relative to the no-learning controls, F(1, 33) =
51.44, p = .0001, MSE = 19.60, from an average of 49% to an
average of 58%. Comparisons also revealed significantly im-
proved classification after transfer relative to the no-learning
controls, F(1, 33) = 19.66, p = .0001, MSE = 19.60, from an
average of 49% to an average of 55%. The comparison
between the transfer (55%) and no-transfer (58%) conditions
was also significant, F(1, 33) = 7.50, p < .01, MSE = 19.60.
Thus the no-transfer conditions (letters to letters and tones to
tones) lead to better classification in the test phase than the
transfer conditions (letters to tones and tones to letters). Not
surprisingly, given that there was no main effect or interaction
involving test set in the original ANOVA, no planned compari-
sons interacted with test set (all ps > .1). Finally, inspection of
Table 1 shows that classification of letters when preceded by
exposure to random tones was nonsignificantly lower than
when preceded by no exposure at all (48% vs. 50%).

A further analysis that would be useful would be one that
assessed whether there were any trends in correct classification
of a transfer test item against serial position of the test item. If
participants build up a mapping over the course of the test
phase, classification performance should gradually improve. If
participants classify each test stimulus separately according to
some abstract (conscious or unconscious) analogy (cf. Brooks
& Vokey, 1991), there should be no trend. However, with
overall performance in the transfer conditions at only 54.5%,
we simply lack the power to distinguish the alternatives, and, in
fact, there was no observable trend (b = .003). A better test,
and one that is currently under way, is to compare perfor-
mance in this experiment with one in which the mapping
between tone and letter is changed for each sequence in the
test phase. If some form of correspondence is established
separately for each sequence, then changing the mapping
should not affect performance. If instead the system attempts
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Table 2
Percentage Correct of Classification Scores as a Function of
Leamning Set and Test Set

Test set
Letters Tones
Learning set % SD % SD
Control 50 1.1 50 1.9
Transfer 54 2.0 56 2.0

to establish an internal mapping that is consistent across
stimuli, then changing the actual mapping should affect perfor-
mance. Whittlesea and Dorken (1993) independently reported
testing a group with randomly changed mappings, but it is not
possible to say whether they found transfer as they did not use
a control group against which to compare performance.

Discussion

We designed Experiment 1 to test whether the correct
classification of sequences in one modality would be facilitated
by prior exposure to grammatical exemplars presented in
another modality. We found, relative to the control conditions,
that classification was significantly improved, even when a
switch in modality had occurred (the transfer conditions).
Moreover, transfer occurred irrespective of test modality and
without feedback during the test phase. It would appear,
therefore, that cross-domain transfer of acquired grammatical
structure does occur.

The inclusion of the condition in which random melodies
were used demonstrates that the “content” of the melodic
exemplars was crucial to establishing a transfer effect. Indeed,
this comparison is directly equivalent to Reber’s (1969) demon-
stration that transfer can occur across changes in vocabulary
but not across changes in the underlying syntax. We note that
Perruchet (1994) argued that many previous demonstrations of
transfer effects have failed to use any control group against
which to compare performance in the transfer condition(s). In
the present study, we, in fact, have two such groups (and we
note also that Brooks and Vokey’s, 1991, demonstration of
transfer included a counterbalancing procedure that effec-
tively provided a control comparison).

Overall, the effects of learning were smail, even when no
transfer was involved: Classification in the no-transfer condi-
tions increased by an average of only 9%, although this is
comparable with other studies (e.g., Dulany et al., 1984) that
showed similar increases of around 10% from baseline. The
effects of learning, and transfer, were nonetheless significant,
albeit small. Although the transfer conditions led to an
absolute increase in performance, relative to the controls, of
only 6% (i.e., from an average of 49% in the control conditions
to an average of 55% in the transfer conditions), the magni-
tude of this effect should be viewed relative to the improve-
ment in performance seen in the no-transfer conditions (10%).
In these terms, the improvement seen in the transfer condi-
tions represents 62% of the improvement possible in the
absence of transfer. Also, in the best case, from letters to

tones, the corresponding figure is 83% (i.e., 7% for letters to
tones relative to 9% for tones to tones). In Experiments 3 and
4, we report even larger levels of transfer.

The evidence supports the supposition, then, that grammati-
cal structure acquired in one modality can influence the
recognition of grammatical structure in another. Before consid-
ering further the possible mechanisms of such transfer, and the
implications of a processor capable of such a feat, we describe
some further experiments aimed at replicating and extending
the results of Experiment 1 and demonstrating that a wide
range of auditory or visual stimuli give rise to the same effects.

Experiment 2

The aim of Experiment 2 was to replicate the pattern found
in Experiment 1, but by using a subjectively quite different
auditory stimulus. In Experiment 1, participants were exposed
to sequences of discrete items in either the auditory or
orthographic domains. The orthographic domain is, in many
languages, normally characterized in terms of such sequences,
but the auditory domain need not be so constrained (and is
rarely discrete). This, therefore, permits the possibility of
exploring whether the human processor can identify the
patterns in a continuously varying signal and use those patterns
as the basis for categorizing sequences of discrete elements in
another modality.

Method

Participants. Forty-eight University of Sussex undergraduates par-
ticipated in the study.

Stimuli. The same letter stimuli were used as in Experiment 1. To
generate the continuously varying melodic sequences, we modified the
tones from Experiment 1 by changing the portamento on the synthe-
sizer so that each note “blended” into the next. The portamento was
set relative to the beat (two per second, as in Experiment 1) such that
each blend would just achieve the target pitch before moving off
toward the next note. Subjectively, these stimuli did not correspond to
sequences of discrete pitch peaks, and there were no physical
discontinuities in the transitions between the actual peaks. Thus, for
successful transfer to occur it would be necessary for participants to
“segment” these melodic sequences (i.e., to perceptually encode
them) into sequences of discrete peaks.

Design. We used a between-subjects design with 12 participants in
each of the four groups. One group acted as a control and simply
classified the melodic sequences without any prior learning phase. We
used the data from Experiment 1 to provide the equivalent control for
the letter sequences. Two further groups were given either the letter
sequences in the learning phase and the melodic sequences in the test
phase or the melodic sequences in the learning phase and the letter
sequences in the test phase.

