Andy Wuensche

Discrete Dynamics Lab
Visiting Fellow, Dept. of Informatics (formerly COGS) Univ. of Sussex

Complex dynamics, basins of attraction, and
content addressable memory, in discrete systems

{ »* '

L A

ﬁ{‘“
o

o{‘ 3
{‘{‘o
o O

andyarddlaboororg

www.ddlab.org



,/

discrete dynamical
networks

CA

—_

RBN

—_

\

state-space

—

Ieverse

rule-space & al orlthms
P architecture &
\' »— basms of
traJeetones attraction
classﬁymg
stablhty
flltermg convergence
order
complex1ty
emergent chaos :
structures genetic
regulatory
\ networks

1D
(.
3D

content addressable
memory




Discrete Dynamics Lab

Tools for researching Cellular Automata, Random Boolean Networks,
multi-value Discrete Dynamical Networks, and beyond

www . ddlab . org

Language:
plain C

Platforms:
Linux
Unix
Irix
Mac
Cygwin
Dos

basins of attraction space-time patterns



1D cellular automata (CA) - random Boolean networks (RBN)
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rule-space = 2727k multi-value v: rule-space=v "~ v"™ k
as {v,k} increase, this becomes very big!
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2D CA

3D CA

RBN:

the pseudo-
neighbourhood
has arbitrary
connections




1D space-time patterns — alternative presentations
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Space-time patterns of a 1d CA (n=24, k=3, rule 90). 24 time-steps from an initial state
with a single central 1. Two alternative presentations are shown. Left, cells by value,
light=0 dark=1. Right, cells colored according to their look-up neighbourhood.



308
time
steps

The space-time pattern of a 1d complex CA with interacting gliders.

T L e S

- 1D space n=700 >

308 time-steps from a random initial state. System size n=700, Neighbourhood size k=7, rule (hex) =
3b 46 9c Oe e4 7 fa 96 19 3b 4d 32 b0 9e dO e0. Cells are colored according to neighbourhood look-
up instead of the value. Space is across and time down the page.

the future 1s determined but unpredictable! (Wolfram)



Snapshot of a 3-value complex rule on a hex lattice
a puffer train in the Beehive rule

time-step 330, next-ret, previous steps (max 19),
on-the-fly options-o, save current-s reset count-r, end panse -q:
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4 RDBN space-time patterns

Figure 11: Space-time patterns for intermediate 1d architecture, from CA to RBN.
n=150, k=5, 150 time-steps from a random initial state. (a) Starting off as a complex
CA (rule 6eleb3a8 as in figure 8), 4% (30/750) of available wires are randomized at
30 time-step intervals. The coherent pattern is progressively degraded. (b) A network
with local wiring but mixed rules, vertical features are evident. (c) RBN, random
wiring and mixed rules, with no bias, shows maximal chaotic dynamics.



Global dynamics: the idea

for a network size n, a state B might be: 1010...0110
there are 2" states in state-space (v'"* for value-range v)

a trajectory: ~—9» A—» B—» C —»

B may have other pre-images besides A, which can be directly
computed by reverse-algorithms. States with zero pre-images
(leaves) - are known as garden-of-Eden states

the trajectory must arrive at an aftractor, a cycle
of states with a period of one or more

find the pre-images of an attractors state (excluding the one on the attractor)
- then pre-images of pre-images, until all g-of-E states
have been reached — the graph of linked states is a transient tree

construct each transient tree (if any) from each attractor state -
the complete graph is the basin of attraction

find every attractor and construct its basin of attraction — this is
the basin of attraction field - all states in state-space linked by the

dynamics — each discrete dynamical network imposes a specific
basin of attraction field on state-space



A detail of a basin of attraction
states shown as 4x4 bit patterns

e H garden—of —FEden states
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transient trees
and sub—trees




The basin of attraction field of a CA, n=16

note equivalent basins
and subtrees

Tos
detail

Ly,
o e

rule (hex) 3b 46 9c Oe e4 f7 fa 96 f9 3b 4d 32 b0 9e d0 e0 (n=16, k=7). The 216=65536
states in state space are connected into 89 basins of attraction. The 11 non-
equivalent basins are shown, with symmetries characteristic of CA.



