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1 Introduction

Fig. 1. The basin of attraction field of a binary (value range v=2) Cellular Automaton
(CA), k=3, n=14, rule 193, with equivalent basins suppressed.

Networks of sparsely inter-connected elements with discrete values and updat-
ing in parallel are central to a wide range of natural and artificial phenomena
drawn from many areas of science; from physics to biology to cognition; to
social and economic organization; to parallel computation and artificial life;
to complex systems in general.

“Decision making” networks like this are applied as idealized models in the
study of complexity and emergence, and in the behavior of networks in general,
including biomolecular networks such as neural and genetic networks[4, 6,
3, 10, 12]. The networks themselves have intrinsic interest as mathematical,
physical, dynamical and computational systems with a large body of literature
devoted to their study[7, 8, 1]. Because the dynamics is difficult to describe
by classical mathematics, computer simulation is required, and there is a need
for simulation software for non-experts in programming to model networks in
their particular fields.
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Fig. 2. Hypothetical networks of interacting elements (size n=100) with an approx-
imate power-law distribution of connections, both inputs (k) and outputs, which are
represented by directed links (with arrows). Nodes are scaled according to k and aver-
age k ' 2.2. left: A fully connected network. right: A network made up of five weakly
inter-linked n=20 sub-networks or modules.

DDLab is able to construct these networks and investigate many aspects
of their dynamical behavior. DDLab is interactive graphics software, widely
used in research and education, for studying cellular automata (CA), ran-
dom Boolean networks (RBN)[4] and discrete dynamical networks in general
(DDN), where the “Boolean” attribute is extended to multi-value. There are
currently versions of DDLab for Mac, Linux, Unix, Irix and DOS. The source
code is written in C. It may be made available on request, subject to various
conditions.

As well as generating space-time patterns in one, two or three dimensions,
DDLab is able to construct attractor basins, graphs that link network states
according to their transitions, analogous to Poincaré’s “phase portrait” which
provided powerful insights in continuous dynamics. A key insight is that the
dynamics on the networks converge, thus fall into a number of basins of at-
traction. This is the network’s memory, its ability to hierarchically categorize
its patterns of activation (state-space), as a function of the precise network
architecture[10].

Relating this to space-time patterns in CA, high convergence implies order,
low convergence implies disorder or chaos[8]. The most interesting emergent
structures occur at the transition, sometimes called the “edge of chaos”[5, 13].

DDLab has recently been generalized for multi-value logic. Up to 8 values
(or colors) are now possible, instead of just Boolean logic (two values - 0,1). Of
course, with just 2 values selected, DDLab behaves as before[15]. Multi-values
open up new possibilities for dynamical behavior and modeling.

Another major update is an option to constrain DDLab to run forward-
only, to generate space-time patterns for various types of totalistic rules, re-
ducing memory load by cutting out all basin of attraction functions. This
allows larger neighborhoods (max-k=25, instead of 13). In 2d the neighbor-
hoods are predefined to make hexagonal as well square lattices. Many inter-
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esting cellular automaton rules with ”life”-like and other complex dynamics
can be found in totalistic multi-value rule-space, in 3d as well as 2d[16].

DDLab is an applications program, it does not require writing code. Net-
work parameters and the graphics presentation can be flexibly set, reviewed
and altered interactively, including changes on-the-fly. There are built in tools
for constructing and manipulating networks. A wide variety of measures, data,
analysis and statistics are available. For small networks, its possible to com-
pute and draw basins of attraction, and measure their convergence and sta-
bility to perturbation. For larger networks, basins of attraction can be inves-
tigated statistically. This article provides some general background, and gives
the flavor of DDLab with a range of examples; the figures shown were all
produced within DDLab. The operating manual[14] describes all of DDLab’s
many functions, and includes a “quick start” chapter. DDLab is available at
www.ddlab.com and www.cogs.susx.ac.uk/users/andywu/ddlab.html.

DDLab remains free shareware for personal, non-commercial, users. Any
other users, including commercial users, companies, government agencies, re-
search or educational institutions, must register and pay a license fee (see
www.ddlab.com/ddinc.html).

1 2 3 P J V% S%
1: 94 6 . 5 100 61.8 94.0
2: 12 44 4 3 60 28.6 73.3
3: 15 3 22 2 40 9.6 55.0

Fig. 3. The basin of attraction field of one of the n=20 sub-network shown in detail in
figure 2. The binary rules were assigned at random. State-space (size 220

' 1.05 million)
is partitioned into three basins of attraction. The attractor states are shown as 5×4 bit
patterns. The table, and diagram lower right, show the probability of jumping between
basins due to one-bit perturbations of their attractor states. P = attractor period, J

= possible jumps (P × n), V% is the basin “volume” as a percentage of state-space,
and S% is the percentage of self-jumps for each basin. All 3 basins are relatively stable
because S > V . The lower right diagram, the “attractor jump-graph” shows the same
data graphically; node size reflects basin volume, link thickness percentage jumps, arrows
the direction, and the short stubs self-jumps.
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2 Basins of Attraction

Figure 4 provides a summary of the idea of state-space and basins of attraction
in discrete dynamical networks, sometimes called decision making networks.
The dynamics depends on the connections and update logic of each element,
which “decides” its next value based on the values of the few elements that
provide its inputs, which might include self-input. The result is a complex
web of feedback making the dynamics difficult to treat analytically, despite
the simplicity of the underlying network. In fact, although the dynamics are
deterministic, the future is in general unpredictable. Understanding these sys-
tems relies chiefly on computer simulation.

For a binary network size n, an example of one of its states
B might be 1010 . . . 0110. State-space is made up of all 2n

states, the space of possible bitstrings or patterns.

Part of a trajectory in state-space, where C is a successor of
B, and A is a predecessor (pre-image) of B, according to the
dynamics on the network.

The state B may have other pre-images besides A, the total
is the in-degree. The pre-image states may have their own
pre-images or none. States without pre-images are known as
garden-of-Eden states.

