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Abstract

A key notion in the study of network dynamics is that state-space is
connected into basins of attraction. Convergence in attractor basins cor-
relates with order-complexity-chaos measures on space-time patterns. A
network’s “memory”, its ability to categorize, is provided by the con-
figuration of its separate basins, trees and sub-trees. Based on computer
simulations using the software Discrete Dynamics Lab[19], this paper pro-
vides an overview of recent work describing some of the issues, methods,
measures, results, applications and conjectures.

1 Introduction

Processes consisting of concurrent networks of interacting elements which affect
each other’s state over time are central to a wide range of natural and artificial
systems drawn from many areas of science; from physics to biology to cogni-
tion; to social and economic organization; to computation and artificial life; to
complex systems in general. The dynamics of these “decision making” networks
depends on the connections and update logic for each element, resulting in com-
plex feedback webs that are difficult to treat analytically. Understanding these
systems depends on numerical simulations of idealized computer models known
as discrete dynamical networks.

Cellular automata (CA) are a powerful yet simple class of network, character-
ized by a homogeneous rule and uniform nearest neighbour connections, provid-
ing models to study processes in physical systems such as reaction-diffusion[15],
and self-organization by the emergence of coherent interacting structures[18].
By contrast, random Boolean networks (RBN) provide models for biological
systems such as neural[3] and genetic[11] networks, where connections and rules
must be less constrained. In addition, the idealized networks themselves hold
intrinsic interest as mathematical/physical systems.

A key notion underlying network behavior is that state-space is organized
into a number of basins of attraction, connecting states according to their tran-
sitions, and summing up the network’s global dynamics, analogous to Poincaré’s
“phase portrait” which provided powerful insights in continuous dynamics.
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Figure 1: A basin of attraction (one of 15) of a random Boolean network (n=13,
k=3) shown in figure 15. The basin links 604 states, of which 523 are garden-of-Eden
states. The attractor period = 7, and one of the attractor states is shown in detail
as a bit pattern. The direction of time is inwards from garden-of-Eden states to the
attractor, then clock-wise.

The quality of dynamical behaviour of CA, from ordered to chaotic1, is
reflected by convergence in attractor basins, their characteristic in-degree, which
influences the length of transients and attractor cycles. The in-degree of a
state is its number of pre-images (predecessors). Bushy subtrees with high in-
degree imply high convergence and order. Sparsely branching subtrees imply
low convergence and chaos. In the case of RBN, attractor basins reveal how the
network is able to hierarchically categorizes state-space into separate basins,
trees and sub-trees, the network’s “memory”. Changes to the network’s wiring
or rules change the memory categories, providing insights into learning[17, 20].

Traditionally, network dynamics has been investigated by running networks
forward from many initial states to study space-time phenomenology[15], and
for statistical measures on basins of attraction[8]. More recently, exact repre-
sentations of basins of attraction and sub-trees have become accessible, where
algorithms directly compute the pre-images of network states, allowing the net-
work to be run “backwards” to disclose all possible historical paths[16, 17,
21]. Based on computer simulations using the software Discrete Dynamics Lab
(DDLab)[19], this paper provides an overview of network architecture, the char-
acteristics of space-time patterns, the methods and algorithms for reconstructing
basins of attraction, and related parameters, measures, results, applications and
conjectures, placing the dynamics along particular trajectories in the context of
global dynamics.

1The notion of “chaos” is used here by analogy only to its meaning in chaos theory, although
there are many common properties, for example sensitivity to initial conditions.
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2 Network Architecture

Discrete dynamical networks consist of a set of elements (cells) taking inputs
from each other, and changing their cell-state according to some logical function
on their inputs. The connectivity is usually sparse. The cell-state ranges over
a discrete alphabet, in this paper just a binary alphabet (0 or 1) is considered.
The updating is generally synchronous, though updating sequentially in a preset
order or partial order is also of interest. A partial order is a sequence of sets of
cells, where updating within each set is synchronous.

1d. k=0-13. The extra asymmetric cell
in even k is on the right. The wiring is
shown between two time-steps.

2d, k=2-13 (k=0-1 as in 1d). Note that
k=6 and k=7 define an effectively trian-
gular grid by changing between odd and
even rows. The classical von Neuman and
Moore neighbourhoods are indicated.

3d, k=6-13 (k=0-5 as in 2d), shown look-
ing up into an axonometric cage.

Figure 2: 1d, 2d and 3d neighbourhood
templates defined in DDLab. In 2d and
3d, to maximize symmetry, even k does
not include the central target cell.

A CA is a very regular network, sometimes described as an artificial universe
with its own physics. Cells take inputs from their nearest (and next nearest)
neighbours (local “wiring”) according to a fixed neighbourhood template, so
issues of network geometry and boundary conditions are crucial. The same
logical rule is applied everywhere. Figure 2 shows neighbourhood templates for
1d, 2d and 3d as applied in DDLab. An RBN relaxes these constraints, allowing
arbitrary “wiring” and rules, as in figure 3. The number of input wires available
to each cell may also vary. However, RBN architecture can be biased in countless
ways, described in section 4, to constrain wiring or rules and approach CA, for
example RBN wiring with a constant rule, or local wiring with mixed rules.

The wiring and rules can be tailored to very specific requirements, as in
models of neural networks in the cortex[3]. The wiring can be constrained within
a fixed distance from each cell, which confers meaning to network geometry and
boundary conditions, whereas with completely arbitrary wiring the geometry
just provides a convenient way of representing the network. A rule mix can
be constrained to sample just a few rules or rules with a particular bias, as in
genetic network models[5].
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Figure 3: Network wiring. left: 1d, k=3,
the wiring is shown between two time-
steps. centre: 2d, k=5. right: 3d, k=7.
In RBN, cells anywhere in the network are
wired back to each position in the “pseudo-
neighbourhood”.