Constraints on 1D dynamics

Rotational symmetry: can only increase in a transient; stay constant in the attractor
(a) (b)

(d)

FIGURE 3.3 Possible transient evolution of a disordered state to states with an increasing degree of rotation sym-
metry. (a) s=1,9=L.(b)s=2,9g=L/2. (c)s=4,g=L/4 (d) s=12,g = L/12.

Bilateral symmetry: can only increase in a transient; stay constant in the attractor

(a) (c)
|
= — o ——
t

FIGURE 3.4 Possible transient evolution of a disordered state to a state with bilateral symmetry, bs (rotation sym-
metry, 3]. I:E.} bs=0,s58=0. {h} bs =2, 5 =0. [E} bs=4,5=2.




The RBN wiring/rule scheme defined
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A single RBN basin of attraction
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One of the basins of attraction of the random Boolean network, with 604 states
of which 523 are garden of Eden states. The direction of time in inwards from
garden of Eden states, then clockwise.



The basin of attraction field of a RBN, n=13

The 213=8192 states in state space are organized into 15 basins, varying in volume
from 68 to 2724 n=13, k=3.




Jumping between basins due to 1-bit perturbations to attractor states

a strong

diagonal

1ndlcates\

stability 12
1: 4 4
2: . 28
3: . 14
4: 1 4
5: 3 12
B: 3 3
T:o. 14
8: . 3
9: 3 5
10: . g
11: 1 1
12: . 2
13: . 3
14: 1 .
158

the jump-graph

size=basin-volume
link-width=%jumps
short stubs: self-jumps

the j

stability: a strong diagonal in the jump table, or if %self-jumps > %basin-volume

example: basin 2: basin-volume=40%, self-jumps=12%
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Volume Self
B8= 0.83% 30.77%
084= 12.01% 40.00%
Tod= 9.B7% I9.T74%
1200= 15.87% 30.77%
28d4=  3.22% 29.23%
Te= 0.93% 33.33%
3l6= 3.86% 41.03%
120=  1.46% 28.21%
Gd= 0.78% 23.08%
120=  1.46% 24.36%
256= 3.12% 25.27%
2724= 33.2B% 69.23%
604=  T.37T% 34.07%
g4= 1.03% 43.08%
428= bB.22% 86l.54%

the jump-graph with
basins ranked by volume

and drawn inside



Global dynamics in the context of graph theory

Random map » RBN »CA
the nested sets impose
(ncreasing constraints on

the dynamics

random maps, random directed
graphs with out-degree one

RBN
N
RBN-CA
@ hybrids

A random map assigns a RBN and CA are usuall
successor (possibly at random) to - arselv connected. k <z If
each state in state-space. Random totalistic ;pu > c gnnected the’ are tﬁe
maps also fall into basins of rules uy 4

attraction (computed in DDLab) same as random maps



Visualizing and amending network wiring
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1d CA wiring 1d RBN wiring D

2d CA-RBN wiring 3d CA-RBN wiring

For RBN, a cell's k inputs, may come from cells anywhere in the network; these cells are
wired to a “pseudo-neighbourhood” to which a CA rule is applied.




Scale-free RBN, n=100

fully connected modular, n=5x20 detail, n=20 module
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Figure 1: Hypothetical networks of interacting elements (siwe n=100) with an approximate power-law distribution
of connections, both inputs (E) and outputs, which are represented by directed links (with arrows). Nodes are scaled
according to k£ and average & =~ 2.2, lefi: A fully connected network., eenferr A network made up of five weakly
imnter-lnmked n=2X sub-networks or modules. rnghi: A detail of the top nght sub-network., These are examples of
random Boolean networks defined in section 4.