Any trajectory must sooner or later encounter a state that
occurred previously - it has entered an attractor cycle. The
trajectory leading to the attractor is a transient. The period
of the attractor is the number of states in its cycle, which may
be just one - a point attractor.

Take a state on the attractor, find its pre-images (excluding
the pre-image on the attractor). Now find the pre-images of
each pre-image, and so on, until all garden-of-Eden states are
reached. The graph of linked states is a transient tree rooted
on the attractor state. Part of the transient tree is a subtree
defined by its root.

Construct each transient tree (if any) from each attractor
state. The complete graph is the basin of attraction. Some
basins of attraction have no transient trees, just the bare “at-
tractor”.

Now find every attractor cycle in state-space and construct
its basin of attraction. This is the basin of attraction field

containing all 2n states in state-space, but now linked accord-
ing to the dynamics on the network. Each discrete dynamical
network imposes a particular basin of attraction field on state-
space.

Fig. 4. State-space and basins of attraction.
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Fig. 5. The basin of attraction field of a multi-value v=3 n=6, k=3 CA. The look-
up table is 120201201020211201022121111 (1886122584a655 in hex). Just the 8 non-
equivalent basins are shown from a total of 23, and attractor non-equivalent states are
shown as a 2d patterns. State-space = vk = 36 = 729.

3 Discrete dynamical networks
Acronym glossary:

• CA: Cellular automata: nearest neighbor wiring and a homogeneous rule.
• RBN: random Boolean networks: random wiring and heterogeneous rules, pos-

sibly heterogeneous neighborhoods k.
• DDN: discrete dynamical networks: including RBN, but allowing a value range

v ≤ 2. CA and RBN are special cases of DDN.

A discrete dynamical network in DDLab can be imagined as a software
simulation of a collection light bulbs which transmit information to each other
about their color state (on/off for binary), and change color according to
the arriving signals. More abstractly, the network is made up of elements or
“cells”, connected to each other by directed links or “wires”, where a wire
has an input and output terminal. A cell takes on a value (or color), and
transmits this value down its output wires. Its value is updated as a function
of the values on its input wires. Updating is usually done in parallel, in discrete
“time-steps”, but may also be sequential in a predetermined order.

This is the system in a nutshell. It remains to set up the network according
to its various parameters,

• The value-range, v. The range of values that are available to a cell. In
other words, the number of possible internal states of the cell, or colors,
or letters in its “alphabet”. In older versions of DDLab this was limited
to just 2 values (0,1), but can now be selected from 2 to 8.

• The number of network elements, the system size, n.
• How the elements are arranged in space: in a 1d, 2d or 3d lattice with axial

dimensions i, j, h, or some other arrangement. This network “geometry”
may have real meaning (depending on the “wiring scheme” below), or it
may simply allow convenient indexing and representation.
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Ordered rule 01dc3610 Complex rule 6c1e53a8 Chaotic rule 994a6a65

Fig. 6. Ordered, complex and chaotic dynamics of 1d binary CA are illustrated by
the space-time patterns and subtrees of three typical k=5 rules (shown in hex). The
bottom row shows the space-time patterns from the same random initial state. The
bit-strings (n=100) of successive time-steps (represented by white and black dots) are
shown horizontally one below the other; time proceeds down. Above each space-time
pattern is a typical sub-tree for the same rule. In this case n=40 for the ordered rule, and
n=50 for the complex and chaotic rules. The root states were reached by first iterating
the system forward by a few steps from a random initial state, then tracing the subtree
backwards. Note that the convergence in the sub-trees, their branchiness or typical in-
degree, relates to order-chaos in space-time patterns, where order has high, chaos low,
convergence.

• The number of input wires, k, to each cell, or the “k-mix” if k is not
homogeneous. k, may vary from 0 to 25. Maximum k is reduced for greater
value-range v.

• The “wiring scheme”: defining the location of the output terminals of each
cell’s input wires, the element’s “neighborhood”. CA have a homogeneous
“nearest neighbor” (local) neighborhood throughout the network. RBN
and DDN may have a completely arbitrary wiring scheme (a “pseudo-
neighborhood”). The wiring scheme can be assigned at random, or may
be biased in some way, for example, by confining an element’s pseudo-
neighborhood close to itself. The wiring scheme also defines boundary con-
ditions. CA wiring usually requires periodic boundary conditions, where
an array’s edges wrap around to their opposite edges.
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Fig. 7. Space-time pattern of the 2d game-of-Life[2], (v=2, k=9, n = 55 × 55) in
a 3d isometric projection. 2d time-steps stack below each other, and are shown as if
looking up at a transparent shaft. left: Starting from the “r-pentomino” seed. center:
Re-scaled to the smallest scale, new seeds set at intervals. upper right: A 2d state (time-
step) colored according to value. lower right: The same state colored according to the
neighborhood look-up.

• The “rule scheme”: the rules or logical functions in the network. Each
element applies a rule to its inputs to compute its output. Usually this
is made into a look-up table, the “rule-table”, listing the outputs of all
possible input patterns. CA have a homogeneous rule scheme, the same rule
throughout the network. RBN and DDN may have a completely arbitrary,
heterogeneous, rule scheme, or again, it may be biased in some way.

DDlab is able to create networks with any combination of these parame-
ters, and graphically represent and analyze both the networks themselves and
the dynamics resulting from the changing patterns as the complex feedback
web unfolds. Network updating may be sequential as well as parallel, noisy as
well as deterministic.
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Fig. 8. A space-time pattern of a complex 1d CA, v = 2, k = 5, hex rule e9 f6 a8 15,
n = 150. About 360 time-steps, and some analysis shown by default: left: The space-time
pattern colored according to neighborhood look-up, and progressively “filtered” on-the-
fly at three times, suppressing the background domain to show up “gliders” more clearly.
center and right: The input-entropy plot of the lookup frequency histogram, relative to
a moving window of 10 time-steps.