Hybrid networks can be constructed by putting an RBN within a CA or
vice-versa. Networks of networks can be set up, with weak interactions so they
perturb each other’s dynamics. The functionality for setting up networks in
these ways is present in DDLab.

The network parameters can be listed as follows:

size: The system size n, the number of cells in the network.

connectivity: The number of input wires per cell k, or the k-mix if the connectivity
is not homogeneous. The connectivity is usually sparse, i.e. k � n.

neighbourhood: The neighbourhood template for CA, or the pseudo-neighbourhood
for RBN, as in figure 2.

wiring: For RBN, how each cell is wired relative to its pseudo-neighbourhood.

rule: The rule for CA, or the rule scheme scheme for RBN. Rules are generally defined
as look-up tables.

updating: The updating, usually synchronous. Alternatively sequential according to
a defined order or partial-order.

geometry: The underlying geometry and boundary conditions, 1d, 2d, 3d, orthog-
onal or triangular, or some other geometry, for example a hypercube. This is
essentially a function of the the neighbourhood template and wiring scheme.
The geometry for graphically representing the network may not necessarily cor-
respond to the underlying geometry.

A CA neighborhood, or RBN pseudo-neighborhood, of size k has 2k per-
mutations of values. The most general expression of the Boolean function

or rule is a lookup table (the rule-table) with 2k entries, giving 22k

possible
rules. Sub-categories of rules can also be expressed as simple algorithms, concise
AND/OR/NOT logical statements (which could be implemented as combinato-
rial circuits), totalistic rules[14] or threshold functions.

4



By convention[14] the rule table is arranged in descending order of the values
of neighborhoods, and the resulting bit string converts to a decimal or hexadec-
imal rule number. For example the k=3 rule-table for rule 30,

7 6 5 4 3 2 1 0 . . . neighbourhoods, decimal
111 110 101 100 011 010 001 000 . . . neighbourhoods, binary
0 0 0 1 1 1 1 0 . . . outputs, the rule table

The rule-table for other k values are set out in a corresponding way. k ≥ 4
rules are referred to by their hexadecimal rule numbers. k ≤ 3 rules are usually
referred to by their more familiar decimal rule numbers.

For a given geometry, the behaviour space of CA depends on the size of rule-

space, 22k

, though rule symmetries effectively reduce this number. For example,
the 223

= 256 rules in k = 3 rule-space reduce to 88 equivalence classes[16]. The
behaviour space of RBN is much greater, taking into account possible permu-
tations of wiring and rule schemes, but there are also RBN equivalence classes
relating to these permutations[10]. In general, the number of effectively different

RBN of size n cannot exceed (2n)
(2n)

(see section 9).

3 Trajectories and space-time patterns

A state of a discrete dynamical network is the pattern of 0s and 1s at a given
time-step. A trajectory is the sequence of states at successive time-steps, the
systems local dynamics. Examples of 1d, 2d and 3d space-time patterns are
shown in figures 4, 5 and 6. A time axis is only possible in representations of
1d or 2d systems. As well as showing cells as white(0) or black(1), an alter-
native presentation shows cells in colors (or shades) according to their look-up
neighbourhood (figure 4). This allows the most frequently occurring colors to
be progressively filtered to show up gliders and other space-time structures as
in figure 5, which can be done interactively, on-the-fly, in DDLab for any CA.
This is an alternative method to the “computational mechanics” approach[4].

Figure 4: Space-time patterns of a CA (n=24, k = 3, rule 90). 24 time-steps from
an initial state with a single central 1. Two alternative presentations are shown. Left:
cells by value, white=0 black=1. Right: cells colored (or shaded) according to their
look-up neighbourhood. This allows filtering, and improves the clarity of space-time
patterns in 2d and 3d.
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Figure 5: Space-time patterns of the k=3 rule 54 (n=150) from the same initial state
showing interacting gliders, which are embedded in a complicated background. Left:
cells by value. Right: cells by neighbourhood lookup, with the background filtered.

(a) 2d 100x100 triangular grid (b) 2d 56x56 +time (c) 3d 20x20x20

Figure 6: Examples of 2d and 3d CA space patterns. (a) is an evolved time-step of
a 2d CA on a k=7 triangular lattice with a reaction-diffusion rule. (b) is the 2d game-
of-Life on a 56x56 grid, but with a time dimension added, similar to a 1d space-time
pattern. The initial state is set with a number of gliders. (c) is a time-step of a 3d
k=7 CA with a randomly selected rule and starting from a single central 1.

3.1 Glider dynamics in CA

A large body of literature is devoted the study space-time patterns in CA.
“Glider” or particle dynamics, where coherent configurations emerge and inter-
act, provide a striking instance of self-organization in a simple system. Such
dynamics are classified as complex, in contrast to ordered or chaotic[14], a well
know example being Conway’s 2d “game-of-Life”[1]. Because glider dynamics
is relatively rare in CA rule spaces, much study has focused on the few known
complex rules in 1d CA. However, an unlimited source of examples are now
available, found by the methods described in sections 3.2 - 3.3.

Gliders are embedded within a uniform or periodic background or domain,
and propagate at various velocities up the system’s speed of light set by the
neighbourhood diameter. Gliders are interpreted as dislocation in the back-
ground or as the boundary reconciling two different backgrounds[4, 18]. Gliders
may absorbed or eject sub-gliders (glider-guns). Compound gliders may emerge
made up of sub-gliders re-colliding periodically. Figure 7 shows some examples.
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Glider dynamics has been interpreted as occurring at a phase transition
in rule-space between order and chaos [9], relative to the rule parameters λ[9]
and Z[16] (see section 6.2). Input-entropy provides a measure on space-time
dynamics that allows the automatic classification of rule-space (see below).