|| fully connected II modular
Illlll__l-__ e III-II__I_____
Figure 2: Histograms of link frequency (y axis) against link sie (x axis), for inputs4outputs, in the networks in

fgure 1. The fully conmected network (lefl), and modular netwark IIre_r,l.T.I.TJI. have a smmilar lmk frequency profile.
However thewr dvnamics are very different. as described 1 section 8

link-size frequency profile is similar - but dynamics is different



Basin of attraction field (scale-free) RBN, n=20

state-space = 1.05 million
61.8% 28.6 %

L@j'

Figure 4: The basin of attraction field of the n=20 sub-network shown in detail
in fipure 1 (right). The rules (input logic) were assigned at random. State-
space (size 2°% ~ 1.05 million) is partitioned into three basins of attraction. The
attractor states are shown as 5x4 bit patterns. The table and diagram on the
right show the probability of jumping between basins due to one-bit perturbations
of their attractor states. P = attractor period, J = possible jumps (P x n), and
V% is the basin “volume” as a percentage of state-space. For example in basin
1, P=5, J=100 possible jumps, 15 of these jump to basin 2, and 85 back to itself,
s0 basin 1 is relatively stable. Basin 3 has relatively few jumps back to itself so
in unstable, it is also unreachable from the other basins. The diagram below the
table, the “metagraph” (see section 5), shows the same data graphically. Node
size reflects basin volume, link thickness percentage jumps, arrows the direction,
and the short stubs self-jumps. The fraction of garden-of-Eden states in all three
basins is 0.999+ indicating high convergence and order.

i)

9.6 %

1 2 3 P J Vi
86 15 & 1 61.78
45 12 . 3 60 28.67
3z & 2 2 40 ©.65

the jump graph



Attractor frequency in fully-connected, and modular, (scale-free) RBN, n=100

These attractors are found by a statistical method, by running forward from
many initial states looking for state repeats to identify attractors. The
frequency of finding a given attractor indicates the size of its basin.

fully connected modular
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L | 13 2 12 1T 24 3 3 42 48 § &0
Attractor type Attractor type

Figure 16: Attractor frequency histograms, showing the frequency (y axis, scale indicated top left) of falling into
different attractors (x axis, sorted by basin volume) from a large sample of random initial states. These examples
are for the “scale-free” networks in figure 1, where n=100. The frequency of each attractor is a statistical measure of
basin volume, the fraction of state-space occeupied by each basin. left: The fully connected network: the number of
attractor types stabilized at just 3 after 10000+ runs. Their periods are 2046, 553, 380, with average transient length
605, 673, 97. right: The modular network: the number of attractor types stabilized at 53 after 500004 runs, though
about 2/3 of these represent very small basins. The 3 most frequent basins have periods 30, 14, 2, with average

transient length 54, 46, 47.

The attractor frequency histogram and data shows that the modular network
has more basins with smaller attractor periods and shorter transients, than the
fully the connected network.



Jump graphs of fully-connected and modular (scale-free) RBN, n=100

modular
fully connected

Figure 17: The meta-graphs of the attractor frequency histograms in figure 16, showing the probability of jumping
between basins due to single bit-flips to attractor states. Nodes representing basins are scaled according to basin
volume. Links are scaled according to both basin volume and the jump probability. Arrows indicate the direction of
jumps. Short stubs are sell-jumps. left: The fully connected network: the percentage of self-jumps is 60%, 36% and
6% respectively. right: The modular network: (for the 19 largest basins only, out of 53) the percentage of self-jumps
is 419%, 20% and 31% respectively for the 3 largest basins. 11 of the smallest basins (not shown) are unreachable,

Breaking a network into weekly linked modules increases both the number and stability of
basins. Conversely, adding more links between the modules reduces both the number and
stability of basins. The modules in the modular network behave like discrete coupled
oscillators, perturbing each other between their alternative sub-attractors.



