
A Complete Temporal and Spatial Logic for
Distributed Systems�

Dirk Pattinson1 and Bernhard Reus2

1 LMU München, Institut für Informatik, 80538 München
2 University of Sussex, Informatics, Brighton BN1 9QH

Abstract. In this paper, we introduce a spatial and temporal logic for reason-
ing about distributed computation. The logic is a combination of an extension of
hybrid logic, that allows us to reason about the spatial structure of a computa-
tion, and linear temporal logic, which accounts for the temporal aspects. On the
pragmatic side, we show the wide applicability of this logic by means of many
examples. Our main technical contribution is completeness of the logic both with
respect to spatial/temporal structures and a class of spatial transition systems.

1 Introduction

With the advent of the Internet, mobility and spatial distribution of information systems
have established themselves as a new computational paradigm.

Distributed and mobile systems, however, require new specification and verification
methodologies. Program logics have to account for space and time in a single, unified
framework, stating where and when certain computations happen. A further challenge
consists of the fact that these systems run on heterogeneous platforms using various
different programming languages.

The formal modelling of distributed and mobile systems has traditionally been the
domain of process calculi. Several approaches can be found in the literature, for ex-
ample the π-calculus [22], the ambient calculus [9], and Klaim [12]. In all of these
approaches, distributed processes are represented as terms in the language of the un-
derlying calculus. For each of these calculi, corresponding formal logics have been
proposed to reason about the behaviour of distributed computation. For example, see
[23,7,4,5] for the π-calculus, [9] for the Ambient-calculus, and [24] for Klaim, to name
but a few. From a practical perspective, it seems unrealistic to assume that all entities
participating in a distributed (or mobile) system can be specified in a single syntac-
tic framework: by its very nature, distributed computation integrates various different
platforms, operating systems, and programming languages.

A single semantic framework is, however, desirable as it supports the analysis and
comparison of different logics and calculi. This paper bridges the gap between theory
and practice and introduces syntax-independent models of distributed and mobile sys-
tems together with an associated logic, that allows to reason about the behaviour of

� This work was partially sponsored by the DAAD and the British Council in the ARC project
1205 “Temporal and Spatial Logic for Mobile Systems”.

B. Gramlich (Ed.): FroCoS 2005, LNAI 3717, pp. 122–137, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Complete Temporal and Spatial Logic for Distributed Systems 123

such systems. On a semantical level, we consider spatial transition systems, which en-
capsulate the behaviour of individual components without the need of expressing the
behaviour of the component in a particular syntactic formalism. The properties of the
systems under consideration are expressed using linear spatial temporal logic (LSTL),
a new logic that we introduce and study in this paper. It arises as a combination of two
logics that reflect the two aspects of distributed computation. The first is an extension of
both hybrid logic [1,3] and combinatory dynamic logic [25]. This logic, which we call
HL∗, is used to reason about the spatial (e.g. network) structure present at one partic-
ular point in time. The second is linear temporal logic [20,19] to capture the temporal
aspect. This linear spatial temporal logic is independent of any concrete programming
or process language. By means of examples, we show that our models and our logic
capture many situations that naturally arise in distributed computation.

Our main technical contribution is the completeness of our logic, both with respect
to spatio-temporal structures (which are introduced later in the paper) and a class of
spatial transition systems. In more detail, we first introduce the spatial componentHL∗

of our logic, which can be viewed either as extension of hybrid logic [3,2] with iteration
(Section 2) or of combinatory dynamic logic [25] with satisfaction operators. We show
that the resulting logic is weakly complete with respect to named models, that is, Kripke
models where every location can be referenced by a (not necessarily unique) name. We
then use local formulas, a subset of hybrid formulas that only describe properties of
one specific node of the distributed structure, in place of propositional atoms in a lin-
ear temporal logic. As names provide the only handle to distinguish different nodes of
the system, we have to insist that names do not change over time, that is, we consider
names as physical entities rather than logical ones. Consequently, we have to extend
the technique of [14] to account for this interference between the temporal and spatial
dimension of the logic. This is achieved by considering sequences with consistent nam-
ing as models for the combined logic, which is reflected by an additional axiom. The
second main result is the completeness of linear spatial temporal logic (Section 3) w.r.t.
spatio-temporal structures. This completeness result is then extended to spatial transi-
tion systems (Section 4), which can be thought of as machine models for distributed
computation. In a nutshell, we obtain a new and complete logical formalism, that is
capable of reasoning about distributed computation and applicable to many situations
that naturally arise in distributed computation.

Related Work. We have already mentioned the work on spatial logics interpreted over
process calculi, notably the π-calculus and the ambient calculus [7,4,5], where the com-
pleteness of the logic is in general neglected; however [18] proves a Hennessy-Milner
property. In [23,24], modal logics with primitive modal operators for process commu-
nication are proposed, but these are also tailored towards their specific process calculi.
Finally, spatial logics that are structurally similar to ours have been proposed in the
context of semi-structured data, e.g. Ghelli et al.’s work on query languages for XML
documents [7]. Completeness is not addressed there. An intuitionistic hybrid logic is
investigated in [10] including a completeness result, but w.r.t. Kripke structures that de-
fine intuitionistic models and places having no structure at all. A temporal and spatial
logic is also used in [21,26] on the basis of a less flexible model of tree sequences.
There is no completeness result so far.