Procedure. The same procedure was used as in Experiment 1.

Results

The percentage correct of classification scores are shown in
Table 2.

A two-way ANOVA with variables test type (letters and
tones) and learning (no learning and transfer) was performed
on the data. There was no main effect of test type (F < 1.0) on
classification scores and no interaction between test type and
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learning (F < 1.0). There was, however, a significant main
effect of learning, F(1, 44) = 8.18,p < .007, MSE = 36.70.

Discussion

The data show not only that learning transfers from continu-
ous domains to discrete domains (and vice versa) but also, by
comparison with Experiment 1, that there was no detrimental
effect of transforming the sequences of discrete tones into a
signal with continuously varying pitch. The regularities under-
lying the two kinds of signal were equally well applied to the
task of classifying letter sequences. Similarly, comparison
across the two experiments demonstrates that the classification
of the two kinds of signal, after prior exposure to the letter
sequences, was no different. In other words, the transfer of
grammatical knowledge occurs, irrespective of a change in
modality and irrespective of whether the stimuli differ, across
the modalities, with respect to being composed of discrete or
continuously varying signals.

In Experiment 3 we describe an experiment in which a
grammar was used to generate sequences of spoken consonant-
vowel-consonant syllables. The grammar was a small phrase
structure grammar (from Morgan, Meier, & Newport, 1987),
and unlike in Experiments 1 and 2, we assigned more than one
token to some of the grammatical categories generated by the
grammar. After listening to sequences of syllables, participants
were asked to classify sequences of arbitrary graphic symbols.
As we pointed out in our introduction to Experiment 1, letters
and tones can each be mapped onto ordinal scales, and there
thus exists at least one mapping that is potentially transparent.
Although we ensured that the actual mapping used in Experi-
ments 1 and 2 violated ordinal structure, the stimuli used in
Experiment 3 eliminate any possibility that there might exist
any transparent, or a priori, mapping between the tokens of
the learning domain (spoken syllables) and the tokens of the
test domain (graphic symbols).

Experiment 3

Morgan et al. (1987) described a study (their Experiment 1)
in which participants were presented with spoken sentences
consisting of monosyliabic nonsense words generated by an
artificial phrase structure grammar. Participants were simulta-
neously presented with a printed version of the sentence and
with a sequence of reference figures (i.e., some graphic symbol
to which each nonsense word referred in the artificial world
generated by the grammar). Participants were given explicit
instructions to “discover how the words and the figures in this
world were paired and to search for patterns in the arrange-
ments of words” (Morgan et al.,, 1987, p. 512). Morgan et al.
found that participants could all perform virtually perfectly in
a subsequent vocabulary test (matching syllables to their
graphic referents) and could also perform above chance in a
subsequent grammaticality test. In Experiment 3, we con-
ducted a modified version of this task: Participants were not
given any explicit instruction to search for patterns; the
auditory sequences were not paired with any printed version of
either the syllables themselves or their graphic referents; and
in the test phase, participants were given only sequences of the

Figure 2. The finite-state grammar used in Experiments 3 and 4.

graphic referents to classify as either grammatical or ungram-
matical.

Method

Participants. Twenty-four University of Sussex undergraduates
participated in the study.

Stimuli. Seventy sequences of syllables were generated from the
following phrase structure grammar (from Morgan et al., 1987), a finite
state version of which is shown in Figure 2.

S— AB(C)
A— a(d)
B— Cf

B—> e

C— c(d)

Monosyllabic nonsense words were assigned to the terminal categories
as follows (some of these syllables differ from those used in Morgan et
al.):

a— [hesorvot}
c— pel
d—  jix
e— (rud or sog}
f— {kav or dupj

Thus, the sequence of Categories A D E C would translate into any of
the following: hes jix rud pel, vot jix rud pel, hes jix sog pel, or vor jix sog
pel.

Thirty of the 70 sequences were assigned to the learning set. The
frequency of occurrence of individual syllables, and the frequency of
occurrence of sequences of different lengths, were kept constant,
proportionally, across the learning and test sets. Spoken versions of the
30 sequences were recorded onto DAT tape (by Gerry T. M.
Altmann). Approximately 2.5 s separated each sequence, and the
sequences were uttered at approximately two syllables per second.
Each sequence was uttered with an intonation appropriate to its
constituent structure (cf. Condition 3 of Morgan et al’s, 1987,
Experiment 1, “prosody consistent with phrase structure”).

The 40 grammatical test sequences were matched with 40 ungram-
matical test sequences. These were created so that, overall, they
shared the length and first-order frequency statistics of the grammati-
cal sequences (discussed below as well). The 80 test sequences were
then translated into sequences of graphic symbols according to the
mapping shown in Figure 3. The symbols differ from those used by
Morgan et al. (1987). The assignment of symbols to syllables was
random as was the final order of presentation of the sequences.

Participants. Twenty-four University of Sussex undergraduates
participated in the study.
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vot jix  pel

=

ADQE#H A

Figure 3. The mapping of nonsense words to symbols used in
Experiment 3.

sog kav rud

Design. 'We used a between-subjects design with 12 participants in
each of two groups. One group acted as a control and simply classified
the symbol sequences without any prior learning phase. The experimen-
tal group was first presented with the auditory stimuli and was then
given the visual stimuli to classify.

Procedure. The experimental group was presented in the learning
phase with four blocks of auditory stimuli, each block consisting of the
same 30 stimuli (the learning set) presented in a different random
order (although order was constant across participants). Stimuli were
presented over headphones, and presentation of the four blocks of 30
stimuli took approximately 10 min. In the test phase (taken by both the
experimental and control groups), participants were given response
sheets on which the 80 symbol sequences appeared. To counterbalance
for possible fatigue effects, we split the 80 sequences into two blocks of
40; half of the participants were given the two blocks in one order, and
the other half were given the two blocks in the other order (e.g., 4B vs.
BA). Subsequent analyses revealed no effect of the order of the blocks
on performance; we therefore omit further discussion of this manipu-
lation. Participants’ instructions were identical to those given in
Experiments 1 and 2.

Results

The percentage correct of classification scores are shown in
Table 3.