RBN are applied as models of genenetic regulatory
networks (cell types = attractors)
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The Global Dynamics of Cellular Automata

Andrew Wuensche and Mike Lesser

An Atlas of Basin
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A page from the Atlas
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The Altas shows all non-equivalent k=3 rules (88), and k=5 totalistic rules (64), in this format



odd &

even k

extra cell 1s
on the right

1D neighbourhoods pre-defined in DDLab, max-k=25
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2D neighbourhoods pre-defined in DDLab, max-k=25

k=4 | k=5 || k=6 || k=7 || k=R =9 k=10 ||k=11| k=12 || k=13 || k=14 || k=15
L EE
lattice

hex

lattice

square

lattice

hex
lattice

The neighbourhood defines the lattice, either square or
hexagonal. If & is even, the central cell is not included.
Neighbourhoods for k=1 to 3 are as in 1D.



3D neighbourhoods pre-defined in DDLab, max-k=25

7 ¥ ¥
7 C #
odd k 5
¥ i ¥
even k /|
the central 7] " ) 3
cell 1s not
included

The neighbourhoods are shown in a 3d axonometric projection, imagine looking up into cage.
Even k does not include the central target cell. (neighbourhoods for k=1 to 5 are as in 2D).



Filtering space-time patterns to reveal gliders

filtered
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be transformed to an equivalent rule with larger k (as in this case for k=3 rule 54). Filtering is

dislocations in a complicated background domain. For effective filtering the rule may need to
done interactively, on-the-fly, in DDLab for any CA.

progressively suppressing the display cells that
table. Filtering reveals gliders and other complex space

Filtering is done by



Filtering space-time patterns - examples
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Filtering chaotic domains to show up discontinuities

k=3 rule 18 k=3 rule 18, partly filtered

Unfiltered and partly filtered space-time patterns of k=3 rule 18. (transformed
to k=5 rule 030c030c). n=150, about 130 time-steps from the same random
initial state, showing discontinuities within the chaotic domain.



The lookup frequency histogram and input-entropy

input-entropy lock—up frequenoy
space-time pattern 0-———- entropy-——-max O--—-histogram———max

W‘ \ y 31

: ORDERED

- - low entropy

\ lowvariance

3 rule 01 de 36 10

:L _______________ B C -+
31
COMFLEX

medium entropy
high variance

rule Ao 1e B3 ald

an alternative
to variance
18

maximum
min-max

- 21

CHAOTIC
high entropy
low variance

rule 99 4a Aa /5

-0

1D ordered, complex and chaotic space-time patterns from the same random initial state. Alongside is a a
snapshot of the lookup frequency histogram, and a plot of the input-entropy taken over a moving window of 10
time-steps. Input-entropy and its variance (or standard deviation} provides a non-subjective measure for
recognizing ordered, complex and chaotic rules automatically; only complex rule show high input-entropy
variance.



Entropy-density scatter plots, complex rule signatures

Max

The input-entropy S is the Shannon
entropy of the input frequency,

(2 o (L
o= Zé:l(n. XE-UQ n

were Qis the frequency of i at time 7,

n 1s the network size, and k the
neighbouhood size. In practice the
measures where smoothed by being
taken over a moving window of 10 -
time-steps.

input-entropy

i density of 1=

Input-entropy is plotted against the density of 1s relative to a moving window of 10 time-
steps for a number of complex rules (k=5, n=150), each of which has its own distinctive
signature, with a marked vertical extent, i.e. high input-entropy variance. About 1000
time-steps were plotted from several random initial states for each rule.



Classifying random samples of 1D CA automatically (k=5)
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where r; = deviation of each measure
from the mean. and n = number of measures. The variance = 2.



Complex space-time patterns from the automatic samples
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Interacting gliders in 1D CA (k=5)
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high convergence
Ordered: Rule 01dc3610,
n=40. The complete sub-
tree 7 levels deep, with

58153 nodes, G-densit
=0.931, Z=0.5625, L,=0.668

medium convergence

Complex: Rule 6¢cle53a8,
n=50. The sub-tree, stogged
after 12 levels, with 144876
nodes, G-density =0.692,
7=0.727, L,=0.938

Ordered - Complex - Chaotic
CA sub-trees

Ny
T

low convergence

Chaotic: Rule 994a6a65,
n=>50. The sub-tree stopped
after about 75 levels, with
9446 nodes, G-densit
=0.487, 7=0.938, L =0.938