124 D. Pattinson and B. Reus

2 Spatial Reasoning with Hybrid Logic

This section introduces the purely spatial part of our logic in isolation. To capture the
whereabouts of a computation, two ingredients are essential: names for locations where
computation takes place and the topological structure that connects these locations.
We use a combination of hybrid logic [1] and combinatory dynamic logic [25] that
reflects precisely these criteria. Our logic is an extension of modal logic, with a name
attached to each world; this feature is present both in hybrid logic and in combinatory
dynamic logic. This basic setup is extended with satisfaction operators (borrowed from
hybrid logic), that allow us to assert that a formula holds at a specific point of the
model. Combinatory dynamic logic contributes a modality for transitive closure, which
provides the linguistic means to reason about reachable nodes in a model.

While modalities for transitive closure (i.e. the ∗ of dynamic logic) is needed to
have enough expressive power in the language, satisfaction operators are crucial when
it comes to combining spatial and temporal aspects. A satisfaction operator @i shifts the
evaluation context the node of the model that has name i. As a consequence, satisfaction
operators give rise to formulas @iφ that that are either true or false at every node of the
model.

A model of our logic is a Kripke Model, where additionally every name is assigned
to a unique node. In view of our intended application, we view the worlds of the model
as the locations where computation happens and call them places. Following the hybrid
tradition, place names are referred to as nominals. If two places p1 and p2 of the model
are related, then we interpret this as “from p1 one can see p2”, or “p1 has a network
connection to p2”, depending on the particular context. In particular, as we require that
every node has a name, and names are drawn from a countably infinite set of nominals,
all of our models will have an at most countable carrier.

We now introduce the syntax and semantics of our extension HL∗ of hybrid logic.

Definition 1 (Syntax of HL∗). Suppose that A is a set of atomic propositions and Nom
is a set of nominals. The language of the logic HL∗(A,Nom) is defined to be the least
set of formulas according to the grammar

φ, ψ ∈ HL∗ ::= a | i | �φ | �
∗φ | φ ∧ ψ | ¬φ | @iφ

where a ∈ A ranges over the atomic propositions and and i ∈ Nom is a nominal. We
use standard abbreviations for the propositional connectives ∨, → and put � = ¬ �¬,
�∗ = ¬ �∗ ¬. We call a formula φ ∈ HL∗ local, if φ = @iψ for some i ∈ Nom and
ψ ∈ HL∗; the set of local formulas is denoted by L(HL∗).

As it is common in Hybrid Logics, proposition @iφ represents a local property, i.e.
the fact that φ holds at at the unique place with name i. Moreover, �φ means that φ
holds at some place directly reachable from here, whereas �

∗φ means that φ holds
somewhere reachable from here.

Our notion of model is standard; for notational convenience, we distinguish between
the valuation of propositional variables and that of nominals. The semantics of HL∗ is
as follows:

A Complete Temporal and Spatial Logic for Distributed Systems 125

Definition 2 (Semantics of HL∗). A named hybrid model is a tuple (P,→, V,N)
where P is a set of places, →⊆ P × P is an adjacency relation, V : A → P(P)
and N : Nom → P are a valuation of propositional variables and nominals, respec-
tively, with N a surjection.

Given a named model S = (P,→, V,N), satisfaction at a point p ∈ P is given
inductively by

(S, p) |= a iff p ∈ V (a)
(S, p) |= i iff p = N(i)
(S, p) |= �φ iff ∃p′. p→ p′ ∧ (S, p′) |= φ

(S, p) |= �
∗φ iff ∃n ∈ N. (S, p) |= �

nφ

(S, p) |= @iφ iff (S,N(i)) |= φ

where the semantics of propositional connectives is as usual. We write S |= φ iff
(S, p) |= φ for all p ∈ P and HL∗ |= φ if S |= φ for all named models S. If there
is danger of confusion, we make the logic explicit in the satisfaction relation and write
(S, p) |=HL∗ φ to say that S is a named hybrid model and φ ∈ HL∗ and similarly for
S |=HL∗ φ.

With the intuition that the places p ∈ P of the Kripke frame (P,→) represent network
nodes and the transition relation p → p′ represents the possibility of transferring data
from p to p′, we can formulate assertions on the network topology:

Example 1. 1. The fact that node j is reachable from everywhere is described by the
formula �

∗j.
2. The fact that network node i is transitively connected to node j is captured in the

formula @i(�
∗j). Note the use of the satisfaction operator @i to shift the evalua-

tion of the formula �
∗j to the node with name i.

3. If every node of a connected component of a Kripke model is connected to every
other node of this component, the model will satisfy the formula �

∗i→ �i.
4. Finally, we can force connections to be bidirectional by means of the formula

@i(�
∗j) → @j(�

∗i).
Note that only the formula in 2 is local.

Our key concern in this section is to analyse the relationship between syntax and seman-
tics of HL∗, and our main result is completeness of the axiom system that we introduce
now.

2.1 The Axioms of HL∗

Note that we cannot expect HL∗ to be strongly complete w.r.t. named models. For
example, consider the set of formulas {¬i | i ∈ Nom}. This set is consistent, as all its
finite subsets are, but not satisfiable in a named model with name set Nom. We therefore
have to content ourselves with weak completeness of HL∗, stating that validity of φ ∈
HL∗ in all models implies derivability of φ. The deducibility predicate �⊆ HL∗, is
given by the following axioms and rules.

126 D. Pattinson and B. Reus

(taut) all propositional tautologies (K�) � (φ→ ψ) → (�φ→ �ψ)

(K@) @i(φ→ ψ) → (@iφ→ @iψ) (self-dual) @iφ↔ ¬@i¬φ
(intro) i ∧ φ→ @iφ (ref) @ii

(sym) @ij ↔ @ji (nom) @ij ∧ @jφ→ @iφ

(agree) @j@iφ↔ @iφ (back) �@ip→ @ip

(iter) �∗ φ→ φ ∧ � �∗ φ (ind) (φ→ �φ) ∧ φ→ �∗φ

The proof rules of HL∗ are summarised as follows.

