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The emergence of interacting structures in cellular automata is intimately
connected with notions of order, complexity and chaos, which depend on the
degree of converge to attractors. Information can be encrypted by hiding
in chaotic trajectories. In the general case of “random” networks, content
addressable memory is apparent in the precise arrangement of state-space
into basins of attraction and subtrees, a concept of memory and learning
at the most basic level. This paper is an overview of the ideas, results and
applications illustrated with images created in DDLab.
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1. Introduction

“The Global Dynamics of Cellular Automata”[8] published in 1992 intro-
duced a reverse algorithm for computing the pre-images (predecessors) of
states for any finite 1D binary cellular automata (CA) with periodic bound-
aries. This made it possible to reveal the precise topology of “basins of
attraction” – state transition graphs – states linked into trees rooted on at-
tractor cycles, which could be computed and drawn automatically (Fig. 1).

Not long after, a different reverse algorithm[10] was invented for com-
puting the pre-images of random Boolean networks (RBN) allowing their
basins of attraction to be drawn (Fig. 14), just in time to make the cover
of Kauffman’s 1993 book[5] “The Origins of Order” (Fig.2). The RBN
algorithm is now generalised for the most versatile “discrete dynamical net-
works” (DDN). These algorithms compute pre-images directly without rely-
ing on exhaustive testing of state-space, and are implemented in the software
DDLab[17].
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Fig. 1. Top: The basin of attraction field of a 1D binary CA, n=16. The 216 states

in state-space are connected into 89 basins of attraction, only the 11 nonequivalent

basins are shown, with symmetries characteristic of CA[8]. Time flows inwards,

then clockwise at the attractor. Bottom: A detail of the second basin, where states

are shown as 4×4 bit patterns.

In this paper, a DDN is a finite set of n elements with discrete states
or values. Elements are connected with directed links – the wiring scheme.
Each element updates its value synchronously according to a logical rule
applied to its k inputs – the system updates in discrete time-steps. CA are
much more restricted with a universal rule, and a regular lattice with peri-
odic boundaries, created by wiring from a homogeneous local neighbourhood
connecting “cells”. Langton[2] has aptly described CA as “a discretised ar-
tificial universe with is own local physics”. Obviously there are countless
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Fig. 2. The front covers of Wuensche and Lesser’s (1992) “The Global Dynamics of

Cellular Automata” [8] and Kauffman’s (1993) “The Origins of Order” [5]. A basin

of attraction of a CA, and the basin of attraction field of a RBN, where computed

and drawn with the precursor of DDLab.

variations and intermediate architectures between DDN and CA – classi-
cal RBN[4] have binary values and homogeneous k, but all these systems
reorganise state-space into basins of attraction.

Running a CA, RBN or DDN backwards in time, tracing all possible
branching ancestors, opens up new perspectives on dynamics. A trajectory
from some initial state can be placed in the context of the flow in state-
space leading to attractors, analogous to Poincaré’s “phase portrait” in
continuous dynamics, but applied to systems (as in nature) where time
and space are discrete. The implications were discussed by Langton in
his foreword to [8]. Continuous and discrete dynamics share analogous
concepts: fixed points, limit cycles, chaos, sensitivity to initial conditions,
and chaotic attractors. The seperatrix or boundary between basins has
some affinity to unreachable (garden-or-Eden) leaf states. The spreading
of a local patch of transients measured by the Liapunov exponent has its
analog in the degree of convergence or bushiness of subtrees – the in-degree
of a typical state, predicted by the Z-parameter[8, 14].

The list of analogies and disparities could go on (and deserves an in-
depth dissertation) but three significant behavioural phenomena, reviewed
in this paper, are arguably more palpable in discrete as opposed to con-
tinuous dynamics: complexity by interacting structure – for insights into
self-organisation, information hiding within chaos – with applications for
encryption, and the concept of memory and learning at the most basic level
– for modelling neural and genetic networks.
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Fig. 3. Three basins of attraction with contrasting topology, n=15, k=3, rules

250, 110 and 30. The time flows inward towards the attractor, then clockwise.