G-density in basins of attraction plotted againts n
(a simple measure of convergence)

ordered
01 de 36 10

complex
bele b3 a8

il 99 42 6a 65

i 12 17 22
system size n (k=5)

G-density (garden-of-Eden density, leaf density) plotted against system size system size n, for the
ordered, complex and chaotic rules. The the entire basin of attraction field was plotted for n =7
to 22, and garden-of-Eden states counted. The relative G-density and rate of increase with n
provides a simple measure of convergence.
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G-density . .
=0.931 CA, in-degree histograms 3
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basin of attraction (point attractor), n= 15, k=3 rule 250, 32767 nodes, G-density=0.859




basin of attraction, period 27, n=18,
k=3 rule 110, 93825 nodes, G-
density=0.611



basin of attraction, period 1445, n=18, k=3
rule 30, 30375 nodes, G-density=0.042,
longest transient 321 time-steps




The 1D CA reverse algorithm and the Z parameter
(very briefly)

111 110 101 100|011 010|001 000 ....neighbourhoods k=3
0o 1 1 0o 1 1 1 0 ....outputs (rule 110), rule-space=256

e o
Deterministic Ambiguous
or Forbidden

left to right next unknown bit
-~ »

partial pre-image > @ @ © O/O O O O

knownstate —» (& © O O © © © ©

Try to fill in the next unknown bit in partial pre-image (from left to right) by reference to the look-up
table; there are 3 possibilities:  (there is an equivalent procedure right to left)

1. Deterministic - one valid solution: fill this in, and move to the next unknown bit.
2. Ambiguous - two valid solutions (for v=2): recursively follow both — the pre-image has doubled.
3. Forbidden - no valid solutions: halt.

Z, = fraction of deterministic sub-rules = probability that the next unknown cell is determined. This is
found directly from the lookup table. Zj is found equivalently from right to left The Z parameter = the
greater of {Z,:Zy}. Z predicts convergence in subtrees, thus order-chaos. (The actual procedure is a
bit more involved. The reverse algorithm for RBN is different, but also works for CA).

k-1 bits must be assumed to start, thus there are 2k1=4 possible starts (for binary CA) to the pre-image. If Z; = Z_ =1,
in-degrees must be exactly 4 or 0. If either {Z; or Z,}=1 (but not both) in-degrees must be less than 4, or 0. These
are maximally chaotic rules, where the in-degree is fixed irrespective of n.



The RBN reverse algorithm (including multi-value)

(very briefly)

| P, P, Py Py Py Pg P, Py Py Py
T pertislpre-image 1. 1 %% 1 & & & O 1 @&
Topartilpre-image2. .. 0 %% 1 &% & % 0 & &% o
Ty pertialpre-image3... 1 % 0 @ % @ 0 o o o0
wiring scheme . .
pseudo neighbourhood
known state . . O 000000 aoao

For a cell in the known state, assign each value in a valid pseudo-neighbourhood to a
partial pre-image, according to the wiring. Several partial pre-images may be created.

Repeat for the next cell (taken in any order). If there is a conflict with a value previously
allocated, reject the pre-image. Otherwise the number of partial pre-images will increase
initially, but then decrease because of conflicts (often to zero). Any survivors are the valid
pre-images of the known state.

The algorithm works for CA as well as RBN, of course!

o0 - Figure 17: Computing RBN pre-images.
06— The changing size of a typical partial pre-

200 image stack at successive elements. n=24,

y = E—_-. III .IIIIII II.- - uﬂ. fe=3.