4 Space-time patterns and basins of attraction

DDLab has two alternative ways of looking at network dynamics. Local dy-
namics, running the network forwards, and global dynamics, which entails
running the network backwards.

Running forwards generates the network’s space-time patterns from a
given initial state. Many alternative graphical representations of space-time
patterns, and methods for gathering and analyzing data, are available to il-
lustrate different aspects of local network dynamics, including “filtering” to
show up emergent structures more clearly as in figure 8.

Running “backwards” generates multiple predecessors rather than a trajec-
tory of unique successors. This procedure reconstructs the branching sub-tree
of ancestor patterns rooted on a particular state. States without predeces-
sors are disclosed, the so called “garden-of-Eden” states, the leaves of the
sub-trees. Sub-trees, basins of attraction (with a topology of trees rooted on
attractor cycles), or the entire basin of attraction field can be displayed as
directed graphs in real time, with many presentation options, and methods
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Fig. 9. The basin of attraction field of a small random Boolean network, n=13. The
213 = 8192 states in state-space are organized into 15 basins, with attractor periods
ranging between 1 and 7, and basin volume between 68 and 2724. The arrow points
to the basin shown in more detail.

Fig. 10. One of he
basins of attraction in
figure 9, indicated by
an arrow. The basin
links 604 states, of
which 523 are garden-
of-Eden states. The
attractor period is 7.
One attractor state is
shown in detail as a bit
pattern. The direction
of time is inwards from
garden-of-Eden states
to the attractor, then
clock-wise

for gathering/analyzing data. The attractor basins of “random maps” may be
generated, with or without some bias in the mapping.

Attractor basins represent the network’s “memory” by their hierarchi-
cal categorization of state-space; each basin is categorized by its attractor
and each sub-tree by its root. Learning/forgetting algorithms allow attach-
ing/detaching sets of states as predecessors of a given state by automatically
mutating rules or changing connections.
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Fig. 11. top: The space-time pattern of a 1d complex binary CA where interacting
gliders emerge[13], n=700, k=7, 308 times-steps are shown from a random initial state.
center: The basin of attraction field for the same rule, n=16. The 216 states in state-
space are connected into 89 basins of attraction, but only the 11 non-equivalent basins
are shown, with symmetries characteristic of CA. bottom: A detail of the second basin
in the basin of attraction field, where states are shown as 4 × 4 bit patterns.
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Fig. 12. The DDLab window showing an evolving 2d CA space-time pattern,
in this case on a hexagonal grid. n=88x88, v=3, k=6. The k-totalistic rule
(0022000220022001122200021110, 0a0282816a0254 in hex) firstly makes gliders
emerge, but spirals eventually take over. When the space-time pattern run is inter-
rupted (with ’q’), top right windows appear giving the rule details and interrupt options;
on-the-fly options are listed on the the right. A k-totalistic lookup table depends on just
the frequency of the v=3 colors (2,1,0) in the k=6 neighborhood, as shown below

black: 2: 6 5 5 4 4 4 3 3 3 3 2 2 2 2 2 1 1 1 1 1 1 0 0 0 0 0 0 0 -
red: 1: 0 1 0 2 1 0 3 2 1 0 4 3 2 1 0 5 4 3 2 1 0 6 5 4 3 2 1 0 - frequencies

white: 0: 0 0 1 0 1 2 0 1 2 3 0 1 2 3 4 0 1 2 3 4 5 0 1 2 3 4 5 6 -
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
0 0 2 2 0 0 0 2 2 0 0 2 2 0 0 1 1 2 2 2 0 0 0 2 1 1 1 0 - rule table

5 DDLab user interface

DDLab is an interactive applications program that does not require writ-
ing code. The graphical user interface allows setting, viewing and amending
network parameters, and the various presentation and analysis functions, by
responding to prompts or accepting defaults.

The prompts present themselves in a main sequence for the most common
1d CA parameters. and also in a number of context dependent pop-up windows
for DDN, 2d and 3d networks, and various special settings.

A flashing cursor prompts for input. Just enter return if in doubt, or
the appropriate input from the keyboard. Press q, back-space, (or the right
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mouse button) to revise. return (or the left mouse button) to accept and
move on to the next prompt or routine. Just return (or left mouse button)
automatically selects a default. To backtrack to the preceding prompt, revise,
or interrupt a running process such as space-time patterns or attractor basin
being generated, press q, or the right mouse button. To quit DDLab immedi-
ately (except for DOS) enter Ctlr-q at any prompt, followed by q. Otherwise
backtrack with q to the start of the program.

6 Initial choices

Some initial choices in the prompt sequence set the stage for all subsequent
DDLab operations, There is a choice to constrain DDLab to run forwards-only
for various types of totalistic rules; this reduces memory load by cutting out
full look-up tables and all attractor functions; it allows larger neighborhoods,
up to max-k=25 instead of max-k=13.

If DDLab is not constrained as above there is a further choice; either to
show the whole basin of attraction field, or alternatively to show something
that requires an initial state: a single basin of attraction, a subtree, or just
space-time patterns.

The value-range v can be set from 2 to 8. If v=2 DDLab behaves as in the
old binary version. Note that as v is increased, the size of max-k will diminish,
but this also depends on whether DDLab was constrained to run forwards-
only for totalistic rules. For example, for v=8 and unconstrained, max-k=4
to handle the large lookup table; if constrained, max k=11.

Fig. 13. The cell value color key window that appears when the value-range is
selected, here for v=8. The values themselves are indexed from 7 to 0.

7 Setting the network size

The network size n for 1d is set early on in the prompt sequence, but this
is superseded if a 2d (i, j) or 3d (i, j, h) network is selected in a subsequent
prompt window.

For space-time patterns, the network size is limited to n=65025, based on
the maximum size of a 2d network (i, j)=255×255. This limit also applies for
single basins and subtrees, though in practice much smaller sizes are appropri-
ate, except when generating subtrees for maximally chaotic CA “chain-rules”.