A one-way ANOVA (control vs. transfer) confirmed that the
difference of 11% between the control and transfer group was
significant, F(1, 22) = 7.83, MSE = 97.00, p = .0L. To deter-
mine whether the transfer effect was due to just a few items, we
calculated, for each test string, the number of participants
giving a correct response in the transfer condition and the
control condition. A difference between these conditions of 4
participants (given 12 per group) is just significant at the .05
level by using the normal approximation to the binomial, and
we could expect four such items (.05 - 80) through chance
alone. In fact, 21 of the 80 test strings showed significant
transfer according to this criterion. That is, the transfer effect
did not appear to be due to only a few items; a substantial
number of items individually showed transfer. In addition, we
had asked each participant at the end of the experiment for a
verbal report as to their strategies for choosing between
grammatical and ungrammatical exemplars. Participants were
unable to give any indication as to the basis of their decisions,
or the mapping between syllables and symbols, in free report.

Discussion

Experiment 3 is significant because it demonstrates effects
of transfer between sets of stimuli between which there can
exist no a priori mapping. In this respect, this constitutes the
strongest demonstration thus far of cross-domain transfer of
acquired knowledge.

The data from Experiment 3 have interesting implications
for the interpretation of aspects of the Morgan et al. (1987)
results. They demonstrate that knowledge of the permissible
sequences of syllables and/or symbols (the referents of the
vocabulary items used in Morgan et al.) can be derived without
the need for explicit instruction (cf. Morgan et al.) to look for
appropriate patterns. This is, of course, unsurprising given the
previous studies on implicit artificial grammar learning. How-
ever, the results of Experiment 3 also demonstrate that the
acquisition of knowledge of the permissible orderings of the
graphic referents (the symbols) does not require the simulta-
neous pairing of sequences of syllables with sequences of their
graphic referents—this pairing is unnecessary for a mapping
between the two sets of stimuli to be established. Finally,
Experiment 3 demonstrates that at least some proportion of
the above-chance classification of the written versions of the
spoken syllables requires no a priori knowledge of the mapping
between the written and auditory versions. Perhaps this point
needs further spelling out: In the Morgan et al. study,
participants were presented with sequences of spoken syllables
in the learning phase and with sequences of written versions of
these syllables in the test phase. One might then ask whether
the ability to perform above chance in the Morgan et al. study
relied on knowledge of the spelling rules that map spoken
syllables onto their written forms. The results from Experi-
ment 3 demonstrate that above-chance performance in such
tasks requires no a priori knowledge of spelling whatsoever.

Experiment 4

Experiment 4 serves as a final replication of the transfer
effects found in the preceding experiments. We used the same
grammatical stimuli as used in Experiment 3, but this time the
learning stimuli were sequences of symbols (corresponding to
the same learning set used in Experiment 3), and we used a
new set of ungrammatical stimuli. In addition, and unlike in
Experiment 3, participants were tested both on sequences of
(written) syllables and on sequences of symbols, allowing
replication of the finding that a penalty in classification
performance is incurred if the test domain is different from the
learning domain.

Method

Participants. Twenty-four University of Sussex undergraduates
participated in the study.

Stimuli. The 30 learning and 40 (grammatical) test sequences were
the same as those used in Experiment 3. The 30 learning sequences
were translated into symbol sequences according to the mapping
shown in Figure 3. For each grammatical test sequence, an ungrammati-
cal sequence was generated by reordering the elements in the

Table 3
Percentage Correct of Classification Scores as a Function

of Participant Group

Participant group % SD
Control 47 1.77
Transfer 58 2.23
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sequence. This guaranteed preserving the exact frequency distribution
of the individual elements, the length of the individual sequences, and
the frequency-by-length properties of the grammatical and ungrammati-
cal test items. The resulting 80 test sequences were then translated
into sequences of graphic symbols according to the mapping shown in
Figure 3.

Design. We used a between-subjects design with 12 participants in
each of the two groups. One group acted as a control and classified
both the syllable and symbol test sequences without any prior learning
phase. Half of the participants were given the 80 symbol sequences to
classify first, and half were given the 80 syllable sequences to classify
first. The order of the sequences within each test set differed (but was
constant across participants) and differed from the order of presenta-
tion used in Experiment 3. The second, experimental, group was first
presented with the training (symbol) sequences. Like the control
group, this group also classified both the syllable and the symbol
sequences, with order of classification task fully counterbalanced.
Subsequent analyses revealed that there were no main effects of test
order nor any interactions with test order (all ps > 0.1); we therefore
omit further discussion of this counterbalancing procedure.

Procedure. The experimental group was presented in the learning
phase with four blocks of the same 30 symbol sequences (the order of
presentation of the ensuing 120 stimuli was the same as that used in
Experiment 3). The stimuli were presented on seven sheets of paper,
with approximately 18 sequences on each sheet. Participants were
allowed 10 min in which to study the stimuli (if they asked as to the
purpose of the experiment, they were informed that there was to be a
memory test). In the test phase (taken by both the experimental and
control groups), participants were given response sheets on which the
80 symbol-of-syllable sequences appeared. In all other respects, par-
ticipants’ instructions were identical to those given in Experiment 3.

Results

The percentage correct of classification scores are shown in
Table 4.

The data were entered into a two-way ANOVA with
variables test set (symbols and syllables) and learning set (none
and symbols). There was an effect of test set, F(1, 22) = 4.6,
p < .05, MSE = 39.50, an effect of learning set, F(1, 22) =
34,78, p = .0001, MSE = 105.00, but no interaction between
the two, F(1, 22) = 1.67, p > .2, MSE = 39.50. Planned
comparisons revealed that classification of the syllable test set
after exposure to the symbol learning set was significantly
better than classification of this set in the control condition,
F(1, 22) = 16.73, p = .0005, MSE = 105.00, and that
classification of the symbol test set was significantly better than
classification of the syllable test set after exposure to the
symbol learning set, F(1, 11) = 10.51, p < .01, MSE = 39.50.
To determine whether this effect was due to just a few items,
we calculated, for each test string, the number of participants
giving a correct response in the transfer condition and the
corresponding control condition; 22 of the 80 test strings
showed significant transfer according to the criterion de-
scribed in relation to Experiment 3. Given that we would
expect by chance alone only four such items, the results again
suggest that the transfer effect was not due to only a few items.