(mp)
φ→ ψ φ

ψ
(gen)

φ

�φ (gen@)
φ

@iφ
(subst)

φ

φ[θ/x]
(x ∈ Nom ∪ A)

(name)
j → φ

φ
(j /∈ nom(φ)) (paste)

(@i �j) ∧ (@jφ) → ψ

@i �φ→ ψ
(j /∈ nom(φ, ψ))

where nom(φ) (resp. nom(φ, ψ)) denotes the set of nominals occurring in the formula
φ (resp. in φ or ψ) and in the substitution rule it is silently understood to be type correct,
i.e. formulas will be substituted for atomic propositions and nominals for nominals only.

Definition 3. If Φ ⊆ HL∗ is a set of formulas of HL∗, then φ ∈ HL∗ is derivable from
Φ, if φ is contained in the least set of formulas that contains Φ and the above axioms
and is closed under the proof rules of HL∗. This is denoted by Φ �HL∗ φ. We write
HL∗ � φ, if φ is a theorem of HL∗, i.e. ∅ �HL∗ φ.

It is straightforward to check the following proposition.

Proposition 1. HL∗ is sound, that is, if HL∗ � φ, then HL∗ |= φ for all φ ∈ HL∗.

2.2 Completeness of HL∗

We now establish completeness of HL∗. The proof follows a standard argument using a
canonical model, existence lemma, and truth lemma. We just elaborate on those issues
that are specific to our logic. We begin with the construction of our model.

Definition 4 (see also [1]). Suppose Φ ⊆ HL∗ is maximally consistent. Φ is named, if
i ∈ Φ for some nominal i ∈ Nom, and Φ is pasted, if @i �φ ∈ Φ implies that for some
j ∈ Nom, @i �j ∧ @jφ ∈ Φ.

If Φ is a named and pasted maximally HL∗-consistent set, or a named and pasted
HL∗-MCS for short, then the model induced by Φ is given by MΦ = (P,→c, V,N),
where

– P = {∆i | i ∈ Nom} with ∆i = {φ | @iφ ∈ Φ};
– →c is the canonical relation defined by u→c u

′ iff { �φ | φ ∈ u′} ⊆ u;
– V (a) = {p ∈ P | a ∈ p} is the canonical valuation of propositional variables,
– N(i) = the unique p ∈ P with i ∈ P .

A Complete Temporal and Spatial Logic for Distributed Systems 127

The following lemma justifies the above definition.

Lemma 1. SupposeMΦ = (P,→c, V,N) is the model induced by a named and pasted
HL∗-MCS Φ. Then p is named for every p ∈ P , and moreover i ∈ p ∩ q implies p = q
for all p, q ∈ P and all i ∈ Nom.

Our desire for a named model dictates that we only use named MCS-s, and the condition
that the MCS-s be pasted ensures the validity of an existence lemma; see [1, Section
7.3] for more on this issue. The following is an adaptation of the classical Lindenbaum
lemma guaranteeing the existence of named and pasted MCS’s.

Lemma 2. Suppose φ ∈ HL∗ is consistent. Then there exists a named and pasted
HL∗-MCS containing φ and @i¬j for all i = j ∈ M , for some countable subset
M ⊆ Nom with M ∩ nom(φ) = ∅.

Consequently, a model induced by a MCS of the sort described in Lemma 2 is named
and countable. Note that we extend a single formula to a maximally consistent set. This
allows us to avoid having to enrich the language with new nominals (cf. [1, Section
7.3]). The proof for the existence lemma now works as for the basic hybrid case, and
we move straight to the truth lemma.

Lemma 3 (Truth Lemma). Suppose MΦ = (P,→c, V,N) is the model induced by
a named and pasted HL∗-MCS Φ. Then, for all φ ∈ HL∗ and all p ∈ P , we have
(MΦ, p) |= φ iff φ ∈ p.

Our completeness result follows from Lemma 3 as usual:

Theorem 1. HL∗ is weakly complete w.r.t. countable, named models.

There are two points to note here. First, unlike the classical case, we do not have strong
completeness w.r.t. named models, as the Lindenbaum Lemma 2 would fail. Second, the
preceding theorem asserts that HL∗ is complete for models with countable carrier. This
will be important for the completeness of the combined logic with respect to spatial
transition systems. We conclude the section with a trivial corollary to the completeness
theorem, which will be of fundamental importance later.

Corollary 1. Suppose φ ∈ L(HL∗) is local. Then φ is consistent iff M |= φ for some
countable, named model M .

This claim follows from the very nature of local formulas: a formula @iφ is valid in a
place iff it is valid in the place named i, hence local formulas are either globally true or
globally false.

3 Temporalising Hybrid Logics

After having studied HL∗ in isolation, we now add a temporal dimension to HL∗.
The logic HL∗ allows us to reason about where a distributed computation happens; the
temporal extension will furthermore furnish us with the expressive power to say when
this will be the case.

128 D. Pattinson and B. Reus

The idea is quite simple: We consider linear temporal logic, but with atomic propo-
sitions replaced by local HL∗-formulas. This is as in [15, Section 14], but with one
important exception: In loc.cit., the logic being temporalised is completely independent
from the added temporal layer. In our case, spatial information needs to be propagated
over time, leading to an entanglement of both dimensions. Semantically, this is reflected
by or notion of model, which enforces consistency of names, and accounted for by an
additional axiom in the proof calculus.