For basin of attraction fields, however, the maximum network size, max-n,
is much smaller, and depends on the value-range v as set out below:

v: 2 3 4 5 6 7 8
max-n: 31 20 15 13 12 11 10
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1d neighborhoods: for even k the extra asymmetric cell is on the right.

2d neighborhoods k=4-25: top row square; bottom row hex; black indicates the default.

3d neighborhoods

Fig. 14. Predefined 1d, 2d and 3d neighborhoods. For 1d and 2d, k ≤ 25 if totalistic-
rules-only are set, otherwise k ≤ 13. For 3d k ≤ 13. For 2d the lattice/neighborhood
can be either square or hexagonal.

8 The neighborhood k or k-mix

The size of the neighborhood k, the number of inputs each cell receives, can
vary from 0 to max-k. Max-k itself depends on the value-range v, and also
on whether or not DDLab was constrained to run forwards-only for totalistic
rules. This is set out below, showing also the size of the corresponding lookup
tables S.

unconstrained constrained
------------- -----------

max lookup max lookup
v k S v k S
- -- ----- - -- -----
2 13 8162 2 25 26
3 9 19683 3 25 351
4 7 16484 4 25 3276
5 6 15629 5 25 23551
6 5 7776 6 17 26334
7 5 16807 7 13 27132
8 4 4096 8 11 31824
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k can be homogeneous, or there can be a mix of k-values in the network.
The k-mix may be set and modified in a variety of ways, including defining
the proportions of different k’s to be allocated at random in the network, or a
“scale-free” distribution, A k-mix may be saved/loaded, but is also implicit in
the wiring scheme. Figure 14 shows some predefined neighborhoods, designed
to maximize symmetry. In 2d the layout can be either square or hexagonal.

9 Wiring

The network’s wiring scheme, its connections, has default settings for regular
CA (for 1d, 2d and 3d), with periodic boundary conditions, for each neigh-
borhood size as shown in figure 14. Wiring can also be set at random, with a
wide variety of constraints and biases, or by hand. The pre-defined neighbor-
hoods in this case act as pseudo-neighborhoods to which the rule is applied.
A wiring scheme can be set and amended just for a predefined sub-network
within the network, and may be saved/loaded.

Random wiring can be constrained in various ways, including confinement
within a local patch of cells with a set diameter in 1d, 2d and 3d. Part of the
network only can be designated to accept a particular type of wiring scheme,
for example rows in 2d and layers in 3d. The wiring can be biased to connect
designated rows or layers.

The network parameters can be displayed and amended in a 1d, 2d or 3d
graphic format as in figure 15, in a “spread sheet” as in figure 25, or as a
network graph which can be rearranged in various ways, including dragging
nodes with the mouse as in figures 2 and 27.

Fig. 15. RBN/DDN network wiring: cells
anywhere in the network are wired back to
each position in a “pseudo-neighborhood”.
left: 1d: The wiring is shown between two
time-steps. center: 2d: k=5. right: 3d: k=7.
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Fig. 16. A 2d CA space-time pattern, on a hexagonal grid. n=88x88, v=3, k=6.
The k-totalistic rule 0022000220022001122200021210 (0a0282816a0264 in hex) allows
the emergence of gliders, glider-guns and self-reproduction by glider collisions[16]. This
lookup table differs by just one value from the spiral rule in figure 12

10 Rules

Fig. 17. The neighborhood matrix for a full lookup table for n=2 k = 6. All 64 possible
neighborhoods from 111111 to 000000 (63 to 0) are shown vertically. The position of
each neighbor is indexed 5-0. Assigning an output to each neighborhood makes the
lookup table with 64 bits.

The most general update logic or rule is expressed as a full look-up table.
However, there are useful subsets of the general case, two types of totalistic
rules, and “outer” versions of each type. The simplest, a t-totalistic rule,
depends on the sum of values in the neighborhood. k-totalistic rules depend
on the frequency of each value (color) in the neighborhood (see figure12). If
k=2 these two types are identical.

In addition, both types of totalistic rules can be made into outer-totalistic
rules (also called semi-totalistic), where a different rule applies for each value
of the central cell; the game-of-life is one such rule.
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Fig. 18. A 3d CA space-time pattern, n=40×40×40. v=3, k=6 (nearest neighbors
in 3d). The k-totalistic rule 0200001020100200002200120110 (200484200a0614 in hex)
allows the emergence of gliders and other complex structures as in the 2d example in
figure 16.

For these various types of totalistic rules, DDLab can be constrained to run
forwards-only. This allows greater [v, k] networks than for a full lookup table.
Transformations and mutations then apply to just the constrained lookup
table.

If DDLab remains unconstrained, the totalistic rules can still be selected,
but they will be transformed into a full look-up table (which allows attractor
basins). Transformations and mutations will then apply to this full lookup
table. Within the full lookup table there are also subsets of rules that can
be automatically selected at random, including symmetric rules, maximally
chaotic “chain rules”, Altenberg rules (figure 28), and others. The rules can be
biased by various parameters, lambda, Z, and canalizing inputs. The “game-
of-Life”, “majority”, and other predefined rules or rule biases can be selected.

A network may have one homogeneous rule, as for CA, or a rule-mix as
for RBN and DDN. The rule-mix can be confined to a subset of pre-selected
rules. Rules may be set and modified in a wide variety of ways, in decimal,
hex, as a rule-table bit pattern, at random or loaded from a file. A rule scheme
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can be set and amended just for a predefined sub-network within the network,
and may be saved/loaded..

Rules may be changed into their equivalents (by reflection and nega-
tive transformations), and transformed into equivalent rules with larger or
smaller neighborhoods. Rules transformed to larger neighborhoods are useful
to achieve finer mutations (see figure 24). Rule parameters λ and Z, and the
frequency of canalizing inputs in a network can be set to any arbitrary level.