(a)7e8696de (b)89ed7106 (c)89ed7106 (d)b51e9ce8 (e)b51e9ce8

Figure 7: Gliders, glider guns and compound gliders in k=5 1d CA. (c) is a compound
glider made up of two independent gliders locked into a cycle of repeating collisions.
(d) is a glider with a period of 106 time-steps. (e) is a compound glider-gun.

3.2 Input entropy

Keeping track of the frequency of rule-table look-ups (the k-block frequency, or
“look-up frequency”) in a window of time-steps, provides a measure, the vari-
ance of input-entropy over time, which is used to classify 1d CA automatically
for a spectrum of ordered, complex and chaotic dynamics[22]. The method al-
lows screening out rules that support glider dynamics and related complex rules,
giving an unlimited source for further study. The method also shows the dis-
tribution of rule classes in the rule-spaces of varying neighbourhood sizes. The
classification produced seems to correspond to our subjective view of space-
time dynamics, and to global measures on the “bushiness” of typical sub-trees
in attractor basins, characterized by the distribution of in-degree sizes in their
branching structure.

The look-up frequency can be represented by a histogram (figure 8) which
distributes the total of n × w lookups among the 2k neighbourhoods (shown
as the fraction of total lookups), where n=system size, w=the window of time-
steps defined and k=neighbourhood size. The Shannon entropy of this frequency
distribution, the “input-entropy” S, at time-step t, for one time-step (w=1), is

given by, St = −
∑2k

i=1

(

Qt

i

n
× log

(

Qt

i

n

))

, where Qt
i is the look-up frequency of

neighbourhood i at time t. In practice the measures are smoothed by being
taken over a moving window of time-steps (w=10 in figure 8).

Figure 8 shows typical examples of ordered, complex and chaotic dynamics
in 1d CA, with input-entropy plots and a snapshot of the lookup frequency
histogram alongside. In ordered dynamics the entropy quickly settles at a low
value with low or zero variance. In chaotic dynamics the entropy settles at a
high value, but again with low variance. Both ordered and chaotic dynamics
have low input-entropy variance. By contrast, in complex dynamics the entropy
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Figure 8: Typical 1d CA Space-time patterns showing ordered, complex and chaotic
dynamics (n=150, k=5,rule numbers shown in hex). Alongside each space-time pattern
is a plot of the input-entropy, where only complex dynamics (centre) exhibits high
variance because glider collisions make new gliders.

fluctuates erratically both up and down for an extended time, because glider
collisions produce new gliders, often via a temporary zone of chaotic dynamics.
Complex rules can be recognized by eye, subjectively. Input-entropy variance
provides a non-subjective measure for recognizing complex rules automatically.

A related method of visualizing the entropy-variance is to plot input-entropy
against the density of 1s relative to a moving window of time-steps. Each rule
produces a characteristic cloud of points which lie within a parabolic envelope
because high entropy is most probable at medium density, low entropy at either
low or high density. Each complex rule produces a plot with its own distinctive
signature, with high input-entropy variance. Chaotic rules, on the other hand,
will give a flat, compact cloud at high entropy (at the top of the parabola). For
ordered rules the entropy rapidly falls off with very few data points because the
system moves rapidly to an attractor.
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Figure 9: Entropy-density scatter plot. Input-
entropy is plotted against the density of 1s relative
to a moving window of time-steps w=10. k=5,
n=150. Plots for a number of complex rules from
the automatic sample (section 3.3) are show su-
perimposed, each of which has its own distinctive
signature, with a marked vertical extent, i.e. high
input-entropy variance. About 1000 time-steps
are plotted from several random initial states for
each rule.

3.3 Automatically classifying rule-space

Figure 10: left: Clas-
sifying a random sam-
ple of k=5 rules by plot-
ting mean entropy against
standard deviation of the
entropy, with the fre-
quency of rules within a
128x128 grid shown verti-
cally. below: Equivalent
plots for samples of k=6
and 7 rules.

To distinguish ordered, complex and chaotic rules automatically, the mean
input-entropy taken over a span of time-steps is plotted against the standard
deviation of the input entropy. Figure 10 summarizes how random samples of
k=5, 6 an 7 rules where classified by this method. For each rule, the data was
gathered from 5 runs from random initial states, for 430 time-steps, discounting
the first 30 to allow the system to settle, with w=5 as the size of the moving
window of time-steps.

Chaotic rules are concentrated in the top left corner ”tower”, ordered rules
on the left with lower entropy. Complex rules have higher standard deviation,
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and are spread out towards the right. There is a fairly distinct boundary be-
tween ordered and chaotic rules, but a gradual transition from both towards
the complex rules. As the standard deviation decreases glider interactions ei-
ther become more frequent, transients longer, tending towards chaos, or less
frequent, transients shorter, tending towards order. The plots for k=6 and k=7
rules indicate a greater frequency of chaotic rules at the expense of ordered and
complex rules for greater k. The decrease in ordered rules is especially marked.

To check whether the expected dynamics (recognized subjectively) corre-
sponds to the measures as plotted, the dynamics of particular rules at different
positions on the plots can be easily examined in DDLab, for example with a
mouse click on the scatter plot. Preliminary scans confirm that the expected
behaviour is indeed found, but further investigation is required to properly de-
marcate the space between ordered, complex and chaotic rules and to estimate
the proportion of different rule classes for different k.

Input entropy is a local measure on the space-time patterns of typical tra-
jectories. The distribution of the rule samples according to these local measures
may be compared with global measures on convergence in attractor basins, G-
density and the in-degree frequency, described in section 8. Preliminary results
indicate a strong relationship between these global measures and the rule sample
input-entropy plots.

4 RBN space-time patterns

Figure 11: Space-time patterns for intermediate 1d architecture, from CA to RBN.
n=150, k=5, 150 time-steps from a random initial state. (a) Starting off as a complex
CA (rule 6c1e53a8 as in figure 8), 4% (30/750) of available wires are randomized at
30 time-step intervals. The coherent pattern is progressively degraded. (b) A network
with local wiring but mixed rules, vertical features are evident. (c) RBN, random
wiring and mixed rules, with no bias, shows maximal chaotic dynamics.