Classification of 1D CA

Wolfram: classification based on attractors:

(lass CA dvnamics evolves towards... Dvnamical svstems analosne

. A spatially homogeneous state... Limit points.
2. A sequence of simple stable
or periodic structures................. Limit cveles
3 Chaotic aperiodic behaviour....... Chaotic (strange) attractors
4. Complicated localized
structures, some propagating...... Attractors unspecified

Langton (and others). Woframs class 4 1s a phase transition between
2 and 3, so the revised classification is reordered:

ordered (class 1,2) - complex (class 4) - chaotic (class 3)



A view of CA rule-space

(after Chris Langton)
0= Z parameter > 1
max convergence » min

CHAOS

COMPLEXITY

If {Z; or Z,} =1 (but not both) the rule is maximally

chaotic, with max in-degree < 2%/ . For large systems it
usually just 1. About \/rule—space 1s maximally chaotic.



Encryption with maximally chaotic ‘“chain” rules
(to encrypt run backward)

Figure 1: With the “alien” as
the root state, a subtree was
renerated with the reverse al-
gorithm in DDLab; note that
the subtree has no branching,
and branching is highly un-
likely to occur. The rule was
a k = T chain-rule, selected at
random {in hex: a7 4e b6 6b
ba c3 a0 B1 58 bi 49 94 46 3¢
5f Te), with £-parameter val-
nes: Ziepe = 0.617, Lrijghe = 1.
The subtree was set to stop af-
ter 20 backward steps. The 1d
CA 15 diplayed in 2d.




Encryption with maximally chaotic ‘“chain’ rules
(to decrypt run forward)

Fipure 2: To decrypt, Starting from the encrypted state In figpure 1, the CA with the same rule was
run forward by 20 time-steps, the same mumber that was run backwards, to recover the ariginal
image or bit-string. This figure shows time-steps 17 to 25 to illustrate how the “alien”™ image was
scrambled both before and after time-step 20,



| el | wiring | mle |

3 1.3.5 108
2 2.50 i

(b)1 bit mtation, rule at
element 5 changed to 46

0 3,12 231

Two random Boolean network basin of attraction fields, with a 1 bit difference in one rule




genotype - phenotype

32 (1-bit) mutants of rule 60 (00111100)
mutations were made to the equivalent £=5 rule (00001111111100000000111111110000)
n=8, the basin seed i1s 00000000
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Conway's game-of-Life Om0 k=8 outer-totalistic rule

Birth: 2 live neighbours, Survival: 2 or 3 live neighbours
otherwise: death by exposure or overcrowding

N
SR

L
¥
«——time

]

W

snaphot 60x60
gliders: red arrows

looking up into a cage



snapshot 88 x 88



Beehive rule, v=3, k=6

wocode = 0022000220022001122200021210

bacwground
h=ad+

out 4
out 3
out 1
5icds2?
sidsl
sicsl+

out 2

tail
h=acd

c=ntsr

(Lol o RSSO R I ORI L

b

_
da
FHWWNE LW NMMEMNREpRrRrERERERERODODDOOS O ON .

roocdes indsx
totals: Z2s+ls+ls=g=h
! roods

mutations

O: 2D hex lattice

The lookup histogram shows the
frequency of neighbourhoods. This
ties in with the sub-rules required to
maintain the basic glider. 10 rarely if

_1_0 2 1 0
06 -—-=0 o o =
15 -=1 0 = 0
2 4 —-» 2 = 59 og
33 -1 -+ = e
4 2 -» 2 —+ - 5 e
5 1 -= 0 -+ 5 =
0 == 0 -+ G 5 =
045 -—-=0 c [ =
1 4 -= 2 = (o) [
2 3 -= 2 = og o &
32 —» 2 —+ - 5 e
4 1 -= 1 -+ = 3
50 -1 -+ 03 = e
04 -=0 e (o) =
1 3 =-=0 G =
22 -—-» 2 = go go
311 -—-> 2 —+ - 5 e
4 0 -= 0 -+ 5 =
o3 -=0 g o =
1 2 —-= 2 = C og
21 -= 2 = og G
A0 -0 -+ G 5 =
o2 -=10 [ (o) =
1 1 == 0 g og o -
20 -= 2 = og G
o1 -= 2 = og G
1 0 =-=0 g go -
oo -=0 [ God -

ever occur in an evolved system -

/ they could be wildcards.