11 The initial network state, the seed

An initial network state, the seed, is required to run a network forward and
generate space-time patterns. A seed is also required to generate a single
basin, by first running forward to find the attractor, then backward from each
attractor state.

A seed is, of course, required to generate a subtree, by simply running
backwards from the seed. However, for most CA rules, most states in state-
space have no predecessors; they are the leaves of a subtree, “garden-of-Eden”
states, so from a random seed its usually necessary to run forwards by a few
steps to penetrate the subtree before running backwards, and an option is
provided to do this. This was done to generate the subtrees in figure 6.

A basin of attraction field does not require setting a seed, because appro-
priate seeds are automatically provided.

As in setting a rule, there are a wide variety of methods for defining the
seed: in decimal or hex, as a bit pattern in 1d, 2d or 3d, at random (with
various constraints or biases), or loaded from a file. The bit pattern method
is a mini paint program, using the keyboard to set colors (values), and the
mouse or keyboard to draw those colors.

Fig. 19. Drawing a 2d ini-
tial state (seed) n=88×88,
the number of colors v=8.
Select the color 0 to (v−1);
draw with the mouse or
keyboard. The image/seed
can be moved, rotated and
complimented. Sub-patterns
saved earlier can be loaded
into specified positions
within the main pattern.
In this example there are
8 colors. Drawing the seed
also applies for 2d and 3d.
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20 × 20 × 20,
random k7 rule from a singleton seed

40 × 40 × 40,
k7 totalistic code=11101000

Fig. 20. Examples of 3d CA, v=2 k=7. The projection is axonometric seen from
below, as if looking up at the inside of a cage. Cells are shown colored according to
neighborhood lookup for a clearer picture (instead of by value: 0,1). left: n=20×20×20,
with a randomly selected rule. The initial state is a “singleton seed”, a single on cell in
an otherwise empty array. right: n = 40×40×40 (the maximum size DDLab supports),
The initial state was set at random, but with a bias of 45% of on cells.

12 Networks of sub-networks

Its possible to create a system of independent or weakly coupled sub-networks
(as in figure 2), either directly, or by saving smaller networks to a file, then
loading them at appropriate positions in a base network. Thus a 2d network
can be tiled with sub-networks, and 1d, 2d or 3d sub-networks can be inserted
into a 3d base network.

The parameters of the sub-networks can be totally different from the base
network, provided the base network is set up appropriately, with the right
attributes to accommodate the sub-network. For example, to load a DDN
into a CA, the CA may need be set up as if it were a DDN. To load a mixed-k
sub-network into single-k base network, k in the base network needs to be
at least as big as the biggest k in the sub-network. Options are available to
set up networks in this way. Once loaded, the wiring can be fine-tuned to
interconnect the sub-networks.

A network can be automatically duplicated to create a total network made
up of two identical sub-networks. There is a function to see the difference
pattern (or damage spread) between two networks from similar initial states.
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Fig. 21. Space-time patterns of a binary 1d CA (n=24, k = 3, rule 90). 24 time-steps
from an initial state with a single central 1. Two alternative presentations are shown.
Left, cells by value, Right, cells colored according to their look-up neighborhood.

13 Presentation options for space-time patterns

Many options are provided for the presentation of space-time patterns. Again,
many of these settings can be changed on-the-fly.

Cells in space-time patterns are colored according to their value, or al-
ternatively according to their neighborhood at the previous time step, the
entry in the look-up table that determined the cell’s value. A key press will
toggle between the two. Space-time patterns can be filtered to suppress cells
that updated according to the most frequently occurring neighborhoods, thus
exposing “gliders” and other structures, as in figure 8.

The presentation can be set to highlight cells that have not changed in the
previous x generations, where x can be set to any value. The emergence of
such frozen elements (order) depends on “canalizing inputs”, and is applied
in Kauffman’s RBN model of gene regulatory networks[4, 3].

A 1d space-time pattern may be presented in successive vertical sweeps, or
may be continuously scrolled. 2d networks can be toggled between square and
hexagonal layout. 2d networks can also be displayed with a time dimension
(2d+time) in a 3d isometric projection, as is figure 7 for the “game-of-Life”.
3d networks are presented within a 3d “cage” (figures 18 and 20). The pre-
sentation of space-time patterns can be switched on-the-fly between 1d, 2d,
2d+time, and 3d, irrespective of their native dimensions. DDLab automati-
cally unravels or bundles up the dimensions.

There are many other on-the-fly options, including skipping time-steps,
reversing to previous time-steps, changing the scale of space-time patterns,
changing the seed, rule/s, wiring, and the size of 1d networks.

Concurrently with these standard presentations, space-time patterns can
be displayed in a separate window according to the network graph layout. This
can be rearranged in any arbitrary way, including various default layouts. For
example a 1d space-time pattern can be shown in a circular layout.
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Fig. 22. The DDLab screen showing a basin of attraction field. This example is for a
binary 1d CA, n=15, k=5 totalistic code 53. To achieve this layout, a pause was selected
after each basin, and the position and spacing of basins were amended on-the-fly.

14 Presentation options for attractor basins

Options for attractor basins allow the selection of the basin of attraction field,
a single basin (from a selected seed), or a sub-tree (also from a seed). Because
a random seed is likely to be a garden-of-Eden state, to generate sub-trees an
option is offered to run the network forward a given number of steps to a new
seed before running backward. This guarantees a sub-tree with at least that
number of levels.

Options (and defaults) are provided for the layout of attractor basins, their
size, position, spacing, and type of node display (as a spot, in decimal, hex or a
1d or 2d bit pattern, or none). Regular 1d and 2d CA produce attractor basins
where sub-trees and basins are equivalent by rotational symmetry. This allows
“compression” of basins (by default) into non-equivalent prototypes, though
compression can be turned off. Attractor basins are generated for a given
system size, or for a range of sizes. As attractor basins are generating, the
reverse space-time pattern can be simultaneously displayed.