In contrast to CA, glider dynamics in general cannot occur in RBN because of
their irregular architecture. Figure 11 (left) shows glider dynamics degrading
as local wiring is progressively scrambled. An alternative order-chaos notion in
RBN is the balance between “frozen”, stabilized, regions and changing regions
in the space-time pattern[8]. Stable regions are characteristic of RBN with
low connectivity, k ≤ 3, because rules which induce stability are relatively
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frequent in these rule-spaces. To induce stability for k ≥ 4, where chaotic rules
become overwhelmingly predominant, biases on rules must be imposed, low λ
(see section 6.2) or a high proportion of “canalizing” inputs. In a rule’s lookup
table, an input wire is canalizing if a particular input (0 or 1) determines, by
itself, the neighbourhood’s output. A rule’s degree of canalization can be from
0 to k, for the same output; for the network it is the percentage of all inputs
that are canalizing, C. An RBN’s order-chaos characteristics, for varying C,
are captured by the measures illustrated in figure 12, and described below.

Figure 12: Order-chaos measures for a RBN
36 × 36, k = 5. C = the percentage of canaliz-
ing inputs in the randomly biased network. top

left: frozen elements that have stabilized for 20
time-steps are shown, 0s-green, 1s red, otherwise
white, for C=25% and 52%. top right: the log-
log “damage spread” histogram for C=52%, sample
size about 1000. left: the Derrida plot for C=0%,
25%, 52%, and 75%, for 1 time-step, Ht=0-0.3, in-
terval = 5, sample for each Ht = 25.

The “Derrida plot”[2], is analogous to the Liaponov exponent in continu-
ous dynamics, and measures the divergence of trajectories based on normalized
Hamming distance H , the fraction of bits that differ between two patterns.
Pairs of random states separated by Ht, are independently iterated forward by
one (or more) time-steps. For a sample of random pairs, the average Ht+1 is
plotted against Ht, and the plot is repeated for increasing Ht (from 0 to 0.3 in
figure 12). A curve above the main diagonal indicates divergent trajectories and
chaos, below - convergence and order. A curve tangential to the main diagonal
indicates a balance.

A related measure is the distribution of “damage spread” resulting from a
single bit change at a random position in a random state, for a sample of random
states. The size of damage is measured once it has stabilized, i.e. not changed
for say 5 time-steps. A histogram (figure 12) is plotted of damage size against
the frequency of sizes. Its shape indicates order or chaos in the network, where
a balance between order and chaos approximates to a power law distribution.
Results by these measures for k = 5, indicate a balance at C = 52% (see figure
12). There are further measures on basins of attraction as in figure 14.

These methods are applied in the context of RBN models of genetic reg-
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ulatory networks[8] discussed in section 10. The conjecture is that evolution
maintains genetic regulatory networks marginally on the ordered side of the
order-chaos boundary to achieve stability and adaptability in the pattern of
gene expression which defines the cell type[5].

5 Basins of Attraction

For a network size n, an example of one of its states B might be
1010 . . . 0110. State-space is made up of all 2n states, the space of
all possible bitstrings or patterns.

Part of a trajectory in state-space, where C is a successor of B, and
A is a pre-image of B, according to the dynamics of the network.

The state B may have other pre-images besides A, the total is the
in-degree. The pre-image states may have their own pre-images
or none. States without pre-images are known as garden-of-Eden

states.

Any trajectory must sooner or later encounter a state that occurred
previously - it has entered an attractor cycle. The trajectory lead-
ing to the attractor a transient. The period of the attractor is the
number of states in its cycle, which may be only just one - a point
attractor.

Take a state on the attractor, find its pre-images (excluding the
pre-image on the attractor). Now find the pre-images of each pre-
image, and so on, until all garden-of-Eden states are reached. The
graph of linked states is a transient tree rooted on the attractor
state. Part of the transient tree is a subtree defined by its root.

Construct each transient tree (if any) from each attractor state.
The complete graph is the basin of attraction. Some basins of
attraction have no transient trees, just the bare “attractor”.

Now find every attractor cycle in state-space and construct its
basin of attraction. This is the basin of attraction field containing
all 2n states in state-space, but now linked according to the dy-
namics of the network. Each discrete dynamical network imposes
a particular basin of attraction field on state-space.

Figure 13: State space and basins of attraction.

The idea of basins of attraction in discrete dynamical networks is summarized
in figure 13. Given invariant network architecture and the absence of noise, a
discrete dynamical network is deterministic, and follows a unique (though in
general, unpredictable) trajectory from any initial state. When a state that
occurred previously is re-visited, which must happen in a finite state-space,
the dynamics becomes trapped in a perpetual cycle of repetitions defining the
attractor (state cycle) and its period (minimum one, a stable point).

These systems are dissipative. A state may have multiple “pre-images”

12



(predecessors), or none, but just one successor. The number of pre-images
is the state’s “in-degree”. In-degrees greater than one require that transient
states exist outside the attractor. Tracing connections backwards to successive
pre-images of transient states will reveals a tree-like topology where the “leaves”
are states without pre-images, known as garden-of-Eden states. Conversely, the
flow in state-space is convergent. Measures of convergence are G-density, the
fraction of states that are garden-of-Eden, and the distribution of in-degrees,
described in section 8. The set of transient trees rooted on the attractor is its
basin of attraction (figure 1). The local dynamics connects state-space into a
number of basins, the basin of attraction field, representing the systems global
dynamics (figure 15).

6 Computing Pre-images

Figure 14: Statistical data on attractor basins for a large network; a 2d RBN 20×20,
k=5, with fully random wiring and a fraction of canalizing inputs C=50%. The his-
togram shows attractor types and the frequency of reaching each type from 12,360
random initial states, sorted by frequency. 46 different attractors types where found,
their periods ranging from 4 to 102, with average transient length from 21 to 113
time-steps. The frequency of arriving at each attractor type indicates the relative size
of the basin of attraction.