We call the resulting logic LSTL. This logic naturally incorporates a temporal and
a spatial aspect: the formulas of HL∗ specify spatial properties at a given point in time,
and temporal logic allows one to reason about the evolution of the spatial structure over
time.

3.1 Linear Temporal Logic (A reminder)

Before we introduce LSTL, let us briefly re-capitulate the syntax and semantics of
propositional linear temporal logic. For a clear distinction between the propositional
variables of the spatial and temporal logics, we denote the latter by T.

Definition 5. Suppose T = {a0, a1, . . . } is a set (of atomic propositions). Then the
language LT L(T) of linear temporal logic over T is the least set according to the
grammar

φ, ψ ∈ LT L(T) ::= ff | φ→ ψ | �φ | φ U ψ | a
where a ∈ T ranges over the set of propositional variables. As usual, the other connec-
tives, tt, ∨, ∧, ¬ can be defined from ff and →, and we abbreviate �φ = tt U φ and
�φ = ¬�¬φ.

We call a sequence of valuations V = (Vn)n∈N of T a temporal structure. Given
such a V = (Vn)n∈N, i.e. each Vn is of type T → {tt,ff}, the satisfaction relation is
inductively given by

(V, n) |= a iff Vn(a) = tt
(V, n) |= �φ iff (V, n+ 1) |= φ
(V, n) |= φ U ψ iff ∃j ≥ i.(V, j) |= ψ and ∀i ≤ k < j. (V, k) |= φ

where the semantics of propositional connectives is defined as usual. Finally, we put
V |= φ if (V, n) |= φ for all n ∈ N and LT L |= φ if V |= φ for all temporal
structures V . To distinguish satisfaction w.r.t. linear temporal logic, we sometimes write
(V, n) |=LT L φ, and similarly V |=LT L φ.

The formula �φ is usually read as “φ is true in the next point in time”, and φ U ψ reads
“φ is true until ψ becomes true”. Similarly, �φ means that “φ will eventually become
true”, and finally �φ expresses that φ will be true in all future states. It is well known
that the axioms

(taut) all propositional tautologies (ltl1) �φ ∧ �(φ→ ψ) → �ψ
(ltl2) φ U ψ ↔ ψ ∨ (φ ∧ �(φ U ψ)) (ltl3) �(¬φ) → ¬�φ

together with the inference rules

A Complete Temporal and Spatial Logic for Distributed Systems 129

(mp)
φ, φ→ ψ

ψ
(nex)

φ

�φ (ind)
φ′ → ¬ψ ∧ �φ′
φ′ → ¬(φ U ψ)

provide a complete axiomatisation of propositional linear temporal logic. We write
LT L � φ if φ can be derived using the above axioms and rules. It is easy to check
soundness of the above axioms and rules, and we have the following well-known com-
pleteness theorem [17,13,19]:

Theorem 2. A formula φ ∈ LTL is valid in all temporal structures iff φ is derivable,
i.e. LT L |= φ ⇐⇒ LT L � φ for all LT L-formulas φ.

3.2 The Logic LSTL

We now embark on the programme of temporalising HL∗, which essentially amounts
to replacing (temporal) propositions in LT L-formulas by local HL∗-formulas and the
addition of an axiom that represents that names do not change over time. The resulting
logic is called LSTL, and the formal definition is as follows:

Definition 6. The language of the logic LSTL is the language of linear temporal logic
over the set L(HL∗) = {φ ∈ HL∗ | φ local } of atoms, i.e. LT L(L(HL∗)). Note that
propositional combinations of local formulas are not local anymore, but this does not
matter as the propositional connectives are in LT L as well.

A spatio-temporal structure is a sequence (Sn)n∈N of named HL∗-models. The
structure (Sn)n∈N has consistent naming, if S0 |= @ij iff Sn |= @ij for all i, j ∈ Nom
and all n ∈ N.

Every spatio-temporal structure (Sn)n∈N gives rise to a sequence of valuations

S�n : L(HL∗) → {tt,ff}, φ �→
{

tt Sn |= φ

ff otherwise.

Validity of a LSTL formula φ in a spatio-temporal structure is can now be defined by
(Sn)n∈N |=LSTL φ iff (S�n)n∈N |=LT L φ, where the latter is the standard validity in
linear temporal logic (Definition 5).

Finally, LSTL |= φ iff S |=LSTL φ for all spatio-temporal structures S with
consistent naming.

The reason for introducing structures with consistent naming is that in our view “names
are physical”, which in particular means that they do not change over time (like an IP
address for example compared to a domain name that may change). Moreover, those
names will provide the only glue between the models in a spatio-temporal structure.
Consistent naming ensures that we can address the same physical location at different
times via the same (physical) name. We conclude the section on syntax and semantics
of LSTL with some examples.

Example 2 (Network routing). If we let places denote the nodes of a network and the
spatial structure reflect the network topology, we are able to formulate assertions on
the network and its routing of packets. We are only interested in a finite number of
such nodes K . The packet with destination r is encoded as atomic proposition of HL∗,

130 D. Pattinson and B. Reus

denoted r. We want to send it from s and thus assume that there is a spatial connection
between nodes s and r (Reach). It is also assumed that the network does not change
its spatial topology (Static) – and thus in particular does never lose any connections.
Packet r, wherever it may be, will always be broadcast to neighbour nodes (Broadcast).
Finally, we have to ensure that – as messages are only broadcasted to neighbours in K
– that r can reach its destination via a path that only visits nodes in K , which is implied
by (Connect). In LSTL this reads as follows:

Reach = @s �
∗r

Static =
∧
p,q∈K @p �q → �@p �q

Broadcast =
∧
p,q∈K(@pr ∧ @p �q) → ©@qr

Connect =
∧
i∈K @i �

∨
j∈K j

In such a situation one can derive that message r will eventually arrive, ie. @sr →
� @rr.