The basic glider

gicle 2 gicle

tail head
hau:kgrnuni‘\ /
center—l--} e [110E

outd /7"' \ Fieacd+
outs gicle 1+

out2 auti

The size of the totalistic rule table
=Ww+k-D!/&k'x (-1

rey to mutations:
guasi-nsutral G=25/

G, wildcards -+ 10/28

S/g=gliders, G=sams/similar dyvnamics,

g=wear/differsnt, s

EmEDdrEE,; c=chaos,

=5oirals, d=denss,
o=orcdsr, (O=all 0Os

J
The rule expressed as 0121200
an ij ma%)rix, where 022211
i:ZSOan%j;ls. I 8 8 g 8 0
s=6-(i+)) 065
20
0




56 single mutations to the beehive rule

28/56 are quasi-neutral, click to enlarge
1
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see
next slide
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Beehive rule: a single mutation results in emerging spirals
0022000220022001122200021110

was 2 in beehive rule

about 40 time-steps from about +60 time-steps,
random initial state spirals stabilize

snapshots 88x88



Beehive rule, 21 types of collision between pairs of gliders

60° degree head-on 120° degree head-on

8 types, note symmetry 5 types, note symmetry
colisionindex 1 2 3 4 5 6 ? 37654321 1234 5 4 3 2 1 collision index
comes 2 - IZIIIIEIIIIIZI 2-x1 2606211Dutmmes

= “3%//////////// A NN
mm.ngje <o 5 0% 0% SR

glicder starts . . glicer starts
0 *—
-} »

target glicer start target glicer start

no type no before after
oblige head-on: &  2-20 3 ° 9 180° degree odd head-on 180° degree odd head-on
2->4 1 2 4 4 types 4 types
2->5 1 2 5 callisian indes 1 2 3 4 coliision index 1 2 3 4
’ ’ 2->6 1 2 6
Obllque tall—OH J 5 2_>O l 2 O DUtCDmES 2 o 2 |:| |:| |:| Dutcnmes 2 -3 2 |:| |:| |:|
1 ) i
N h 180 d
256 1 2z 6 [ Vit
head-on odd: 4 2->0 3 6 0 {:{# collizions {e{e collisioh:
2->2 1 2 2 4 iy ——a= & incoming ——ae
head-on even: 4 2->0 3 6 0 gl tarty /’ _ glicler starts /
2=>2 1 2 2 }-l—target Wlidler start }-l—target glicer start
totals: 21 21 42 31
agliders

0L

type no before after

self-destruction: 2->0 10 20 0
one—-survivor:.... 2->1 4 8 4
conservation:.... 2->2 3 6 6
self-reproduction: 2->4 1 2 4
2->5 1 2 5
2->6 2 4 12

totals 21 42 31




Beehive rule, 60° head-on collisions

§ 60degree (head-on oblique) collisions
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Beehive rule, 120° tail-on, 180° head-on collisions

5 120degree (oblique tail-on) collisions

Ib tail |43 .
21 po | ‘}:} <+ &

2b tail |[a3 aa
21 3 23 2

b tail | ¥ i
o 3% s oty

note bounce

;iﬁ, E}ggﬂﬂ‘ﬂ

continues as Sa

5b

3
2-}055}.‘?{?*

4 180 (head-on) collisions, even

Iheven | & *
v o g

2h-even | &p
20 3
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o |y B X
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oo ey ¥ A2

4 180degree (head-on) collisions, odd
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Beehive rule, polymer gliders, exploding red cell

polymer-like gliders made up from sub-units

p=1

single
red->6




Beehive rule, mobile glider guns
heads move East, shedding 1 to 4 glider streams

2 3 4
o o
o o
{*‘ 'l""'
o & &
i ¢
& s
& }
o o
o o
o L
b
© b r
s
& &y 5
e &
o
& o {b{‘
v i 3 o
£ ) a
& 8
is 3
i L
t