Attractor basins are constructed with algorithms that directly compute the
pre-images of network states[16, 17, 21]. This allows the network’s dynamics,
in effect, to be run backwards in time. Backward trajectories will, as a rule,
diverge. Different reverse algorithms apply to networks with different sorts
of connectivity. The most computationally efficient algorithm applies to 1d
networks with local wiring, taking advantage of the regularity of connections.
The wiring must be uniform, as for 1d CA, but the network may have a mix of
rules. Analogous algorithms could be derived for 2d and 3d networks, but have
not been implemented. An alternative algorithm is required for RBN with their
non-local connections and possibly mixed k. This algorithm also applies to CA
of any dimension or geometry, as CA are just a sub-class of RBN.

Provided k << n, these methods are in general orders of magnitude faster
than the brute force method (section 9.1), constructing an exhaustive map re-
sulting from network dynamics, a method which rapidly becomes intractable
with increasing network size and so is limited to very small systems. However,
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the exhaustive method may be applied to all types of network, and also allows
the attractor basins of random maps to be constructed, as described in section
9. The agreement of these three independent methods, and other checks, give
considerable confidence in the accuracy of the pre-image computations.

Some basic information on attractor basin structure can be found by statis-
tical methods, first applied by Walker[13], as shown in figure 14. These are also
implemented in DDLab and are appropriate for large networks. Trajectories are
run forward from many random initial states looking for a repeat in the network
pattern to identify the range of attractor types reached. The frequency of reach-
ing a given attractor type indicates the relative size of the basin of attraction,
and other data are extracted such as the number of basins, and the length of
transients and attractor cycles.

Figure 15: The basin of attraction field of a random Boolean
network (n=13, k=3). The 213 = 8192 states in state space
are organized into 15 basins, with attractor periods ranging
between 1 and 7. The number of states in each basin is: 68,
984, 784, 1300, 264, 76, 316, 120, 64, 120, 256, 2724, 604, 84,
428. Figure 1 shows the arrowed basin in more detail. Right:
the network’s architecture, its wiring/rule scheme.

cell wiring rule

12 10,1,7 86

11 6,2,9 4

10 10,10,12 196

9 2,10,4 52

8 5,6,8 234

7 12,5,12 100

6 1,9,0 6

5 5,7,5 100

4 4,11,7 6

3 8,12,12 94

2 11,6,12 74

1 6,5,9 214

0 12,9,6 188

6.1 The CA reverse algorithm

Consider a 1d CA size n (indexed n− 1 . . .0) and neighbourhood k. To find the
all pre-images of a state A, let P be a “partial pre-image” where at least k − 1
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continuous bits (on the left) up to and including Pi, are known. Now find the
next unknown bit to the right, Pi−1, consistent with the rule-table. (• indicates
known, ? unknown, bits),

Pi+1 Pi Pi−1

. . . partial pre-image P . . . • • ? compare the outputs of Pi+1, Pi, ?

• with each other and with Ai

. . . known state A . . . Ai

If k = 3 (for example), the bitstring Pi+1, Pi, ? corresponds to two neigh-
bourhood entries in the rule-table. When their outputs, T1 and T2, are com-
pared with each other and with Ai there are three possible consequences. The
permutation is either deterministic, ambiguous or forbidden.

1. deterministic: if T1 6= T2, then Pi−1 is uniquely determined, as there is
only one valid neighbourhood with the output Ai.

2. ambiguous: if T1 = T2 = Ai, then both 0 and 1 are valid solutions for
Pi−1. The partial pre-image must be duplicated, with Pi−1 = 0 in one
version and Pi−1 = 1 in the other.

3. forbidden: if (T1 = T2) 6= Ai, then Pi−1 has no valid solution.

If forbidden (3) the partial pre-image P is rejected. If deterministic or am-
biguous (1 or 2) the procedure is continued to find the next unknown bit to the
right. However, in the ambiguous case (2), both alternative partial pre-images
must be continued. In practice one is assigned to a stack of partial pre-images
to be continued at a later stage. As the procedure is re-applied to determine
each successive unknown bit towards the right, each incidence of ambiguous
permutations will require another partial pre-image to be added to the stack.
Various refinements can limit this growth.

The procedure is continued to the right to overlap the assumed start string,
to check if periodic boundary conditions are satisfied; if so the the pre-image is
valid. The procedure is re-applied to each partial pre-image taken from the par-
tial pre-image stack, starting at the first unknown cell. Each time an ambiguous
permutation (2) occurs a new partial pre-image must be added to the stack, but
the stack will eventually be exhausted, at which point all the valid pre-images
containing the assumed start string will have been found. The procedure is
applied for 2k−1 start strings, assuming the different possible values of the first
k − 1 bits. The reverse algorithm is applied from left to right in DDLab, but is
equally valid when applied from right to left. Examples are given in [16, 21].

6.2 The Z parameter

A by product of the CA reverse algorithm is the probability of the next unknown
bit being deterministic (section 6.1(1)). Two versions of this probability are
calculated from the rule-table. Zleft for the reverse algorithm applied from
left to right, and Zright for the converse. The Z parameter is the greater of
these values. For Z=1 it can be shown[16] that for any system size n, the
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maximum in-degree, Imax ≤ 2k−1, because the next unknown bit is always
uniquely determined, so the assumed start string of length k − 1 may generate
at most 2k−1 pre-images. If only one of Zleft or Zright=1, Imax < 2k−1, because
at least one assumed start string must be forbidden (section 6.1(3)). At the
other extreme, for Z=0, all state space converges on the state all-0s or all-1s in
one step. For high Z, low in-degree (relative to system size n) is expected in
attractor basins, growing at a slow rate with respect to n. Conversely, for low
Z, high relative in-degree is expected growing quickly with respect to n. High Z
predicts low convergence and chaos, low Z predicts high convergence and order.