Example 3. Agents can be specified by describing the computation at various places in
terms of state transitions. If agentA runs at place i and agentB runs at place j, and their
state change is described by functions δA : SA → SA and δB : SB → SB , respectively,
then the system obtained by runningA and B concurrently can be specified by∧

s∈SA

@iϕ(s) → ©@iϕ(δA(s)) ∧
∧
s∈SB

@iϕ(s) → ©@jϕ(δB(s))

whereϕ(·) is a logical formula that characterises the respective state. If agentB “moves
into” agent A after performing a state change from smv to se then this can be specified
by

@jϕ(smv) ∧ ¬@i �j ∧ ¬@j �i→ ©@i �j ∧ @jϕ(se)

This movement is accounted for by the change of the spatial structure. This can be
extended to describe behaviours of ambient like agents [8].

Example 4 (Leader election protocol). The following example is an adaptation of the
IEEE 1394 Leader election protocol (see e.g. [26]). Let places again denote a finite
number of network nodes. The network topology is described by a fixed acyclic (and
finite) neighbourhood relation R. The network nodes are supposed to elect a leader.

Let the spatial structure represent the election results, i.e. how “local leaders” were
chosen between each pair of connected nodes. Hence, we have p→ q if p has chosen q
to be its leader (and p and q are neighbours).

The protocol can be specified as follows: Initially, there are no connections between
places (Init). Nextp,q describes the situation where two nodes, p and q have not de-
termined a leader between each other yet, and p is the only neighbour of q with that
property. In such a case, q can become a subordinate of p, which is specified on the sec-
ond line of Next. The first line specifies a “frame”-condition, namely that connections
between places are always maintained, and for places who are not neighbours, do not
even change. Goal states that for any two places in the neighbourhood relation one is
the leader of the other. This implies that there is a leader for all nodes. Finally, Live
axiomatises that if Goal is not (yet) true, there are places p and q that decide leadership
amongst them in the next step.

A Complete Temporal and Spatial Logic for Distributed Systems 131

The specification of the overall system then is: Init ∧ Next ∧ Live → Goal.

Init =
∧
p@p¬ �tt

Nextp,q = @p¬ �tt ∧ @q¬ �tt ∧
∧
r �=p,R(q,r) @r �tt

Next =
∧
p,q @q �p→ �@q �p ∧

∧
p,q,¬R(p,q) @q �p ⇐⇒ �@q �p ∧∧

R(p,q)(©@q �p) ∧ @q¬ �p→ Nextp,q
Goal =

∧
p�=q,R(p,q) @p �q ∨ @q �p

Live = Goal ∨
∨
p,q @q¬ �p ∧ �@q �p

We deem this formulation in LSTL more natural than the one given in [26].

Example 5 (XML documents). Let us specify an XML document with an active compo-
nent. The spatial structure mirrors the XML document tree-structure, such that places
correspond to occurrences of pairs of matching tags, i.e. i → j means that the XML-
component at j is defined inside the one at i. The tags used and the text contained inside
these tag are expressed as spatial propositions. As documents are finite, we are only in-
terested in a finite set of places F . The document specified below has a root component
(1), and a weather component somewhere under the root node (2). Moreover, if the
weather component contains a temperature component, it will eventually fill in a valid
integer representing the temperature in degrees (3).

1.
∧
p∈F @root �

∗p ∧ ¬@p �
∗root

2. @root �
∗〈weather〉

3.
∧
p∈F @p(〈weather〉∧ �

∗〈temp〉) → � @p(〈weather〉∧ �
∗(〈temp〉∧valid_int))

Note that the basic set of inference rules accounts for loops and self-reference in the
structure of XML documents. While this is possible in some dialects of XML, e.g.
Xlink [11] and other tree based query languages [6], it is easy to axiomatise special
properties of trees in LSTL. For example, the formula ¬@i �

∗i ensures that there are
no cycles in the structure of the document.

3.3 Proof Rules of LSTL

This section describes a complete axiomatisation of LSTL. Extending [14], we enrich
a standard and complete axiomatisation of LT L with the following rule and axiom
scheme:

(emb)
LT L � φ
LSTL � φ (cn) @ij ↔ �@ij

to import spatial deduction into LSTL and to account for the fact that we are axioma-
tising structures with consistent naming, which is the main difference to [14], which
presumes complete independence of the temporal component and the logic being tem-
poralised.

Definition 7. Suppose φ ∈ LSTL. Then LSTL � φ if φ is in the least set of formulas
closed under (emb), (cn) and the axioms and rules of any complete axiomatisation of
LT L.

It is straightforward to verify soundness of LSTL.

132 D. Pattinson and B. Reus

Proposition 2 (Soundness of LSTL). Suppose φ ∈ LSTL. Then LSTL |= φ if
LSTL � φ.

3.4 Completeness of LSTL

We now tackle completeness of LSTL. Our construction is an extension of the con-
struction presented in [14] that accounts for the fact that the rule (cn) axiomatises con-
sistent naming, which is a property of spatio-temporal structures that cuts across time.

The proof of completeness fixes a fixed enumeration of a set T = {p0, p1, p2, . . . }
of propositional variables, that is used to encode sentences of LSTL in LT L. We need
the following technical terminology.

Definition 8. For a fixed enumerations L(HL∗) = {φ0, φ1, φ2 . . . } we define the cor-
respondence mapping σ : LT L(L(HL∗)) → LT L(T) as the mapping φi �→ ai.