Discussion

Experiment 4 has replicated and extended the findings of
Experiment 3, and although the underlying grammar used in
the two studies was the same, there were a number of

Table 4
Percentage Correct of Classification Scores as a Function of
Leaming Set and Test Set

Test set
Symbols Syllables
Learning set % SD % SD
Control 51 20 49 2.1
Symbols 71 2.5 65 3.0

differences between the studies (new ungrammatical stimuli
and preexposure to symbol sequences instead of syllable
sequences) that make the replication significant. The inclusion
of a no-transfer condition (and its corresponding control)
allows a comparison of no-transfer and transfer classification
performance. In the no-transfer and transfer conditions, we
can assume that whatever has been extracted on the basis of
the learning phase is the same. This knowledge base allowed
novel sequences of symbols to be classified at 71% accuracy
and sequences of syllables to be classified at a slightly (but
significantly) reduced rate of 65%. If we take the figure of 71%
as the ceiling against which to compare the magnitude of the
transfer effect (given that 71% is a reasonable estimate of the
maximum classification performance that we could in principle
expect), we find that the absolute level of transfer (15%
relative to the control) corresponds to 76% of the ceiling level
and that the cost associated with changing the domain of the
test stimuli is, correspondingly, 24%.

In the discussion that follows, we consider further the
explanations for the transfer effects observed in this and the
previous experiments.

General Discussion

The results of Experiments 1 to 4 suggest that knowledge
acquired during the acquisition phase can be applied to novel
domains in the test phase. However, there are a number of
possible explanations for this effect. For instance, although the
ungrammatical sequences were matched to the grammatical
sequences for overall letter-symbol frequencies and length
(with an exact match in Experiment 4 and an approximate
match in Experiment 3), a proportion of the ungrammatical
sequences (between 25% and 35%) started with an element
that could not, according to the grammar, occur in initial
position (in Experiment 4 it was not possible to eliminate such
instances without repeating an ungrammatical sequence or
jumbling the elements of the grammatical sequence to create
another grammatical sequence). Whereas the grammar and
associated vocabulary permitted items starting with either hes
or vot, a proportion of the ungrammatical sequences started
with either jix or pel. In principle, it would be enough to
identify these low-frequency starting elements and classify any
sequence beginning with such an element as ungrammatical.
To rule out such a possibility (which would make the transfer
effects we have observed somewhat less interesting), we
computed a further post hoc analysis of the data in which we
omitted from the analysis the data from sequences with
nongrammatical starting elements. Because this resulted in
unequal numbers of grammatical and ungrammatical items, we
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computed d' values! for each participant; a measure of the
degree to which each participant could successfully discrimi-
nate between the grammatical and ungrammatical sequences.
A one-way ANOVA comparing d’ for the control and transfer
groups in Experiments 3 (—0.15 and 0.42, respectively) and 4
(—0.09 and 0.42, respectively) showed that participants’ discrim-
inability was significantly improved in the transfer conditions
compared with the control conditions—Experiment 3: F(1,
22) = 10.2,p < .003, 1-tailed, MSE = 0.19, and Experiment 4:
F (1,21) = 4.65,p < .025, 1-tailed, MSE = 0.32; 1 participant
in the transfer group was eliminated because of a missing d'.
Of course, these analyses do not rule out the possibility that
identification of low-frequency starting elements places an
important constraint on any mapping that may be induced
across the stimulus set as a whole; low-frequency starting
elements should not, for instance, be mapped onto the starting
elements identified on the basis of the learning phase. Whether
asymmetries in the frequency of occurrence of particular
elements play a role in allowing transfer to take place is an
open issue, and future research will investigate this issue
further. For now, it is important to note that the transfer
effects observed here cannot be explained solely in terms of a
strategy to reject as ungrammatical sequences beginning with
low-frequency elements.

Brooks and Vokey (1991) suggested that in the Reber (1989)
and Mathews et al. (1989) studies, transfer between letter
strings from different vocabularies could have taken place
because of some “abstract analogy”” between the letter strings
in the test phase and some representation of the individual
exemplars in the learning phase. They defined this analogy as
“an abstract correspondence of within-item relations among
letters” (p. 317). For example, the test sequence VXVR can be
seen as similar to a learning sequence such as DFDA and
classified as grammatical without the participants having
abstracted a grammar over the learning set. This abstract
analogy procedure could be used for each test item separately,
without necessarily abstracting over the course of the test
phase a mapping between the letter sets (cf. Whittlesea &
Dorken, 1993).

To establish whether our data included above-chance perfor-
mance on sequences without repeats, we computed further
post hoc analyses of just the no-repeats data. In Experiment 3,
34 of the sequences (19 grammatical and 15 ungrammatical)
contained no repeated elements (whether adjacent or nonadja-
cent). We computed d' values for each participant, and these
were entered into a one-way ANOVA (control vs. transfer)
that confirmed that discriminability between grammatical and
ungrammatical sequences was significantly greater in the
transfer group, 0.27, relative to the control group, -0.17, F(Q1,
21) = 4.06, p < .03, 1-tailed, MSE = 0.28. Thus, transfer
occurred in Experiment 3, even for the subset of sequences
containing no repeats. In Experiment 4, there were 38 se-
quences that contained no repeats (the difference being due to
the different ungrammatical stimuli, which were more closely
matched in that study). Half of these were grammatical, and
half ungrammatical. The equivalent 4’ analysis (eliminating 2
control participants with indeterminate d’s) again confirmed
that discriminability between grammatical and ungrammatical
sequences was significantly greater in the transfer group, 0.78,
relative to the control group, —0.05, F(1, 20) = 13.7, p < .001,

1-tailed, MSE = 0.27.2 Of course, these analyses do not rule
out the possibility that the mapping is nonetheless induced by
exposure to those sequences that do contain repeated items
and are then applied to those that do not, but this would still
entail that classification is not made simply on an item-by-item
basis with no appeal to any underlying knowledge. A test of the
hypothesis that repetition structure is necessary to initially
induce a mapping would be to ensure that no items, whether in
the learning or test phases of the experiment, contained any
repeated items. However, this is beyond the scope of the
present article, in which the purpose is to demonstrate that
transfer can take place, however caused.