The 2k neighborhoods of size k, each indexed k−1 . . .0, each have an output
T (0 or 1) which makes up the rule-table (section 2), and may be expressed as
ak−1, ak−2, . . . a1, a0 → T . To calculate Zleft from the rule table, let nk be the
count of rule-table entries belonging to deterministic pairs, such that,

ak−1, ak−2, . . . a1, 0 → T and ak−1, ak−2, . . . a1, 1 → T (not T )
The probability that the next bit is determined because of the above is given

by, Rk = nk/2k. This is a first approximation of Zleft.
Let nk−1 be the count of rule-table entries belonging to deterministic 4-tuples

(where “?” may be 0 or 1), such that,
ak−1, ak−2, . . . a2, 0, ? → T and ak−1, ak−2, . . . a2, 1, ? → T
The probability that the next bit is determined because of the above is given

by, Rk−1 = nk−1/2k. This count is repeated if necessary for deterministic
8-tuples where Rk−2 = nk−2/2k, 16-tuples, 32-tuples, . . . up to the special
case of just one 2k-tuple which occupies the whole rule-table. These are are
independent non-exclusive probabilities that the next bit is determined. The
union of the probabilities Rk ∪Rk−1∪Rk−2 . . . = Zleft, is given by the following
expression (the order of the probabilities makes no difference to the result),

Zleft = Rk + Rk−1(1 − Rk) + Rk−2(1 − Rk + Rk−1(1 − Rk))) + Rk−3(1 −

(Rk−2(1 − Rk + Rk−1(1 − Rk))))) + · · · which simplifies to,
Zleft = Rk +Rk−1(1−Rk)+Rk−2(1−Rk−1)(1−Rk)+Rk−3(1−Rk−2)(1−

Rk−1)(1 − Rk) + · · ·

and may be expressed as2 Zleft = Rk +
∑k−1

i=1 Rk−1

(

∏k

j=k−i+1(1 − Rj)
)

where Ri = ni/2k, and ni = the count of rule-table entries belonging to de-
terministic 2k−i-tuples. A converse procedure gives Zright, and the Z parameter
= the greater of Zleft and Zright. Examples are given in [16, 21].

By virtue of being a convergence parameter, Z is also an order-chaos pa-
rameter varying from 0(order) - 1(chaos). Z can be compared with Langton’s[9]
well known λ parameter3. λ is an order-chaos parameter for CA which may
have values greater than binary, and measures the density of “non-quiescent”
outputs in a rule-table, so for just binary CA, λ = c/2k where c=the count of

2Acknowledgment and thanks to Guillaume Barreau and Phil Husbands at COGS, Univ.
of Sussex, for deriving this expression.

3Other versions of binary λ are “internal homogeneity” introduced earlier by Walker[13],
and the P parameter, applied for RBN, which varies between 0.5(chaos)-1(order). P =
cmax/2k where cmax is the count of 0s or 1s in the rule-table, whichever is more, P =
1 − λratio/2. A number of alternative order-chaos parameters have also recently been pro-
posed, for example by Marty Zwick and Burton Voorhees.

16



1s a rule-table on k inputs. λ varies between 0(order)-0.5(chaos)-1(order). To
allow Z and λ to be compared, a normalized version of binary λ is defined[16],
λratio = 2 × cmin/2k where cmin is the count of 0s or 1s in the rule-table,
whichever is less. λratio then varies from 0(order)-1(chaos) just as Z.

Plots of G-density against both the λratio and Z parameters, showing the
discrepancies as well as similarities, are shown in figure 16, for the 256 k=7
totalistic rules, which reduce to 136 non-equivalent rules in 72 clusters (having
equal λratio and Z). Points plotted in the top right corner of the λratio graph
represent λratio values that do not correspond to behaviour as expected.

Figure 16: G-density against
both λratio and Z for the set
of k=7 totalistic rules, n=16,
for Z ≥ 0.25. The complete
basin of attraction field was gen-
erated for each rule and garden-
of-Eden states counted.

6.3 The RBN reverse algorithm

Figure 17: Computing RBN pre-images.
The changing size of a typical partial pre-
image stack at successive elements. n=24,
k=3.

Consider an RBN of size n. Find all pre-images of a state A, (An−1, An−2,
. . . , A0). Each network element Ai, has a pseudo-neighbourhood size ki (as-
suming a mixed k network), indexed ki − 1, ki − 2, . . . , 0, a wiring scheme Wi,
(wki−1, wki−2, . . . , w0), where wj is a number between n− 1 and 0, the position
of the wire connection from the jth branch of the pseudo-neighbourhood, and
a rule-table Ri.

To find the all pre-images of A, let P , (Pn−1, Pn−2, . . . , P0), be a candidate
pre-image consisting of empty network elements, as yet unassigned to either
0 or 1. Starting with an element of A, Ai, assign bits from all valid pseudo-
neighbourhoods in the rule-table Ri, i.e. that are consistent with Ai, to separate
copies of P according to the wiring scheme Wi. As there will be a mix of 0s
and 1s in Ri, only some of the 2ki possible pseudo-neighbourhoods will be valid.
This will produce a stack of “partial pre-images” with some bits allocated and
the remainder empty.

Now repeat the procedure for another element of A, say Ai−1, but this time
independently for each partial pre-image previously created. If the allocation of
a bit to a given partial pre-image conflicts with the bit already assigned, then
the partial pre-image is rejected. Otherwise, the partial pre-image is added to
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the next generation of partial pre-images in a new stack. The allocation will
be valid if it is made to an “empty” element, or to an allocated element with
an equal bit. Valid allocation increases the size of the partial pre-image stack,
conflicts reduce the size of the stack.