Because we replace propositional reasoning when substituting L(HL∗)-formulas for
atoms in linear temporal logic, we need to encode the relations between the atoms on
a purely propositional level in order to make use of completeness of LT L. This is the
purpose of the next definition.

Definition 9. We inductively define the set Lit(φ) ⊆ HL∗ of literals of φ ∈ LSTL as
follows:

Lit(ff) = ∅ Lit(φ→ ψ) = Lit(φ) ∪ Lit(ψ) Lit(�φ) = Lit(φ)
Lit(a) = {a,¬a} Lit(φ U ψ) = Lit(φ) ∪ Lit(ψ)

where p ∈ HL∗ in the last line above. If φ ∈ LSTL, the set of inconsistencies of φ is
given as

Inc(φ) = {
∧
Φ | Φ ⊆ Lit(φ) and Φ �HL∗ ff}.

Theorem 3. The logic LSTL is weakly complete.

Proof. Suppose φ ∈ LSTL is consistent; we show that φ has a model, which is equiv-
alent to the claim by contraposition. Let nom(φ) =

⋃
{nom(ψ) | ψ ∈ Lit(φ)} denote

the set of nominals occurring in φ making use of nom for HL∗- formulas (see Sec-
tion 2). We now let

φ̂ = φ ∧
∧

ψ∈Inc(φ)

�¬ψ ∧
∧

i,j∈nom(φ)

@ij ↔ �@ij

Note that consistency of φ implies consistency of φ̂, which in turn implies consistency
of σ(φ̂). Hence there exists a sequence V = (Vn) of valuations of the propositional
variables T s.t. V |=LT L σ(φ̂). The intuition behind the definition of φ̂ is that φ̂ encodes
not only φ, but also all relations between its literals on a purely propositional level. This
encoding ensures that propositionally valid literals are actually consistent in the logic
HL∗, a fact that is crucial for completeness, which we now address.

A Complete Temporal and Spatial Logic for Distributed Systems 133

By construction, this valuation satisfies

V0 |= σ(@ij) ⇐⇒ Vn |= σ(@ij)

for all n ∈ N and all i, j ∈ nom(φ). Take

Gn(φ) = {ψ ∈ Lit(φ) | Vn |= σ(ψ)}.

Then all Gn are HL∗-consistent (Lemma 14.2.17 of [15]). Moreover, we have @ij ∈
G0(φ) ⇐⇒ @ij ∈ Gn(φ) for all i, j ∈ nom(φ) and all n ∈ N by construction. As
Gn(φ) consists of local formulas only, we can invoke Corollary 1 to obtain a countable
named model Sn with Sn |= Gn(φ) for all n ∈ N.

We can assume without loss of generality that the sequence (Sn) has constant nam-
ing, as Sn |= @ij ⇐⇒ S0 |= @ij for i, j ∈ Nom(φ) and n ∈ N and we can always
change the valuation of nominals not occurring in φ (and hence Gn) without changing
the validity of formulas.

Now V |= σ(φ̂) implies that V |= σ(φ) which implies M |= φ where the latter can
be shown by induction on the structure of φ.

4 Spatial Transition Systems

The spatio-temporal structures of Def. 6 have one significant drawback, they are just ar-
bitrary sequences of spatial models and there are no rules on how one spatial model
evolves from its predecessors. As a remedy, and to bridge the gap between spatio-
temporal structures and programming languages, spatial transition systems are intro-
duced below. They are an abstraction of distributed programs. Completeness of LSTL
with respect to these transitions systems will follow from the fact that every spatio-
temporal structure arises as a run of a spatial transition system.

Definition 10. A spatial transition system (STS) Θ consists of an enumerable set of
physical places P , a surjective map η : Nom → P mapping nominals – ie. (non-
unique) place names – to physical places, and a P -indexed set of transition systems
(Xp,→p, λp, µp, s

0
p)p∈P such that

– Xp is the set of states of computations happening at place p,
– →p ⊆ Xp ×Xp is the (possibly non-deterministic) state transition relation of the

computation at place p. Transitions in (Xp ×Xp) are autonomous transitions that
can happen at place p.

– λp : Xp → P(P) describes the spatial structure in terms of all connected neigh-
bours of p at any state during the computation,

– µp : Xp → P(A) characterises the states of the computation at p by stating which
(spatial) propositions hold in each state,

– s0p is the initial state for the computation in p.

A system state s of Θ is then a place indexed vector of states, i.e. s ∈ Πp∈P . Xp.
We write s(p) for the component of s belonging to place p. A spatial transition system

134 D. Pattinson and B. Reus

Θ = (P, η, (Xp,→p, λp, µp, s
0
p)p∈P) induces a transition relation→Θ on system states

s, s′ ∈ Πp∈P . Xp as follows:

s→Θ s′ ⇐⇒ ∃Q ⊆ P (∀p ∈ Q. s(p) →p s
′(p) and ∀p /∈ Q.s(p) = s′(p))

with sΘ = (s0p)p∈P as initial state.

Runs of an STS are always infinite, as all the computations may be idle (choosingQ to
be ∅). This provides us with a unified setting for finite and infinite computations. More-
over, the computations at different places may proceed in different speeds, reflected by
the fact that at every tick of the synchronous clock describing the progress of a system
state s ∈ Πp∈P . Xp, some of the computations, precisely those in P \Q, are idle. This
is supposed to reflect the fact that the computations are actually running independently.
Any computation in p ∈ P can be non-deterministic if →p is not the graph of a function.

Definition 11. Every system state s for a STS Θ as described above gives rise to a
named spatial model Sp(s) = (P,→s, Vs, Ns) setting

p→s q ⇐⇒ q ∈ λp(s(p)), Vs(a) = {p ∈ P | a ∈ µp(s(p))}, Ns = η.