An attractor basin run can be set to pause to see data on each transient
tree, each basin, or each field. Any combination of this data, including the
complete list of states in basins and trees, can be saved to a file.
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Fig. 23. The basin of attraction field (in figure 9) with each basin redrawn within the
nodes of the attractor jump-graph. The jump-graph shows the probability of jumping
between basins due to single bit-flips to attractor states. Nodes representing basins
(shown inside each node) are scaled according the number of states in the basin (basin
volume). Links are scaled according to both basin volume and the jump probability.
Arrows indicate the direction of jumps. Short stubs are self-jumps. Note that the jump-
graph itself can be suppressed, making this an alternative flexible method for positioning
basins.

Normally a run will pause before the next “mutant” attractor basin, but
this pause may be turned off to create a continuous demo of new attractor
basins. A “screensave” demo option shows new basins continually growing at
random positions.

15 Filing

DDLab allows filing a wide range of internally defined file types, including net-
work parameters, data, and the screen image. Network parameters and states
can be saved and loaded for the following: k-mix, wiring-schemes, rules, rule-
schemes, wiring/rule schemes, and network states. Data on attractor basins,
at various levels of detail can be automatically saved. A file of “exhaustive
pairs”, made up of each state and its successor, can be created

Various data including mean entropy and entropy variance of space-time
patterns can be automatically generated and saved. This allows a sorted sam-
ple of CA rules to be created, discriminating between order, complexity and
chaos[13], as in figure 30. A large collection of complex rules, those featuring
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“gliders” or other large scale emergent structures, can be assembled. Pre-
assembled files of CA rules sorted by this method are provided with DDLab.

The screen image is saved and loaded using an efficient home-made com-
pressed format which is only applicable within DDLab. Alternatively, the
DDLab window or part of it can be saved and printed using any external
screen grabber.

16 Mutations

Fig. 24. 32 mutant basins of attraction of the v=2, k=3 rule 195 (n=8, seed all 0s).
top left: The original rule, where all states fall into just one very regular basin. The rule
was first transformed to its equivalent k=5 rule (f00ff00f in hex), with 32 bits in its
rule-table for finer mutations. All 32 one-bit mutant basins are shown. If the rule is the
genotype, the basin of attraction can be seen as the phenotype.

As well as on-the-fly changes to presentation, a wide variety of on-the-fly
network “mutations” can be made.

When running forward, key-press options allow mutations to wiring, rules,
and current state. A number of “complex” CA rules (with glider interactions),
are provided as files with DDLab, and these can be activated on-the-fly.

When running backward and attractor basins are complete, a key press will
regenerate the attractor basin of a mutant network. Various mutation options
can be pre-set including random bit-flips in rules and random rewiring of a
given number of wires. Sets of states can be specified and highlighted in the
attractor basin to see how mutations affect their distribution. The complete
set of one-bit mutants of a rule can be displayed on a single screen as illustrated
in figure 24.
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Fig. 25. The wiring matrix for a mixed k network with random wiring. n=14, k=2-13,
with binary rules. k-12...0, indexes columns, n-13...0, indexes rows. The column on the
left shows the “out-degree” of each cell, the number of output wires that link to it, also
shown as a histogram. If rules have been set, they are shown in hex (as much as will fit)
on the right, in the column “rule(hex)”. Its possible to move around the wiring matrix
as in a spread-sheet to change wiring settings.

Fig. 26. The 1d wiring graphic, showing wiring to a block within a 1d network. k=5,
n = 150. The block was defined from cell 60-80. Revisions to rules and wiring can the
be confined just to the block. The 1d wiring graphic can also be shown as a circle. The
“active cell” (109) is still visible, and can be moved as usual.

17 Network architecture

DDLab provides methods for reviewing and amending network architecture:
both wiring and rules: From the wiring matrix (figure 25) and from the net-
work architecture graphic (figure 26), which can be displayed in 1d, 2d or 3d.
The network’s connections and rules can be examined, changed, and tailored
to requirements, including biased random settings to pre-defined parts of the
network. These are very flexible methods, and for RBN/DDN its usually easier
to set up a suitable dummy network initially, then tailor it here.

Network connectivity measures from the network architecture graphic in-
clude the following,

• Average k (inputs), and the number of reciprocal links, and self links.
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• Histograms of the frequency distribution of inputs (i.e. k), outputs, or both
(i.e all connections) in the network.

• The recursive inputs/outputs to/from a network element, whether direct
or indirect, showing the “degrees of separation” between elements.

2d 8x8, k=5
3d 6x6x6, k=6, with a vertical slice
dragged from the center

2d 6x6, k=6, dragging node 14 and
its step=1 inputs

the network (left) broken by disconnecting
some nodes, a component was dragged and
rotated

Fig. 27. Network graphs of a 2d and 3d CA. top left: a 2d CA. top right: a 3d CA, an
axonometric projection seen from below as if looking up into a cage. A vertical slice has
been defined and dragged from the graph. bottom left: a 2d CA where the links follow a
hexagonal lattice, showing a node and its 1-step inputs dragged out, and bottom right:
various manipulations to the graph. Note that breaking and creating new connections
affects only the graph, not the underlying network which can be restored.

18 The network graph

Another method of reviewing network architecture is an adjacency matrix
and network graph (see figures 3 and 27) that looks just at the network con-
nections, nodes linked by directed edges. It does not allow changes to the
underlying network, but includes flexible methods for representing the net-
work, and rearranging and unraveling its graph.

For example, single nodes, connected fragments, or whole components,
can be dragged with the mouse to new positions with “elastic band” edges.
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Fragments depend on inputs, outputs, or both, and the distance of fragment
links from a node can be defined.