One complete set of equivalent trees is shown in each case, and just the nodes of

unreachable leaf states. The topology varies from very bushy to sparsely branching,

with measures such as leaf density, transient length, and in-degree distribution

predicted by the rule’s Z-parameter.

rule 250

rule 110

rule 30

←————- 1D space ———-→

time
steps
↓

Fig. 4. 1D space-time patterns of the k=3 rules in fig.3, characteristic of order,

complexity and chaos. System size n=100 with periodic boundaries. The same

random initial state was used in each case. A space-time pattern is just one path

through a basin of attraction.
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Fig. 5. Left: The space-time patterns of a 1D complex CA, n-150 about 200 time-

steps. Right: A snapshot of the input frequency histogram measured over a moving

window of 10 time-steps. Centre: The changing entropy of the histogram, its vari-

ability providing a non-subjective measure to discriminate between ordered, com-

plex and chaotic rules automatically. High variability implies complex dynamics.

Fig. 6. Scatter plot of a sample of 15800 2d hexagonal CA rules (v=3, k=6),

plotting mean entropy against entropy variability, which classifies rules between

ordered, complex and chaotic. The vertical axis shows the frequency of rules at

positions on the plot – most are chaotic. The plot automatically classifies rule-

space.
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Fig. 7. A snapshot of the 3-value 2D CA spiral-rule[16] on a hexagonal lat-

tice. n=88×88, k=7, where a diversity of interacting mobile and static structures

emerge: spiral glider-guns, mobile glider-guns, self-reproduction by glider collisions.

A glider moves in the direction of its red nose.

2. Complexity by interacting structure

In some rare CA, static and mobile interacting structures or particles – glid-
ers and glider-guns, emerge and then dominate the dynamics. Particular
examples, the game-of-Life, the 1D rule 110, and the recently discovered
spiral-rule[16] (Fig.7), are studied for their particle collision logic and (uni-
versal) computational properties.

From another perspective, these are extremely simple and completely
defined systems, yet still able to self-organise ever more complex compound
structures. Emergence seems unpredictable, open-ended, limited only by the
size of the lattice. Like nature, this complex CA behaviour can be described
at ascending levels – from the underlying “physics”, to observed “laws”
of particle collisions, to descriptions of increasingly complex interactions,
reaching out – it might be argued – into Kauffman’s “adjacent possible”[6].
From this perspective, the complexity of a system is the number of its
existential levels of description[9].
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The question arises, what is self-organisation? It is well accepted that
complex rules are rare, and occur at a transition in rule-space between order
and chaos[2] (Fig.9) – but finding them is not straight forward. A wide va-
riety of complex rules are probably needed to uncover general principles of
self-organisation. Unlimited samples of complex rules can be found by using
input-entropy to automatically classify rule-space between order, complex-
ity and chaos[14, 16]. Figs.5 and 6 illustrate the method (implemented in
DDLab) which tracks the Shannon entropy of the frequency of rule-table
inputs generating space-time patterns, and the entropy variability1, giving
the following results,

order complexity chaos
mean entropy low medium high

entropy variability low high low

Only complex rules have high entropy variability so can be separated –
mean entropy separates order and chaos (Fig.6). High variability implies
large scale structural interactions, often produced by particles colliding,
because collisions create local chaos raising the entropy, from which particles
re-emerge lowering entropy.

Particle dynamics can be seen from a basin of attraction perspective.
Disordered states, before the emergence of particle dynamics, make up leaf
states or short dead-end side branches along the length of long transients
where particle interactions are progressing. The final particle survivors per-
sist in attractors.

3. Information hiding within chaos

State-space by definition includes every possible piece of information en-
coded within the size of the CA lattice – including Shakespeare’s sonnets,
copies of the Mona Lisa, one’s own thumb print, but mostly disorder. A
CA rule organises state-space into basins of attraction where each state has
its specific location, and where states on the same transient are linked by
forward time-steps, so the statement “state B = A + x time-steps” is le-
gitimate. But the reverse “A = B − x” is usually not legitimate because
backward trajectories will branch by the in-degree at each backward step,
and the correct branch must be selected. More importantly, most states
are leaf states without pre-images, or close to the leaves, so for these states
“−x” time-steps would not exist.