The set of spatio-temporal structures generated by the STS Θ, called Run(Θ), contains
all sequences of models generated by possible runs of Θ, i.e.

Run(Θ) = {(Sp(sn))n∈N | s0 = sΘ ∧ sn →Θ sn+1 for all n ∈ N}.

As η in the definition of STS does not depend on the states of the STS, all spatio-temporal
structures in Run(Θ) have consistent naming. Validity for an STS is defined via a detour
through the spatio-temporal structures:

Θ |= φ ⇐⇒ ∀(Sn) ∈ Run(Θ). (Sn) |= φ.

Due to the independent definition of the computations at places P , there cannot be any
communication between them. Therefore, we will refine the notion of an STS shortly,
but the present definition is sufficient to prove a completeness result.

Before we embark on completeness, we need one little technical lemma on consis-
tent naming, which uses the following terminology: For a function f : X → Y , the
kernel of f is the set Ke(f) = {(x, x′) ∈ X ×X | f(x) = f(x′)}. Note that Ke(f) is
an equivalence relation.

Lemma 4. Suppose (Sn)n∈N is a spatio-temporal structure with consistent naming
and Sn = (Pn,→n, Vn, Nn). Then Ke(Nk) = Ke(Nl) for all k, l ∈ N and P ∼=
Nom/Ke(Nk) for all k ∈ N.

Lemma 5. For an LSTL formula φ, if Θ |= φ for all STS Θ, then S |= φ for all
spatio-temporal structures S with consistent naming (according to Def. 6).

Proof. Assume Θ |= φ for all STS Θ and let a spatio-temporal structure S with con-
sistent naming be given. Assume S = (Sn,→n, Vn, Pn). By the last lemma, we can
assume without loss of generality that S0 = Nom/Ke(N0) = Sk for all k ∈ N. We
now show that S can be generated by a spatial transition system. We let P = S0 and
put η(i) = N0(i) for i ∈ Nom. The components at each place p ∈ P are given by:

A Complete Temporal and Spatial Logic for Distributed Systems 135

– Xp = N

– n→p m iff m = n+ 1
– λp(n) = {q ∈ Sn | p→n q}

– µp(n) = {a ∈ A | p ∈ Vn(a)}
– s0p = 0.

Clearly S ∈ Run(Θ), hence S |= φ by assumption.

Corollary 2. The logic LSTL is weakly complete w.r.t. spatial transition systems.

The transition systems defined above still do not provide means for programming syn-
chronisation between computations (which can be used to program communication).
Therefore we define synchronised spatial transition system as a superset of the spatial
ones, ensuring that the completeness result above is not jeopardised. The main idea of
a synchronised spatial transition system is the following. We equip the transition sys-
tems (Xp,→p, λp, µp, s

0
p) that model the system behaviour at place p with a labelled

transition relation →p⊆ Xp × σ ×Xp, where σ is a set of labels that contains the dis-
tinguished label τ . We now stipulate that the system state s can evolve into a system
state s′ if either some of the processes make an internal transition (labelled with τ) or
all processes capable of performing � transitions participate in a synchronous transition,
labelled with � = τ . The formal definition reads as follows.

Definition 12. A synchronised spatial transition system (SSTS) Σ is defined like a STS
with an additional enumerable set of synchronisation labels σ with distinguished ele-
ment τ ∈ σ and slightly changed transition systems →p⊆ (Xp × σ × Xp). We write

x
�→p y to indicate the (x, �, y) ∈ →p. For all p ∈ P define labels : P → P(σ) by

labels(p) = {� ∈ σ |� = τ ∧ ∃s, t ∈ Xp. s
�→p t} to denote all labels for which

there are synchronised transitions for the computation at p. The system transitions for
such a SSTS are now defined below, making sure that �-synchronised transitions (for
� = τ) can only be performed if all processes with �-labelled transitions actually fire
�-transitions synchronously. We stipulate s→Σ s′ if one of the following two conditions
are satisfied:

1. ∃Q ⊆ P (∀p ∈ Q. s(p) τ→p s
′(p) and ∀p /∈ Q.s(p) = s′(p)), or

2. ∃� = τ ∈ σ(∀p ∈ P�.s(p)
�→p s

′(p) and ∀p /∈ P�.s(p) = s′(p)).

where P� = labels−1({�}) denotes the set {p ∈ P | � ∈ labels(p)} of places that can
fire an �-transition.

Example 6 (Leader Election Protocol IEEE 1394). We present an SSTS that fulfils the
specification given in Example 4. The SSTS is defined as follows: Set P = Nom and
η = id. For p ∈ Nom let Xp = (N,P(Nom)) such that λp(_, x) = x. The first
component keeps track of the number of neighbours with which p has yet to decide
about the leadership. Let σ contain a label �{i,j} for each pair of names, such that
R(i, j). Remember that R is the fixed neighbourhood relation describing the topology
of an acyclic network. The initial state for each p is now (card{j ∈ Nom | R(j, p)}, ∅).

For every i, j ∈ Nom such that R(i, j) we have transitions

(1, x)
�{i,j}−→ i (0, x ∪ {j}) (n+ 1, x)

�{i,j}−→ j (n, x)

136 D. Pattinson and B. Reus

According to this definition, any node i can only chose j to be its leader if j is a neigh-
bour, and j is the only neighbour that has not yet become a subordinate to another node.

Corollary 3. The logic LSTL is weakly complete w.r.t. synchronised spatial transition
system.

This follows from Corollary 2 and the fact that every STS is also an SSTS.