Overall, our effects of transfer were relatively small, al-
though we could not expect transfer to be perfect. First, even
with no change in domain, learning does not generalize
perfectly across the learning and test sets (and nor can it, given
that only a subset of the exemplars generated by the grammar
are ever presented during the learning phase), and thus an
upper limit is set on performance when the learning and test
sets are in different domains. Second, transfer cannot be
perfect because of the noise introduced by the ungrammatical
exemplars present in the test set. Given that even without a
change in domain, the system is not perfectly sensitive to which
sequences are grammatical and which are not, it follows that a
mapping will be induced on the basis of both grammatical and
ungrammatical items, even though only the grammatical items
“define” the appropriate mapping(s). Finally, on the assump-
tion that the computation of the relevant mappings takes time
to develop during exposure to successive exemplars, it would
take some time before correct classification of novel stimuli in
a novel domain could take place (see the Results section of
Experiment 1 for further discussion and the computational
simulation described below for a computational instantiation
of this assumption).

Our results pose a challenge for the various accounts of
artificial grammar learning (e.g., Brooks, 1978; Cleeremans &
McClelland, 1991; Dienes, 1992; Druhan & Mathews, 1989;
Roussel & Mathews, 1994; Perruchet & Pacteau, 1990; Servan-
Schreiber & Anderson, 1990; Vokey & Brooks, 1992; see Berry
& Dienes, 1993, for a review). Brooks pointed out that
participants could learn an artificial grammar by storing
representations of each training string and then by classifying
test strings according to their similarity to the stored training
strings. Brooks and Vokey (1991) showed further how such
stored strings could allow transfer between different domains
by the process of abstract analogy we described previously. The
classifier system described by Druhan and Mathews and by

hits X correct rejections
\/§ X In -
misses X false alarms

1 d =
T

2 Only 8 of the 50 test sequences from Experiment 1 contained no
repeats, and there were too many missing d’ values to compute an
analysis. However, because there were equal numbers of grammatical
and ungrammatical sequences, we computed a two-way ANOVA to
test the transfer effect across the two test types (letters and tones) for
just the eight items without repeated elements. The main effect of
transfer (i.e., control vs. transfer) was significant, F(1,22) = 4.38,p <
05, MSE = 0.03, and there was no main effect of, or interaction with,
test type (both Fs < 1).
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Roussel and Mathews produced transfer in a very similar way.
In their system, the strength of features of exemplars was
tuned according to its ability to accurately predict grammatical-
ity. Crucially, the features could be more than specific letter
sequences, they could also be an abstract pattern of adjacent
repeats (e.g., MTTTV, could be encoded as __rr_, where r’
stands for a repeat of the immediately preceding letter). That
is, the classifier system allowed transfer only in so far as the
different domains had similar patterns of adjacent repeats
{sometimes referred to as runs) in each string. In this respect it
is similar to the Brooks and Vokey proposal, except that for
Brooks and Vokey, nonadjacent repeats would also be an
example of the kinds of within-item relations among letters
that could give rise to transfer (and if there were no repeats
anywhere, all the letters would of course be different, and
there could be no within-item relations across sequences
drawn from the two domains that could correspond, uniess
they did so by virtue of some form of abstract knowledge
equivalent to an underlying grammar). Our data indicate that
this cannot be the only mechanism: In the new domain,
participants could correctly classify strings in which there were
no repeats, cither adjacent or separated. Participants must
have induced at least a partial mapping between the domains
(and see our earlier discussion of this point).

Perruchet and Pacteau (1990) argued that participants may
use stored fragments of exemplars, especially bigrams, as a
basis for grammaticality judgments. However, Gomez and
Schvaneveldt (1994) and Manza and Reber (1994) showed that
knowledge of bigrams could not underlie transfer between
domains because participants trained only on bigrams could
not classify strings in a new domain at above-chance levels. Of
course, participants may build up representations of commonly
occurring higher order fragments (Servan-Schreiber & Ander-
son, 1990), but such knowledge remains domain specific, and
the problem is how to induce a mapping between fragments in
one domain and stimuli in another. Similarly, the connectionist
models used by Dienes (1992) and the simple recurrent
network (SRN) used by Cleeremans and McClelland (1991)
create representations tied to the particular domain in which
the network was trained, and an additional mechanism is
needed to effect a mapping.

We (Dienes, Altmann, & Gao, 1994, 1995) have recently
shown how a variation of an SRN, when given exactly the same
training strings used in the experiments described above, can
classify test strings at levels of accuracy comparable with
human participants. The architecture we used is shown in
Figure 4.

The input layer is divided into two parts: D1 for coding the
information in the first domain, and D2 for coding the
information in the second domain. The first layer of hidden
units then recodes both domains, and this recoding is used as
an input to a standard SRN, with a separate D1 and D2 output
layer. All weights are initialized as small random values. The
first element of a sequence in, for instance, the symbol domain,
would be coded by the D1 input units. This is recoded by the
hidden layers to predict the second symbol of the sequence.
Weights are adjusted by backpropagation. Then the second
symbol is applied to the D1 input units and so on. In a
subsequent test phase, the network more successfully predicts
successive symbols of grammatical rather than nongrammati-

[Dl output] [D2 out@;l

MAPPING
Weights
Hidden Layer #2
CORE Weights

Figure 4. The architecture from Dienes, Altmann, and Gao, 1994.
D1 = first part of the layer used for coding the information in the first
domain; D2 = second part of the layer used for coding the information
in the second domain.

cal sequences when they are applied to D1, and this fact can be
used to produce equivalent same-domain (i.e., no-transfer)
classification performance as people for equivalent training
(i.e., four epochs). When testing the network in a new domain
(e.g., syllable sequences), the recurrent weights and the
weights between the hidden layers (the core weights in Figure
4) are frozen, or their learning rates reduced (as might happen
following the application of an optimization rule that reduces
the learning rate as a function of the sign and magnitude of the
backpropagated error), and only the D2 input and output
mapping weights (see Figure 4) are changed. The D2 mapping
weights start at arbitrary random values. The first syllable is
applied to the D2 input units, and the network attempts to
predict the second syllable. Backpropagation changes the
mapping weights, and the network then attempts to predict the
third syllable given the second and so on. By the time the
network has reached the end of the sequence, the mapping
weights have changed, and the network can iterate around the
sequence a number of times before moving on to the next test
sequence. As in the no-transfer case, the network will classify a
string as grammatical if on the last iteration around the
sequence it can predict successive syllables in the sequence
well.