1 The variability is taken as the standard deviation, or alternatively as the maximum

interval between a minimum followed by a maximum entropy.
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Fig. 8. A subtree of a chain-rule 1D CA n=400. The root state (the eye) is shown

in 2d (20×20). Backwards iteration was stopped after 500 reverse time-steps. The

subtree has 4270 states. The density of both leaf states and states that branch is

very low (about 0.03) - where maximum branching equals 2.

0 ←——- Z-parameter —–→ 1
max ←— convergence —→ min

Fig. 9. A view of rule-space (after Langton[2]). Tuning the Z-parameter from 0

to 1 shifts the dynamics from maximum to minimum convergence, from order to

chaos, traversing a phase transition where complexity lurks. The chain-rules on

the right are maximally chaotic and have the very least convergence, decreasing

with system size, making them suitable for dynamical encryption.

Fig. 10. Leaf (garden-of-Eden) density plotted against system size n, for four typical

CA rules, reflecting convergence which is predicted by the Z-parameter. Only the

maximally chaotic chain-rules show a decrease. The measures are for the basin of

attraction field, so for the entire state-space. k=5, n= 10 to 20.
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Fig. 11. A subtree of a k=7 1D CA chain-rule encrypting the “alien” root, a 1d

bit-pattern displayed in 2d (n=1600, 40×40), but which could be ASCII, or any

other form of information. Backwards iteration was stopped after 19 time-steps.

Fig. 12. To decrypt, starting from the encrypted state in Fig. 11, run forward by

19 time-steps with the same chain-rule. This figure shows time-steps -3 to +6 to

illustrate how the “alien” image was scrambled both before and after time step 0.

In-degree, convergence in the dynamical flow, can be predicted from
the CA rule itself by its Z-parameter, the probability that the next un-
known cell in a pre-image can be derived unambiguously by the CA reverse
algorithm[8, 9, 14]. This is computed in two direction, Zleft and Zright, with
the higher value taken as Z. As Z is tuned from 0 to 1, dynamics shift from
order to chaos (Fig.9), with leaf density, a good measure of convergence,
decreasing (Fig.3). As the system size increases, convergence increases for
ordered rules, at a slower rate for complex rules, and remains steady for
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chaotic rules which make up most of rule-space (Fig.10).
However, there is a class of maximally chaotic “chain” rules where Zleft

XOR Zright equals 1, where convergence and leaf density decrease with
system size n (Fig.10). As n increases, in-degrees≥ 2, and leaf density,
become increasingly rare (Fig.8), and vanishingly small in the limit. For
large n, for practical purposes, transients are made up of long chains of
states without branches (Fig.11), so it becomes possible to link two states
both forwards and backwards.

Suppose B is a state with information. It can be encrypted (Fig.11) by
iterating backwards to A = B − x with the CA reverse algorithm, which is
especially efficient for chain rules. A can be decrypted (Fig.12) by running
forward by x time-steps using the correct rule – the encryption key. About
the square root of binary rule-space is made up of chain rules, which can be
constructed at random to provide a huge number of encryption keys. Fig.12
shows the information bearing state embedded in chaotic states along the
transient. It pops suddenly out of chaos, then merges back into chaos, lim-
ited by the “speed of light” of the 1D CA. The methods[18] are implemented
in DDLab.

4. Memory and learning

The basin of attraction field (Fig.14) reveals that content addressable mem-
ory is present in discrete dynamical networks, and shows its exact composi-
tion, where the root of each subtree (as well as each attractor) categorises
all the states that flow into it, so if the root state is a trigger in some
other system, all the states in the subtree could in principle be recognised
as belonging to a particular conceptual entity. This notion of memory far
from equilibrium [10, 11] extends Hopfield’s[1] and other classical concepts
of memory in artificial neural networks, which rely just on attractors.