5 Conclusions

By blending well-known ingredients, hybrid logic and linear temporal logic, extending a
recipe from [14], we obtained a logic for reasoning about time and space for distributed
computations that we proved to be complete. Our model is capable of representing
many situations that naturally arise in distributed computing, including the behaviour
of distributed agents (Example 3). Further research is necessary to investigate whether
the spatial formulas can be extended, e.g. by hybrid quantifiers that could replace the
finite conjunctions in our examples; this work will be guided by [16]. On the spatio-
temporal side the question remains how to reflect synchronisation on the logical level.

References

1. Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic. Number 53 in Cam-
bridge Tracts in Theoretical Computer Science. Cambridge University Press, 2001.

2. Patrick Blackburn and Miroslava Tzakova. Hybrid completeness. Logic Journal of the IGPL,
6(4):625–650, 1998.

3. Patrick Blackburn and Miroslava Tzakova. Hybrid languages and temporal logic. Logic
Journal of the IGPL, 7(1):27–54, 1999.

4. Luís Caires and Luca Cardelli. A spatial logic for concurrency (part I). Inf. Comput.,
186(2):194–235, 2003.

5. Luís Caires and Luca Cardelli. A spatial logic for concurrency - II. Theor. Comput. Sci.,
322(3):517–565, 2004.

6. Cristiano Calcagno, Philippa Gardner, and Uri Zarfaty. Context logic and tree update. In
POPL ’05: Proceedings of the 32nd symposium on Principles of programming languages,
pages 271–282, New York, NY, USA, 2005. ACM Press.

7. Luca Cardelli, Philippa Gardner, and Giorgio Ghelli. A spatial logic for querying graphs.
In Peter Widmayer, Francisco Triguero Ruiz, Rafael Morales Bueno, Matthew Hennessy,
Stephan Eidenbenz, and Ricardo Conejo, editors, Automata, Languages and Programming,
29th International Colloquium, ICALP 2002, Proceedings, volume 2380 of Lecture Notes in
Computer Science, pages 597–610. Springer, 2002.

8. Luca Cardelli and Andrew D. Gordon. Anytime, anywhere: Modal logics for mobile ambi-
ents. In POPL, pages 365–377, 2000.

9. Luca Cardelli and Andrew D. Gordon. Mobile ambients, pages 198–229. Cambridge Uni-
versity Press, New York, NY, USA, 2001.

10. Rohit Chadha, Damiano Macedonio, and Vladimiro Sassone. A distributed Kripke seman-
tics. Technical Report 2004:04, University of Sussex, 2004.

11. W3C consortium. Xlink language version 1.0.
12. Rocco de Nicola, Gian Luigi Ferrari, and Rosario Pugliese. Klaim: A kernel language for

agents interaction and mobility. IEEE Trans. Softw. Eng., 24(5):315–330, 1998.

A Complete Temporal and Spatial Logic for Distributed Systems 137

13. Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. Reasoning about
Knowledge. MIT Press, 1995.

14. Marcelo Finger and Dov Gabbay. Adding a Temporal Dimension to a Logic System, chap-
ter 14, pages 524–552. Volume 1 of Oxford Logic Guides [15], 1994.

15. Dov Gabbay, Ian Hodkinson, and Mark Reynolds. Temporal Logic: Mathematical Founda-
tions and Computational Aspects: Volume I. Number 28 in Oxford Logic Guides. Oxford
University Press, 1994.

16. Dov Gabbay, Agi Kurucz, Frank Wolter, and Michael Zakharyaschev. Many-dimensional
Modal logics: Theory and Applications. Elsevier, 2003.

17. Dov Gabbay, Amir Pnueli, Saharon Shela, and Johnatan Stavi. On the temporal analysis of
fairness. In Proc. of the 7th ACM Symp. on Principles of Programming Languages, pages
163–173. ACM press, 1980.

18. Daniel Hirschkoff. An extensional spatial logic for mobile processes. In Philippa Gard-
ner and Nobuko Yoshida, editors, Proc. of 15th Int. Conf. CONCUR 2004, volume 3170 of
Lecture Notes in Computer Science, pages 325–339. Springer, 2004.

19. Fred Kröger. Temporal Logic of Programs, volume 8 of EATCS Monographs on Theoretical
Computer Science. Springer-Verlag, 1987.

20. Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concurrent Systems.
Springer, 1992.

21. Stephan Merz, Martin Wirsing, and Júlia Zappe. A spatio-temporal logic for the specification
and refinement of mobile systems. In Mauro Pezzè, editor, Proc. of 6th Int. Conf. Funda-
mental Approaches to Software Engineering (FASE) 2003, volume 2621 of Lecture Notes in
Computer Science, pages 87–101. Springer, 2003.

22. Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes. Inf.
Comput., 100(1):1–40, 1992.

23. Robin Milner, Joachim Parrow, and David Walker. Modal logic for mobile processes. Theo-
retical Computer Science, 1(114):149–171, 1993.

24. Rocco De Nicola and Michele Loreti. A modal logic for mobile agents. ACM Trans. Comput.
Logic, 5(1):79–128, 2004.

25. Solomon Passy and Tinko Tinchev. An essay in combinatory dynamic logic. Information
and Computation, 93, 1991.

26. Júlia Zappe. Towards a mobile TLA. In M. Nissim, editor, ESSLI Student Workshop on
Logic, 2002.

	Introduction
	Spatial Reasoning with Hybrid Logic
	The Axioms of HL*
	Completeness of HL*

	Temporalising Hybrid Logics
	Linear Temporal Logic (A reminder)
	The Logic LSTL
	Proof Rules of LSTL
	Completeness of LSTL

	Spatial Transition Systems
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