;E;E;E;E;E;E;E;E;E;E;E;E;E;E;E;E;E;E;E;E;E;E;E;E;E;E;E;E;E;E;F:’#E;E;Egg;E;E;E;E;E;E;E;E;E;E;E;E;E;E;E;E Beehive rule, static glider |~
T gun  period = 13 T




shooting 4 glider streams r1ew: looking down into a box, 40 x 40 x 20

Beehive rule, v=3, k=6, @SD glider gun, cubic lattice

* period=6




Classifying random samples of v=3, k=6 Ogg() 2D CA, automatically

L0l '0.18

most rules are
chaotic

frequency of rules

L,

_ enmrﬂl';g* . o ) /

*. "entropy variance




Examples: v=3, k=6 Ogg() 2D CA

Examples of other -:(mlplex -rules
P r
&

2 {2t ¥a
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0=102=11 1= 0=142=91=5 O=112=111=6
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kcode= 0200001120100200002200120110 keode= 0200202022222200012100002100 kcode=0122120102200122010000102000
O=152=61=6 0=142=91=3 0=142=81=6



Examples: v=3, k=6 OggO 2D CA
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Spiral rule, v=3, k=7
with Andy Adamatzky
UWE Bristol




Spiral rule: emergent circuits

About 400 time-steps from a random initial state (250x250). Large scale quasi-
stable circuits have emerged, but lower level interactions and rhythms continue.
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Spiral rule: gliders

tyvpe G1 type G2 type G3 type G4 type G5

FIGURE 4

Basic gliders

5 types of small glider (G1-G5) emerge in the spiral rule. They have a
white head (value 1) and a varying black tail (value 2). Movement is in the
direction of the white head in any of 12 directions on the hexagonal lattice:
in these examples the heading is North East. Types 1, 4 and 5 have period
2. Asymetric gliders, types 2 and 5 can be handed. High and low frequency
spiral glider-guns produce types 1 and 2 respectively.

FIGURE 5

Small gliders

Various types of larger gliders, all heading North East. Basic gliders and
small gliders can combine to form polymer gliders in many combinations.




Spiral rule: reproduction by pairwise glider collisions

(a) step 0O step G b) step O step 11




Spiral rule: static structures interact with gliders-guns
to create quasi-stable circuits

static structures can
destroy gliderse (eaters) or
modify gliders as theg
brush ]i)last. The type SS2
glider

skin.

as memory on its

< type SS1
*ig:8 , Lype SS2 —ts skin
has memory

~ both can link up
into chains

Two gliders collide to T
make a static structure ‘c




Spiral rule: mobile glider-guns
There are many types. They are fragile because the head i1s vulnerable to attack.




Spiral rule: creating a high frequency spiral glider-gun
so far, the following interactions have been found

o]
av e owt
] e w
step 0 st )




Spiral rule: creating a low frequency spiral glider-gun

A pair of GI gliders brush past a type SS1 static structure, the pair are
changed to {G2,G3} but leave behind a low frequency spiral glider-gun.




v=3 complex CA — 2D square lattices

2120022102202200122221121002212112022211202221222201222 001000100020002022000000002001112120011200210

snapshots 88x88



v=3 complex CA — 2D square lattices

010222022022220021110 202200222012210

snapshots 88x88 4-way glider-gun



Basin of attraction of a 2D glider
. I:l . .
v=3 k=4 _D-D_ square lattice

Totalistic rule
202200222012210

o I‘!r ..'.-

2.4

--:T o = '-.

=

A glider (and any other self-
organized structure) is an
attractor (or a sub-attractor
in a larger state-space). This
example shows massive
convergence of local patterns
towards the k=4 glider.

The basin of attraction (4x5 lattice) has
459670 states, 0.066 of state-space.
GofE density = 0.9. Max levels = 11
time-steps. Max in-degree=788.



Discussion

A general principle of self-organization? (look
for common properties in the rule-table)
3+ values allow reaction-diffusion.

Look at mutant families

Some structures emerge - take over the
dynamics, sub-attractors

What can emerge in larger v, k, dimensions?
Structures combine to make higher level
compound structures — in a large enough
system. Its open ended!

Complexity = emergent levels of description

Computational properties!