This procedure is repeated in turn for the remaining network elements of A.
If the stack size is reduced to zero at any stage A has no pre-images. The algo-
rithm works for any ordering of elements in A, though to minimizes the growth
of the partial pre-image stack, the order should correspond to the greatest over-
lap of wiring schemes. The changing size of the stack at successive elements can
be displayed in DDLab, an example is shown in figure 17. When the procedure
is complete, the final pre-image stack may still have empty network elements,
which did not figure in any wiring scheme. These are duplicated so that all pos-
sible configurations at empty element positions are represented. The resulting
pre-image stack is the complete set of pre-images of A without duplication.

The reverse algorithm for RBN works for networks with any degree of in-
termediate architecture between RBN and CA, including CA of any dimension.
More detailed explanations of the algorithm are given in [17, 21].

7 Constructing and portraying attractor basins

To construct a basin of attraction containing a particular state, the network
is iterated forward from the state until a repeat is found and the attractor
identified. The transient tree (if it exists) rooted on each attractor state is
constructed in turn. Using one of the reverse algorithms, the pre-images of
the attractor state are computed, ignoring the pre-image lying on the attractor
itself. Then the pre-images of pre-images are computed, until all “garden-of-
Eden” states have been reached.

In a similar way, just a subtree may be constructed rooted on a state. Be-
cause a state chosen at random is very likely to be a garden-of-Eden state, it
is usually necessary to run the network forward by at least one time-step, and
use the state reached as the subtree root. Running forward by more steps will
reach a state deeper in the subtree so allow a larger subtree to be constructed.

For CA, a considerable speedup in computation is achieved by taking ad-
vantage of “rotational symmetry”[16], a property of the regularity of CA and
periodic boundary conditions, resulting in equivalent subtrees and basins.

Attractor basins are portrayed as state transition graphs, vertices (nodes)
connected by directed edges. States are represented by nodes, by a bit pat-
tern in 1d or 2d, or as the decimal or hex value of the state. In the graphic
convention[16, 19], the length of edges decreases with distance away from the at-
tractor, and the diameter of the attractor cycle approaches an upper limit with
increasing period. The direction of edges (i.e. time) is inward from garden-of-
Eden states to the attractor, and then clockwise around the attractor cycle, as
shown in figure 1. Typically, the vast majority of states in a basin of attraction
lie on transient trees outside the attractor, and the vast majority of these states
are garden-of-Eden states.
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8 Attractor basin measures

Figure 18: The G-density plotted
against system size n, for the ordered,
complex and chaotic rules shown in fig-
ures 8 and 19. The the entire basin of
attraction field was plotted for n= 7 to
22, and garden-of-Eden states counted.
The relative G-density and rate of in-
crease with n provides a simple mea-
sure of convergence.

Measures on attractor basins include the number of attractors, attractor pe-
riods, size of basins, characteristic length of transients and the characteristic
branching within trees. The last in particular gives a good measure of the con-
vergence of the dynamical flow in state-space, where high convergence indicates
ordered, and low convergence indicates chaotic dynamics.

The simplest measure that captures the degree of convergence is the density
of garden-of-Eden states[18], G-density, counted in attractor basins or sub-trees,
and the rate of increase of G-density with n as shown in figure 18. A more
comprehensive measure is the in-degree frequency distribution, plotted as a
histogram. The in-degree of a state is the number of its immediate pre-images.
This can be taken on a basin of attraction field, a single basin, a subtrees, or
on just part of a subtree for larger systems. Subtrees are portrayed as graphs
showing trajectories merging onto the sub-tree root state.

Examples of in-degree histograms for typical sub-trees of ordered, complex,
and chaotic rules are shown in figure 19. The horizontal axis represents in-degree
size, from zero (garden-of-Eden states) upwards, the vertical axis represents the
frequency of the different in-degrees. The system size n=50 for the complex
and chaotic rules. For very ordered rules in-degrees become astronomical. The
ordered rule shown is only moderately ordered, however the system size was
reduced to n=40 to allow easier computation.

From the preliminary data gathered so far, the profile of the in-degree his-
togram for different classes of rule is as follows:

Ordered rules: Very high garden-of-Eden frequency and significant fre-
quency of high in-degrees. High convergence.

Complex rules: Approximates a power law distribution. Medium conver-
gence.

Chaotic rules: Lower garden-of-Eden frequency compared to complex
rules, and a higher frequency of low in degrees. Low convergence.
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Ordered dynamics. Rule 01dc3610, n=40, Z=0.5625,
λratio=0.668. right: The complete sub-tree 7 levels deep,
with 58153 nodes, G-density=0.931.

Complex dynamics. Rule 6c1e53a8, n=50, Z=0.727,
λratio=0.938. right: The sub-tree, stopped after 12 levels,
with 144876 nodes, G-density=0.692.

Chaotic dynamics. Rule 994a6a65, n=50, Z=0.938,
λratio=0.938. right: The sub-tree, stopped after about 75
levels, with 9446 nodes, G-density=0.487.

Figure 19: Ordered - Complex - Chaotic CA dynamics.
The space-time patterns of the rules are shown in figure
8. The in-degree histogram of a typical sub-tree shown
in normal and log-log form.

9 Random Maps

The attractor basins of discrete dynamical networks can be put into the wider
context of random graph theory. CA belong to the set of RBN which in turn
belong to the set of random directed graphs with out degree one, known as
random maps. This is a mapping of the Boolean hypercube of sequences of
length n (i.e. a set Qn

2 of size 2n comprising all binary strings of length n), a
mapping from Qn

2 → Qn
2 . The structures found in random maps correspond

to those in the attractor basins of discrete dynamical networks, where each
separate component of the graph is made up of trees rooted on just one closed
cycle. The structures can be computed in DDLab just as the attractor basins
of CA or RBN.
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Figure 20: The basin of attraction field of a typical unbiased random map, n=12.
The 212 = 4096 states in state space are connected into 9 basins of attraction. The
period (p) and size (s) of the biggest three (top row), including their percentage of
state-space, are as follows: (1) p=118 s=3204=78.2%. (2) p=20 s=599=14.6%. (3)
p=32 s=194=4.74%. The field’s G-density=0.37, this is a low value implying chaotic
dynamics.