As the dynamics descend towards the attractor, a hierarchy of sub-
categories unfolds. Learning in this context is a process of adapting the rules
and connections in the network, to modify sub-categories for the required
behaviour – modifying the fine structure of subtrees and basins of attraction.

Classical CA are not ideal systems to implement these subtle changes,
restricted as they are to a universal rule and local neighbourhood, a re-
quirement for emergent structure, but which severely limits the flexibility
to categorise. Moreover, CA dynamics have symmetries and hierarchies re-
sulting from their periodic boundaries[8]. Nevertheless, CA can be shown to
have a degree of stability in behaviour when mutating bits in the rule-table
– with some bits are more sensitive than others. The rule can be regarded
as the genotype and behaviour (space-time or basins of attraction) as the
phenotype[8]. Figure 13 shows CA mutant basins of attraction.
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Fig. 13. Mutant basins of attraction of the v=2, k=3, rule 60 (n=8, seed all 0s).

Top left: The original rule, where all states fall into just one very regular basin.

The rule was first transformed to its equivalent k=5 rule (f00ff00f in hex), with 32

bits in its rule table. All 32 one-bit mutant basins are shown. If the rule is the

genotype, the basin of attraction can be seen as the phenotype

With RBN and DDN there is greater freedom to modify rules and con-
nections than with CA. Algorithms for learning and forgetting[10, 11, 12]
have been devised, implemented in DDLab. The methods assign pre-images
to a target state by correcting mismatches between the target and the actual
state, by flipping specific bits in rules or by moving connections. Among
the side effects, generalisation is evident, and transient trees are sometimes
transplanted along with the reassigned pre-image.

4.1. Modelling neural networks

Allowing some conjecture and speculation, what are the implications on
memory in animal brains? The fist conjecture, perhaps no longer contro-
versial, is that the brain is a dynamical system (not a computer or Turing
machine) composed of interacting sub-networks. Secondly, neural coding
is based on distributed patterns of activation in neural sub-networks (not
the frequency of firing of single neurons) where firing is synchronised by
many possible mechanisms: phase locking, inter-neurons, gap junctions,
membrane nanotubes, ephaptic interactions.

Learnt behaviour and memory work by patterns of activation in sub-
networks flowing automatically within the subtrees of basins or attraction.
Recognition is easy because an initial state is provided. Recall is difficult
because an association must be conjured up to initiate the flow within the
correct subtree.
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garden-of-Eden states
or the leaves of subtrees

transient tree
and subtrees
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Fig. 14. Top: The basin of attraction field of a random Boolean network, k=3,

n=13. The 213 = 8192 states in state-space are organised into 15 basins, with

attractor periods ranging between 1 and 7, and basin volume between 68 and 2724.

Bottom: A basin of attraction (arrowed above) which links 604 states, of which 523

are leaf states. The attractor period = 7, and one of the attractor states is shown

in detail as a bit pattern. The direction of time is inwards, then clock-wise at the

attractor.
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At a very basic level, how does a DDN model a semi-autonomous patch
of neurons in the brain whose activity is synchronised? A network’s con-
nections model the subset of neurons connected to a given neuron. The
logical rule at a network element, which could be replace by the equivalent
tree-like combinatorial circuit, models the logic performed by the synaptic
micro-circuitry of a neuron’s dendritic tree, determining whether or not it
will fire at the next time-step. This is far more complex than the threshold
function in artificial neural networks. Learning involves changes in the den-
dritic tree, or more radically, axons reaching out to connect (or disconnect)
neurons outside the present subset.

4.2. Modelling genetic regulatory networks

The various cell types of multicellular organisms, muscle, brain, skin, liver
and so on (about 210 in humans) have the same DNA so the same set of
genes. The different types result from different patterns of gene expres-
sion. But how do the patterns maintain their identity? How does the cell
remember what it is supposed to be?