Dragging can include the node + its immediate links (step 1), the node +
immediate links + their immediate links (step 2), etc. The average directed
shortest path, and non-directed small world distance can be calculated. Arbi-
trary 1d, 2d and 3d blocks can be dragged. Nodes with the fewest links can
be automatically moved to the outer edges. This makes it possible to unravel
a graph. The pre-programmed graph layouts available are a circle of nodes,
a spiral, or 1d, 2d or 3d. The graph can be rotated, expanded, contracted,
and various other manipulations can be performed. The graph layout can be
saved/loaded. An “ant” can be launched into the network that moves accord-
ing to the link probabilities (as in a Markov chain) keeping a count of node
hits.

19 Static parameters measures

Various static parameters measures on rule look-up tables include the the λ-
parameter and equivalent P -parameter, the Z-parameter, which is generalized
for multi value, and the (weighted) average λ and Z for mixed rule networks.
The frequency of canalizing “genes” and inputs[4, 3], and Post functions.

Single rules or a rule-mix can be tuned to adjust any of these measures to
any arbitrary level.

Fig. 28. A 1d CA of an Altenberg rule (v=8, k=7, n=150), where the probability of
a rule-table output depends on the fraction of colors in its neighborhood. On the right
the color density is plotted for each of the 8 colors, relative to a moving window of 10
time-steps.
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Fig. 29. Entropy/density scat-
ter plot[13]. Input-entropy is plot-
ted against the density of 1s rel-
ative to a moving window of 10
time-steps. Plots for a number
of k=5 complex rules (n=150)
are show superimposed, each of
which has its own distinctive sig-
nature, with a marked vertical ex-
tent, i.e. high input-entropy vari-
ance. About 1000 time-steps are
plotted from several random ini-
tial states for each rule.

Fig. 30. Classifying a random sample k=5 rules by plotting mean entropy against the
standard deviation of the entropy, with the frequency of rules within a 128x128 grid
shown vertically.

20 Measures on space-time patterns

Some measures on space-time patterns are listed below:

• The rule-table lookup frequency histogram in a moving window of time-
steps, and its entropyplot (figure 8). This is the basis of the method for
automatically filtering space-time patterns[13] as in figure 31.

• The space-time color density in a moving window of time-steps(figure 28).
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Fig. 31. Filtering a binary 1d space-time pattern with interacting gliders embedded in a
complicated background left, and the same space-time pattern filtered right. Filtering
is done on-the-fly for any rule. In this example, k=3 rule 54 was first transformed to its
equivalent k=5 rule (hex: 0f3c0f3c). n=150.

Fig. 32. Derrida plots for a random Boolean networks (36×36, k=5). This is a statistical
measure of how pairs of network trajectories diverge/converge in terms of their Hamming
distance. A curve above the main diagonal indicates divergence and chaos, below -
convergence and order. A curve tangential to the main diagonal indicates balanced
dynamics. This example shows 4 plots where the the percentage of canalizing inputs in
the randomly biased network is 0%, 25%, 52%, and 75%, showing progressively greater
order.

• The variance of the entropy, and an entropy/density scatter plot, where
complex rules have their own distinctive signatures (figure 29).

• A scatter plot of mean entropy against the standard deviation of the en-
tropy for an arbitrarily large sample of CA rules, which allows ordered,
complex and chaotic rules to be classified automatically, also shown as a
2d frequency histogram (figure 30). Ordered, complex and chaotic dynam-
ics are located in different regions allowing a statistical measure of their
frequency. The rules can be sorted by entropy variance allowing complex
rules to be found automatically.

• Various methods for showing the activity/stability of network elements.
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Fig. 33. The return map for binary 1d k=3 rule 30, n=150, for about 10,000 time-steps.
Note the fractal structure. Each state (bitstring) B0, B1, B2, B3 . . . Bn−1 is converted
into a decimal number 0-2 as follows, B0 + B1/2 + B2/4 + B3/8 + . . . + Bn−1/2

n−1.
As the network is iterated, this value at time-step t (x-axis) is plotted against the value
at time-step t+1 (y-axis).

• The damage spread, or pattern difference, between two networks in 1d or
2d. A histogram of damage spread frequency can be automatically gener-
ated for identical networks with initial states differing by 1 bit.

• The Derrida plot[3, 4], and Derrida coefficient, analogous to the Liapunov
exponent in continuous dynamical systems, which measures how pairs of
network trajectories diverge/converge in terms of their Hamming distance.
This indicates if a random Boolean network is in the ordered or chaotic
regime (see figure 32), and is also generalized for multi-value.

• A scatter plot of successive iterations in a 2d phase plane, the “return map”
(figure 33), which has a fractal structure, especially for chaotic rules.

21 Measures on attractor basins

Some measures on attractor basins, i.e. measures on subtrees, basins of at-
traction, and the basin of attraction field, are listed below:

• Data on attractor basins. The number of basins in the basin of attraction
field, their size, attractor period and branching structure of transient trees.
Details of states belonging to different basins, subtrees, their distance from
attractors or the subtree root, and their in-degree.
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• A histogram showing the frequency of arriving at different attractors from
random initial states. This provides statistical data on the basin of at-
traction field for large networks. The number of basins, their relative size,
period, and the average run-in length is measured statistically. The data
can be used to automatically generate an attractor jump-graph as in fig-
ures 3 and 23. An analogous method shows the frequency of arriving at
different “skeletons”, partly frozen patterns.

• Garden-of-Eden density plotted against the λ and Z parameters, and
against network size.

• A histogram of the in-degree frequency in attractor basins or subtrees.
• The state-space matrix, a plot of the left half against the right half of each

state bit string, using color to identify different basins, or attractor cycle
states.

• The attractor jump-graph (see figures 3 and 23): an analysis of the basin
of attraction field tracking where all possible 1-bit flips (or 1-value flips) to
attractor states end up, whether to the same or to which other basin. The
information is presented in two ways, as a jump-table: a matrix showing
the jump probabilities between basins, and as a jump-graph: a graph with
weighed vertices and edges giving a graphic representation of the jump-
table. The jump-graph itself can be analyzed and manipulated in various
ways, and rearranged and unraveled, including dragging vertices and de-
fined components to new positions with “elastic band” edges; the same
methods as for the network graph, section 9.