Because the weights between the hidden layers implicitly
encode the structure of the new domain (given that this same
structure has been encoded on the basis of exposure to
sequences from the original domain), the network just needs to
learn the mapping to and from the abstract encodings formed
by the SRN. Despite the noise introduced by adjusting the
mapping weights when presented with nongrammatical strings,
the network does indeed learn the mappings. There is an
advantage of training the network on the same grammar as
opposed to a different grammar to that of the test stimuli.
When the network is trained to produce equivalent same-
domain performance as people, it can produce equivalent
cross-domain transfer. If the same-domain performance is
taken to define the maximum amount of cross-domain transfer
that could in principle be shown (cf. discussion of the results of
Experiments 1 and 4), then the model, like people, can
perform at about 70% of the maximum possible. Analysis of
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the weights to the first hidden layer shows how the correct
mapping between the domains is gradually and partially
induced over the course of the test sequences (and this is
discussed further in Dienes et al., 1995).

Our earlier assumptions about the limitations on learning
are supported by the computational simulations just described.
The model allowed us to separate out the contribution to
performance that was due to how much was learned on the
basis of the training exemplars and the contribution that was
due to how good a mapping is derived during the test phase.
We do not believe that the SRN is necessarily the best model
for the data we have, but it does provide useful insights into
what information can be extracted and how such extraction
may be influenced by properties of the stimulus set (see also
Cleeremans, Servan-Schreiber, & McClelland, 1989; Dienes,
1992).

Despite the support provided by the computational simula-
tions, there is no guarantee that the way in which the network
solves the mapping problem is the same as the way in which
people do. Whittlesea and Dorken (1993) argued that the
acquired knowledge that underlies the ability to transfer across
stimuli sets is not abstract knowledge that is induced across the
item set (similar in respects to Brooks and Vokey, 1991). They
described an experiment (Experiment 4) that “had all the
characteristics of a standard test of the abstractness of implicit
grammar learning, except that it had no grammar” (Whittlesea
& Dorken, 1993, p. 238). That is, there was “no description of
the [training] set in terms of typical members or a set of rules
smaller than the set of [individual] instances” (Whittlesea &
Dorken, 1993, p. 238). They found that, nonetheless, partici-
pants could discriminate between test sequences that had been
mapped onto a new letter set and novel sequences that
apparently obeyed the same “grammarless” property as the
test set. They argued that the “grammarlessness” of the stimuli
prevented the acquisition of any knowledge that could have
been induced across the training set and that participants’
performance must have been due to knowledge about (the
deep-structural properties of) individual items. However, in-
spection of Whittlesea and Dorken’s materials reveals that, in
principle, a single rule could be induced across the training set
that would allow discrimination between their “legal” and
“illegal” test items—their stimuli were of the form “1234-
2413” or “1231-2443,” where these patterns describe the
repetition pattern of actual stimuli such as PTZC-TCPZ and
PGTP-GVVT. A mean accuracy of 0.65 could be achieved in
the test phase by classifying as ungrammatical any sequence in
which a binary transition in the first half of the stimulus re-
curred in the second half of the stimulus (e.g., VICK-TCVK).
Only 3 of the 16 training items contained such recurrences,
whereas 8 of the 16 “new” test items did. Although this rule
would not perfectly describe the training set, its application
would in fact lead to greater accuracy than that reported for
the participants in the experiment (0.57). We believe, there-
fore, that participants could in principle have induced abstract
knowledge across the relevant stimuli sets in that experiment
(although whether they would have abstracted the rule we
have identified or some different rule(s) is unclear), and,
consequently, Whittlesea and Dorken’s results do not contra-
dict our own.

The four studies described above demonstrate that a gram-
mar acquired in one domain can be used to categorize
structures in another domain, albeit imperfectly. That is,
regularities extracted from within one domain can be used to
impose order on the regularities that might occur in another
domain. Although the experiments we have so far described
have confounded domain with modality (see our earlier
definition of what constitutes a change in domain), we believe
that changing modality and domain constitutes the strongest
possible evidence for transfer effects. One immediate interpre-
tation of our data (we offer another interpretation below) is
that however the regularities are internally represented, they
are represented in a form that is domain or modality indepen-
dent. To the extent that we might define such internal
representations as constituting a grammar, then it follows
(according to this interpretation) that the grammar itself is
available to processes operating in domains as diverse as the
auditory and visual domains. Although such a hypothesis
possibly constrains claims about what might or might not
constitute Fodorian modules (cf. Fodor, 1983) or where, in a
Fodorian architecture, learning of the kind described here
takes place, more important is the demonstration that the
human processing system does permit, one way or another, the
cross-domain transfer of learned grammatical structure.
Whether this transfer is brought about by the construction of a
domain-independent grammar, as opposed to a direct map-
ping between tokens in one domain and some internal repre-
sentation of tokens in another, is uncertain.

One issue that remains outstanding is whether the learning
that took place in Experiments 1 to 4 was implicit and whether
the ensuing transfer that was also observed in those experi-
ments was itself implicit. We can present no data that deter-
mine, one way or the other, the implicitness of the knowledge
that was abstracted on the basis of the test set of exemplars.
Nonetheless, our results warrant further investigation in this
regard, and we are currently exploring the extent to which the
transfer effects we have observed are indeed implicit.