A random map can be constructed by assigning a successor to each state in
state-space, i.e. independently assign one successor (or image) V∗ also belonging
to Qn

2 , chosen at random (or with some bias) to each element Vi of the set Qn
2 .

There are (2n)
(2n)

possible mappings. The mapping is represented below as
2n pairs of strings (or states in state-space), where each image V∗ represents a
possibly different member of the set Qn

2 .

V2n
−1 V2n

−2 . . . Vi . . . V2 V1 V0

↓ ↓ ↓ ↓ ↓ ↓

V∗ V∗ . . . V∗ . . . V∗ V∗ V∗

The list of images is likely to contain repeats, and if so some other members
of Qn

2 must be missing from the list. Transitions to some arbitrary element
Vx may thus be one-to-one or many-to-one, or may not exist. The latter is
a garden-of-Eden state in the terminology of discrete dynamical networks. A
representation of the particular mapping may be drawn as a basin of attraction
field or fragment thereof just as for CA or RBN, and will have the same general
topology of trees rooted on attractor cycles, as shown in figure 20.

Random maps provide the most general context for a discrete dynamical
system and are equivalent to a fully connected RBN where k = n, (the neigh-
bourhood = the network size). This follows because each cell in the RBN can
be assigned an arbitrary output for any network state.
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9.1 The Random Map Reverse Algorithm

The “brute force” reverse algorithm for finding the pre-images of states in ran-
dom maps can also be applied to discrete dynamical networks, RBN and CA.
The method depends on first constructing an exhaustive mapping Qn

2 → Qn
2 .

For discrete dynamical networks, the mapping is defined by iterating the net-
work forward by one step from every state in state-space and filling in the image
list accordingly. A list of 2n pairs, each state and its image (successor), is held in
a data structure. The pre-images of an arbitrary state S are found by scanning
the image list; any occurrence of S in the list gives a pre-image, the state paired
with S. If S does not occur in the list it has no pre-images, a garden-of-Eden
state.

10 Biological networks

Genetic regulatory networks have been thought of as discrete dynamical net-
works, to explain how gene expression is able to settle into a number of distinct
stable patterns or cell types, despite the fact that all eukaryotic cells in an or-
ganism carry an identical set of genes[5, 7, 11, 23]. The gene expression pattern
of a cell needs to be stable but also adaptable. Section 4 described biases to
RBN to achieve such a balance, and related measures.

Cell types have been interpreted as the separate attractors or basins of at-
traction into which network dynamics settles from various initial states. Tra-
jectories leading to attractors are seen as the pathways of differentiation. The
attractor basins in RBN are idealized models for the stability of cell types against
mutations, and also perturbations of the current state of gene activation. Figure
21 illustrates both effects. If a particular reference state (pattern of gene acti-
vation) undergoes a 1 bit perturbation, the dynamics may return to the same
subtree, the same basin, or it may be flipped to another basin, a different cell
type. In this case the basin of attraction field remains unchanged. Alternatively,
the network itself my undergo a mutation (in the genotype), resulting in an an
altered basin of attraction field (the phenotype).

The examples in figure 21 are small so that the pattern at each node can
be shown. Larger networks are affected in analogous ways. The consequences
of a one bit mutation has a relatively smaller effect with increasing network
size. However, a particular one bit mutation may cause drastic consequences
whatever the size, such as breaking an attractor cycle. The consequences of
moving a connection wire is usually greater than a one bit mutation in a rule.

10.1 Memory

Attractors classify state-space into broad categories, the network’s “content ad-
dressable” memory in the sense of Hopfield[6]. Furthermore, state-space is cate-
gorized along transients, by the root of each subtree forming a hierarchy of sub-
categories. This notion of memory far from the equilibrium condition of attrac-
tors greatly extends the classical concept of memory by attractors alone[17, 20].
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It can be argued that in biological networks such as neural networks in the
brain or networks of genes regulating the differentiation and adaptive behavior
of cells, attractor basins and subtrees, the network’s memory, must be just right
for effective categorization. The dynamics need to be sufficiently versatile for
adaptive behavior but short of chaotic to ensure reliable behavior, and this in
turn implies a balance between order and chaos in the network.

A current research topic, known as the “inverse problem”, is to find ways to
deduce network architecture from usually incomplete data on transitions, such
as a trajectory. This is significant in genetics, to infer the genetic regulatory
network (modeled as RBN) from data on successive patterns of gene expression
in the developing embryo[12]. In pattern recognition and similar applications
in the area of artificial neural networks, solutions to the inverse problem would
provide “learning” methods for RBN to make useful categories[17, 20].

el. wiring rule

5 2,4,5 62

4 5,0,1 61

3 4,3,5 108

2 2,5,0 5

1 4,2,1 64

0 3,1,2 231

Figure 21: The basin
of attraction field of (a)
The RBN (n=6, k=3)
as defined in the ta-
ble (above), and (b) the
RBN following a 1 bit
mutation to one of its
rules. Some differences
in the fields are evident.
The result or a 1 bit per-
turbation to a reference
state of all 1s (rs) is in-
dicated by its 1 bit mu-
tants (m).

11 Conclusion

Important insights may be gained by considering network dynamics in the con-
text of attractor basins. Some methods of achieving this have been presented,
including parameters and measures on particular trajectories that may be re-
lated to those on global dynamics. It is hoped that these methods may provide
a basis for future research, both in theory and applications, in the many areas
of complex systems where network dynamics plays a central role.
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