It is well known in biology that there is a genetic regulatory network,
where genes regulate each other’s activity with regulatory proteins[7]. A
cell type depends on its particular subset of active genes, where the gene
expression pattern needs to be stable but also adaptable. More controver-
sial to cell biologists less exposed to complex systems, is Kauffman’s classic
idea[4, 5] that the genetic regulatory network is a dynamical system where
cell types are attractors, and which he modelled with RBN. However, this
approach has tremendous explanatory power and it is difficult to see a plau-
sible alternative[13].

A gene is regulated by proteins from other genes, that might include
itself. On a molecular level, a combination of regulatory proteins, binding
to a promoter sequence, turns the gene on and off. At a macro level this de-
termines the rate at which the gene transcribes RNA to produce its specific
protein, which can be measured by micro-array analysis.

In Kauffman’s model based on RBN, a gene’s state is either on or off,
its connections are the set of genes that provide its regulatory proteins. Its
rule (Boolean function) represents how the proteins combine on the binding
site to determine the gene’s state. Kauffman ran his model from numerous
initial states to identify the main attractors – transient length and basin
volume can be inferred statistically, a method also implemented in DDLab
and useful for large ordered system2. The results showed that the num-
ber of inputs, k, was a key variable for the number of attractors[5]. The

2 Chaotic attractors are hard to find with this method because transients and attractors

become too long to be identified.
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Fig. 15. The jump-graph (of the same RBN as in Fig. 14) shows the probability of

jumping between basins due to single bit-flips to attractor states. Nodes represent-

ing basins are scaled according the number of states in the basin (basin volume).

Links are scaled according to both basin volume and the jump probability. Arrows

indicate the direction of jumps. Short stubs are self-jumps; more jumps return to

their parent basin than expected by chance, indicating a degree of stability. The

relevant basin of attraction is drawn inside inside each node.

approach emphasises the order/chaos balance in the dynamics, which de-
pends on k, or alternatively on canalising inputs, a bias for larger k inducing
order[3]. Order/chaos measures include the Derrida plot, damage spread,
frozen genes, and attractor distribution. The locality of random wiring, re-
ducing the wiring spread when the network is laid out in a regular lattice,
also induces order[12]. The new methods to compute basins of attraction of
RBN in complete detail[10] provided further insights into the model[7, 3].

In a cell type’s gene expression pattern (its space-time pattern), a partic-
ular gene may spend a large proportion of its time either on or off (frozen),
or twinkling madly. If too many genes are twinkling (chaotic dynamics) the
cell will be unstable. Conversely, if too many genes are frozen the cell will
be too stable for adaptive behaviour. Cells constantly need to adapt their
gene expression pattern in response growth/differentiation factors, and to
inter-cellular and other signals, then revert to their usual dynamics. A cell
type is probably a set of closely related gene expression patterns, not just on
the attractors, but shifting around within the basin of attraction, allowing
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an essential measure of flexibility in behaviour. Too much flexibility might
allow a perturbation to flip the dynamics to a different basin of attraction,
from a bone cell to a fat cell, or to something alien – a cancer cell.

The model indicates that evolution has arrived at a delicate balance
between order and chaos – but leaning towards convergent flow and order[3].
The stability of attractors to perturbation can be analysed by the jump-
graph (Fig.15) which shows the probability of jumping between basins due
to single bit-flips to attractor states[15]. These methods are implemented in
DDLab and generalised for DDN where the value range, v, can be greater
that 2 (binary), so a gene can be fractionally on as well as simply on/off.

A present challenge in the model, the inverse problem, is to infer the
the network architecture from information on space-time patterns, and ap-
ply this to infer the real genetic regulatory network from the dynamics of
observed gene expression[3].

5. Conclusion

This paper has reviewed a variety of discrete dynamical networks where
knowledge of the structure of their basins of attraction provides novel in-
sights and applications: in complex cellular automata particle dynamics
and self-organisation, in maximally chaotic cellular automata where infor-
mation can be hidden and recovered from a steam of chaos, and in random
Boolean and multi-value networks that are applied to model neural and ge-
netic networks in biology. Many avenues of enquiry remain – whatever the
discrete dynamical system, its worthwhile to think about it from the basin
of attraction perspective.
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