A related issue concerns the extent to which implicit
memory may be implicated in transfer effects. The finding that
knowledge of an artificial grammar can transfer across modali-
ties apparently contrasts with the typical finding in the implicit
memory literature (see Schacter, 1987, for review). For ex-
ample, if participants study pictures rather than words, frag-
ment completion of the corresponding words is markedly
reduced (Weldon & Roediger, 1987). Furthermore, priming
(i.e., facilitation of fragment completion on the basis of the
prior study period) is impaired even if words are used at study
and test, but there is a shift in modality (Bassili, Smith, &
MacLeod, 1989). The cost of changing modalities in Experi-
ments 1 (38%) and 4 (24%) is similar to the decrement found
in the implicit memory literature (as overviewed by Dienes &
Fahey, 1994), although Experiments 1 and 2 involved not just a
change in modality but also a random mapping between the
modalities. Further research needs to explore transfer in
artificial grammar learning with a transparent mapping to
establish whether the decrement found there is of the same
magnitude as that found in the implicit memory literature (and
so establish whether the decrement we observe here is primar-
ily due to the change in modality, the random mapping, or
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both). One relevant difference between artificial grammar
learning and implicit memory tasks may be that the knowledge
in artificial grammar learning is entirely about the establish-
ment of new associations; in implicit memory, the emphasis is
on the reconstruction of stimuli that are previously well known
(this is true also of the phenomena of implicit memory for new
associations; Schacter & Graf, 1989). In summary, although we
did not set out to consider issues in implicit memory, our
transfer data suggest a possible dissociation between transfer
effects found in the study of implicit memory and transfer
effects found in the study of (implicit) learning (see Berry and
Dienes, 1991, for further discussion of the relation between
artificial grammar learning and implicit memory).

Notwithstanding the largely unresolved issue concerning the
implicitness of the knowledge that was acquired, and applied,
in our studies, it is pertinent to consider further the processes
that may underlie implicit learning and the relationship that
these processes may have to the transfer effects we (and
others) have observed. The result of implicit grammar learning
must be some internal representation onto which the external
input can be projected or mapped. In effect, this mapping
process is a form of parsing. This view of the process is agnostic
as to whether the internal representation is some analogue to a
(phrase-structure or finite-state) grammar or whether the
representation is in terms of distributional characteristics of
word types (cf. syntactic form classes) or even word tokens.
What matters is that some mapping is performed between the
external input and this internal representation. For example,
the external input needs to be mapped onto the set of
fragments or chunks extracted from the training stimuli (Servan-
Schreiber & Anderson, 1990), or onto the appropriate hidden
unit representations used for recoding the training stimuli
(Cleeremans & McClelland, 1991), or onto whatever underly-
ing abstract grammar has been induced through exposure to
the training stimuli. In the case of a classification task that uses
the same vocabulary as that on which basis the grammar was
acquired, the processor attempts to parse the new input, and if
successful the input is judged grammatical, and if not, the
input is judged ungrammatical. The challenge is to explain the
processing that accompanies cases in which the classification
task uses a different vocabulary from that on which basis the
grammar was acquired. These cases include not simply our
own but also other demonstrations of transfer between differ-
ent letter sets (e.g., Brooks & Vokey, 1991; Mathews et al.,
1989; Reber, 1969; Whittlesea & Dorken, 1993). In these
cases, the processor must establish a mapping between the new
vocabulary and the old vocabulary (or underlying form classes)
as it attempts to parse the new input sequences. Further
research will investigate the stability of this mapping, given
that it need not be absolutely stable but could instead be
probabilistic.

While it might be tempting, at least at first, to propose the
existence of a domain-independent representation of grammati-
cal knowledge, an alternative proposal would consist of a
domain-dependent representation with the transfer effects
that we observed being due to domain-independent processes
that can operate across domains or modalities (cf. the analogi-
cal process advocated by Brooks and Vokey, 1991, discussed
above). In either case, some form of mapping is required, and

in either case, knowledge about regularities in one domain is
both available and, we suggest, automatically applied to the
task of categorizing novel stimuli in another domain.

Although the artificial grammar learning task described
here has involved the presentation of only relatively simple
stimuli, sensitivity to quite complex linguistic structures can
implicitly be acquired, even when these structures are embed-
ded in natural speech stimuli. For instance, Zwitserlood (1990)
reported a study in which Dutch adults who had no knowledge
of Mandarin Chinese were exposed to Mandarin speech for
just 12 min. The speech was presented by a cartoon film
narrated by a native Mandarin speaker. Participants were not
informed of their task or what language they were listening to.
Subsequently, participants were presented with a sequence of
spoken stimuli consisting of real Mandarin words interspersed
with pseudowords that violated a variety of phonotactic con-
straints in Mandarin (e.g., segments appeared in the wrong
order within the word-syllable). Zwitseriood found that even
with such brief exposure, participants could discriminate
between the real words and the pseudowords at levels that
were well above chance. This study demonstrated that phono-
tactic constraints (which constitute one of a range of linguistic
structures) can be acquired very quickly on the basis of very
brief exposure. Thus, exposure to complex stimuli (i.e., natu-
rally occurring speech) can induce implicit learning and,
subsequently, sensitivity to constraints on the sequentiality of
natural language structures. It is in the context of modeling the
acquisition of constraints on sequentiality that there has been
growing interest in artificial neural networks that, although
modeling processes identical to those implicated in implicit
learning as studied in the laboratory (cf. models described by
Berry & Dienes, 1993; Cleeremans et al., 1989; Dienes, 1992;
Dienes et al., 1994, 1995), have been shown to acquire
operating characteristics considered desirable in any model of
the acquisition of language (cf. Elman, 1990a, 1990b, 1993, and
the emergence of syntactic categories and sensitivity to gram-
matical structure; Cleeremans et al., 1989, and Sopena, 1991,
and the emergence of sensitivity to long-distance dependen-
cies and other linguistic phenomena; and Norris, 1990, and the
ability to normalize in the temporal domain).