22 Reverse algorithms

There are three different reverse algorithms for generating the pre-images of
a network state. These have all been generalized for multi-state networks.

• An algorithm for 1d CA, or networks with 1d CA wiring but heterogeneous
rules.

• A general algorithm for RBN/DDN, which also works for the above.
• An exhaustive algorithm that works for any “random mapping” including

the two cases above.

The first two reverse algorithms generate the pre-images of a state directly;
the speed of computation decreases with both neighborhood size k, and net-
work size. The speed of the third, exhaustive, algorithm is largely independent
of k, but is especially sensitive to network size.

The method used to generate pre-images will be chosen automatically,
but can be overridden. For example, a regular 1d CA can be made to use
either of the two other algorithms for benchmark purposes and for a reality
check that all methods agree. The time taken to generate attractor basins is
displayed in DDLab. For the basin of attraction field a progress bar indicates
the proportion of states in state-space used up so far.
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Fig. 34. Computing RBN pre-images. The changing size of a typical partial pre-image
stack at successive elements. n=24, k=3. This histogram can be automatically generated
for a look at the inner workings of the RBN/DDN reverse algorithm.

The CA reverse algorithm applies specifically to networks with 1d CA
wiring (local wiring) and homogeneous k, such as 1d CA, though the rules may
be heterogeneous. This is the most efficient thus fastest algorithm, described
in [8, 13]. Furthermore, compression of 1d CA attractor basins by rotation
symmetry speeds up the process[8].

Any other network architecture, RBN or DDN, with non-local wiring,
will be handled by a slower general reverse algorithm described in [9, 13]. A
histogram revealing the inner workings of this algorithm can be displayed as
in figure 34. Regular 2d or 3d CA will also use this general reverse algorithm.
Compression algorithms come into play in orthogonal 2d CA to take advantage
of the various rotation symmetries on the torus.

The third, brute force, exhaustive, reverse algorithm first sets up a map-
ping, a list of “exhaustive pairs”, each state in state-space and its successor
(this can be saved). The pre-images of states are generated by reference to
this list. The exhaustive method is restricted to small systems because the size
of the mapping increases exponentially as vn, and scanning the list for pre-
images is slow compared to the direct reverse algorithms for CA and DDN.
However, the method is not sensitive to increasing neighborhood size k, and
is useful for small but highly connected networks. The exhaustive method is
also used for sequential updating.

A random mapping routine can assign a successor to each state in state-
space, possibly with some bias. Attractor basins can then be reconstructed
by reference to this random map with the exhaustive algorithm. The space of
random maps for a given system size corresponds to the space of all possible
basin of attraction fields and is the super-set of all other deterministic discrete
dynamical networks.

23 Chain rules and encryption

The CA reverse algorithm is especially efficient for a subset of maximally
chaotic 1d CA rules, the “chain rules”, which can be automatically generated
in DDLab for any v, k. The approximate number of chain rules is v

√
rulespace.
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Fig. 35. A 1d pattern is displayed in 2d (n=1600, 40×40); the “alien” seed was
draw as in figure 11. The seed could also be an ASCII file, or any other form of
information. With a v=2, k=7 chain rule selected at random, and the alien as the
root state, a subtree was generated with the CA reverse algorithm; note that the
subtree has no branching, and branching is highly unlikely to occur. The subtree
was set to stop after 20 backward steps which took about 12 seconds. The state
reached is the encryption.

These rules are special because in contrast to the vast majority of rule-
space, the typical number of predecessors of a state (in-degree) is extremely
low, decreasing with system size. For larger systems the in-degree is likely to
be exactly one. Consequently, the garden-of-Eden density is also very low and
decreasing with system size; becoming vanishingly small in the limit. This
means nearly all states have predecessors, embedded deeply along chain-like
transients. Large 1d CA can be run backwards very efficiently for these rules,
generating a chain of predecessors. As the rules rapidly scramble patterns, they
allow a method of encryption which is available in DDLab; run backwards to
encrypt, forward to decrypt (figures 35 and 36).
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Fig. 36. To decrypt, starting from the encrypted state in figure 35, the CA with
the same rule was run forward by 20 time-steps, the same number that was run
backwards, to recover the original image or bit-string. This figure shows time-steps
17 to 25 to illustrate how the “alien” image was scrambled both before and after
time-step 20.

24 Sequential updating

By default, network updating is synchronous, in parallel. DDLab also allows
sequential updating, both for space-time patterns and attractor basins. De-
fault updating orders are forwards, backwards or a random order, but any
specific order can be set from the n! possible orders for a network of size n.
The order can be saved/loaded from a file.

An algorithm in DDLab computes the neutral order components (limited
to network size n ≤ 12). These are sets of sequential orders with identical
dynamics. DDlab treats these components as subtrees generated from a root
order, and can generate a single component subtree, or the entire set of compo-
nents subtrees making up sequence space (the neutral field) which are drawn
in an analogous way to attractor basins.

25 Sculpting attractor basins

Learning and forgetting algorithms allow attaching and detaching sets of
states as predecessors of a given state by automatically mutating rules or
wiring couplings. This allows “sculpting” the attractor basin to approach a
desired scheme of hierarchical categorization. Because any such change, espe-
cially in a small network, usually has significant side effects, the methods are
not good at designing categories from scratch, but might be useful for fine
tuning a network which is already close to where its supposed to be.

More generally, a very preliminary method for reverse engineering a net-
work, also known as the inverse problem, is included in DDLab, by reducing
the connections in a fully connected network to satisfy an exhaustive map (for
network sizes n ≤ 13). The inverse problem is how to find a minimal network
that will satisfy a full or partial mapping, fragments of attractor basins such
as trajectories.
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