Despite some potential (but highly controversial) linkage
between implicit learning and natural language (see Morgan et
al,, 1987; Winter & Reber, in press), it is unclear whether the
transfer effects we have described could themselves be at all
relevant to natural language.’ Before any such speculation is
possible, it must first be determined whether the ability to
transfer across domains is only limited by the capacity to

3There do exist cases in natural language in which the same
underlying grammar generates sequences in two different domains. In
Arabic, for instance, the sound-to-spelling rules are totally regular,
with a one-to-one correspondence between spelling and pronuncia-
tion. Spanish is an example of another regular language, and even the
English alphabet is largely phonetic. It would be feasible to determine
whether a degree of transfer is possible across these domains by using
a technique similar to that used by Zwitserlood (1990), with nonspeak-
ers of Arabic listening to Arabic words, but with orthographic stimuli
presented at test. However, even if transfer did occur, this would not
mean that it is implicated in the normal acquisition of orthography or
in language acquisition more generally.
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abstract structure implicitly in either domain or whether there
might be other limitations on transfer.
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Appendix A
Training Items Used in Experiments 3 and 4

In Experiment 3, these items were spoken with intonation consistent with phrase boundaries as indicated with |. For Experiment 4, each of these
sequences was translated into a sequence of symbols according to the mapping given in Table 3 (the |signs were not inciuded). The order shown
below is for the first block of the 30 training items. The blocks were all presented in different random orders.

hes jix | pel jix dup vot | sog | pel hes jix | pel kav | pel jix

hes | pel kav | pel hes | pel dup | pel jix vot | pel kav | pel jix

hes | pel dup vot jix | pel jix kav | pel hes jix | pel jix dup | pel jix

hes jix | rud | pel hes jix | sog vot jix | sog | pel jix

hes jix | pel jix dup | pel vot | pel jix dup | pel vot | rud | pel jix

vot jix | pel jix kav vot jix | pel dup | pel jix | vot | pel kav | pel

hes | pel jix dup vot | pel kav vot jix | sog | pel

vot | pel jix kav hes | rud hes | pel jix kav | pel jix

hes | pel jix kav | pel vot jix | rud hes jix | rud | pel jix

hes | sog hes | pel dup | pel vot | pel jix dup | pel jix
Appendix B

Test Items Used in Experiment 3

Ungrammatical sequences are marked with an asterisk. Items marked with a dagger showed significant transfer according to the criterion

discussed in the main text.

vot jix pel dup

hes jix hes pel sog*

hes jix sog pel jix

pel jix dup hes pel jix*
vot kav jix*

vot jix pel kav pel jix
kav pel jix kavi*

vot pel rud pel jix pel*
hes jix pel jix kav

kav jix rud*

vot jix vot jix dup pelt*
vot jix pel kav pel

hes pel kavt

hes jix hes kav pel jix kavt*
vot jix pel jix dup pel
hes kav pel*

vot sog pel jix

jix vot jix pel kav*

hes pel jix dup*

hes pel kav pel kavi*
hes jix pel jix kav pel jix
vot hes vot dup*

hes pel jix kav

hes jix rud

vot pel dup pel jixt

hes jix vot jix kavt*

jix rud dup pel*

hes pel jix pel jixt*
hes pel jix dup pel¥
vot sog

vot jix dup kav dupt*
hes pel jix dup pel jix
hes jix pel dup

vot jix hes pel*

hes jix pel kav pel
vot jix rud pelt

vot pel dup pel

vot dup*

vot hes vot hest*

vot rud sog

dup jix sog*

vot jix pel kav

hes jix vot kav*

vot jix sogt

hes jix pel jix kav pel
vot pel dupt

hes pel kav pel jix
hes jix hes jix kav pelt*
hes sog pel jix

vot jix hes jix dup*
dup pel jix dupt*

hes kav*

hes jix pel dup pel
hes sog pelt

(Appendix C follows on next page)

vot jix vot dup pel jix dup*
vot jix rud pel jix

hes vot hes pel*

vot jix pel jix dup

vot pel jix pel jix*

vot dup pel*

vot pel jix kav pel jix
jix vot kav pel®

hes dup jix pel*

vot pel dup pel dupt*
hes jix pel kav

hes pel sog pel jix pelt*
hes jix sog pel

vot pel jix kav pel

hes vot hes vott*

hes jix kav dup kav*
hes dup jix*

hes rud

vot jix pel dup pel

hes rud pel jix

jix vot jix pel dup*

vot jix pel jix dup pel jix
pel jix kav vot pel jixt*
vot jix vot pel rud*

hes jix pel dup pel jix
vot pel jix dup



912

G. ALTMANN, Z. DIENES, AND A. GOODE

Appendix C

Test Items Used in Experiment 4

Ungrammatical sequences are marked with an asterisk. These same sequences were used, in the reverse order, for testing on symbols, in which
case they were translated into symbol sequences according to the mapping shown in Figure 3. Items marked with a dagger showed significant

transfer according to the criterion discussed in the main text.

jix hes pel dup peli* vot pel sog jix* hes jix rudt

pel vot jix dup pelt* hes sog pelt hes jix sog pel jix

vot jix sogt vot jix rud pel jix hes dup jix pel jix pelt*
hes kav jix pel* hes dup pel jix pel* jix hes dup pel*

hes sog pel jix vot pel rud jix* hes jix pel dup

vot pel dup pel jix hes jix pel dup pel jix vot jix dup jix pel jix pel*
hes jix dup pel jix pel* hes kav pel jix pel* vot sog jix*

vot pel kav jix pel* hes jix pel sog jix* vot jix pel kav pel jixt
hes jix pel jix kav hes jix pel kav pel pel vot dup jixt*

vot dup* jix hes kav pelf* vot jix dup pel*

vot jix pel dup hes pel kav pel jixt hes jix pel dup pel
vot kav pel jix pel* jix vot pel rud jixt* hes kav*

hes jix kav pel jix pel* vot jix pel jix dup pel pel vot sog pel*

hes rud pel hes sog™ hes pel jix dup pel
vot jix pel kav pel pel vot jix kav pel jix{* vot dup pel*

hes pel kav jix pel* vot jix pel jix dup pel jix fies jix sog pelt

jix hes rud* hes pel sog jix* vot rud pel

vot sogt vot jix pel jix dup hes jix rud jix pel*
hes pel jix sog* vot pel jix kav pel jix hes pel jix dup pel jix
jix vot dup jix pelt* vot dup pel jix pelt* vot jix pel dup pel

vot pel jix kav pel vot pel dup pelt hes pel rud jix*

pel hes kavi* hes jix pel jix kav pel jix vot jix kav pel jix pel*
hes rud pel jix vot so% peé il.X hets gel px kavl N
vot pel jix dupt vot pel ru vot dup jix pel jix pe
pel gzsljix kav jix pel jixt* hes jix pel jix kav pel vot jix pel kav

hes jix pel kav vot jix rud pel vot pel dupt

hes pel kav jix vot kav pelt*
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