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I. INTRODUCTION

Interactions within a complex dynamical system often in-

duce intricate statistical regularities and rich information

flows. Formalizing these regularities and flows in a dynamic

distributed setting is a subject of Information Thermodynam-

ics — an emerging field combining approaches from Informa-

tion Theory, Statistical Estimation Theory, Complex Dynam-

ical Systems, and Statistical Mechanics in an attempt to sys-

tematically and information-theoretically quantify spatiotem-

poral patterns on both a global and a local scale. This in turn

enables a comprehensive comparative analysis of system dy-

namics across diverse physical, computational, biological and

technological domains. Furthermore, discovering patterns of

information thermodynamics within the system is crucial in

identifying critical regimes and phase transitions, and pro-

viding efficient means for an accurate forecasting and precise

control of system behavior.

One of the key challenges of Information Thermodynamics

[1] is a lack of rigorous characterization of a dynamic balance

between various information flows in the vicinity of phase

transitions. An adequate information-theoretic framework for

critical, edge-of-chaos, phenomena is yet to be developed. On

the one hand, it is conjectured that at the edge of chaos the

distributed computation, intrinsic to complex dynamics, main-

tains a balance between high information storage, information

transfer, and synergistic information (or novelty generation).

For example, transfer entropy [2], characterizing the commu-

nication aspect of computation, is known to peak near critical

regimes [3, 4], while Fisher information [5] is known to peak

at phase transitions [6]. On the other hand, it remains unclear

how such dynamic balance is related to physical fluxes which

are observed and studied during phase transitions. This work

is motivated by the need to develop a new measure which

shares properties of both transfer entropy and Fisher informa-

tion, and apply it to a well-understood physical model.
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Computation-theoretically, transfer entropy was shown to

capture one of the three elements of distributed computation:

communication from system Y to system X [7, 8]. Trans-

fer entropy was observed to be locally maximized in coher-

ent propagating spatiotemporal structures within cellular au-

tomata (i.e., gliders) [7], and self-organizing swarms (cascad-

ing waves of motions) [9]. In another context, transfer entropy

was found to be high while a system of coupled oscillators

was beginning to synchronize, followed by a decline from the

global maximum as the system was moving towards a syn-

chronized state [10].

Thermodynamically, transfer entropy was found to be pro-

portional to the external entropy production by the system X in

the context of Y , due to irreversibility (e.g., heat flux) [11, 12].

In addition, maxima of transfer entropy were observed to be

related to critical behaviour, e.g., average transfer entropy was

observed to maximize on the chaotic side of the critical regime

within random Boolean networks [3]. Furthermore, in a ferro-

magnetic 2d lattice Ising model with Glauber dynamics, (col-

lective) transfer entropy was analytically shown to peak on the

disordered side of the phase transition [4].

Elements of the Fisher information matrix were explicitly

related to gradients of the corresponding order parameters [6],

providing another important connection between information-

theoretic and thermodynamic interpretations of critical be-

haviour. It is obvious, however, that transfer entropy and

Fisher information reflect on quite different aspects of the dy-

namics. Information-theoretically, transfer entropy is centred

on information dynamics during state transitions in the con-

text of another source, while Fisher information quantifies the

amount of information in an observable variable about a pa-

rameter, and thus estimating sensitivity to changes in the pa-

rameter. Thermodynamically, transfer entropy is proportional

to the external entropy produced by a system during a transi-

tion, while Fisher information is proportional to the gradient

of an order parameter, diverging when the system approaches

a critical point. Under certain conditions these two measures

can be explicitly related [13], i.e., in isothermal systems near

thermodynamic equilibrium, the gradient of the average trans-

fer entropy is shown to be dynamically related to Fisher infor-
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mation and the curvature of system’s entropy. In other words,

“predictability” of computation (transfer entropy) is explicitly

connected to its “sensitivity” (Fisher information) and “uncer-

tainty” (thermodynamic entropy).

There are other results relating Fisher information with

various entropy measures (for example, [14–20]), as well as

showing that Fisher Information provides a variational prin-

ciple using which it is possible to derive, under suitable con-

straints, several fundamental physical laws in equilibrium and

non-equilibrium thermodynamics, e.g. [16, 21–24], and also

relating Fisher Information to synaptic plasticity and com-

plexity of neural networks [25].

However, the main motivation of this study is a desire

to meaningfully combine Fisher information and transfer en-

tropy, in order to capture both transient and contextual quali-

ties of transfer entropy and sensitivity characteristics of Fisher

information. This may ultimately reveal fundamental connec-

tions between information dynamics at critical points.

We introduce here a novel measure, Fisher Transfer En-

tropy, which aims to quantify a gain in sensitivity to a control

parameter, obtained during a (state) transition of an observable

random variable, in the context of another observable random

variable. The approach is then applied to a kinetic Ising model

where we initially derive Fisher Information, showing analyt-

ically its divergence at the critical point, followed by a deriva-

tion and analysis of Fisher Transfer Entropy.

II. TECHNICAL PRELIMINARIES

Transfer entropy is a Shannon information-theoretic quan-

tity [2] which measures a directed relationship between two,

possibly coupled, time-series processes Y and X , by detecting

asymmetry in their interactions. Specifically, the transfer en-

tropy TY→X measures the average amount of information that

states yn at time n of the source time-series process Y provide

about the next values xn+1 of the destination time-series pro-

cess X , in the context of the previous state xn of the destination

process:

TY→X =

〈

log2

p(xn+1 | xn,yn)

p(xn+1 | xn)

〉

. (1)

To be clear, state here refers to the underlying dynamical

state of a process. For a time-series process X this is gener-

ally represented by Takens’ embedding vectors [26] x
(k,τ)
n =

{

xn−(k−1)τ , . . . ,xn−τ ,xn

}

, with embedding dimension k and

embedding delay τ . In a thermodynamic setting, a set of ther-

modynamic state variables fulfils the same role.

The transfer entropy TY→X , defined by (1), is a conditional

mutual information [27] between Yn and Xn+1 given Xn. In-

formally, it helps to answer the question “if I know the state

of the source, how much does that help to predict the state

transition of the destination?”.

Fisher information and the Fisher information matrix are

well known in statistical estimation theory. Fisher informa-

tion [5] is a measure for the amount of information that an ob-

servable random variable X provides about an unknown pa-

rameter θ , upon which the likelihood function of θ depends.

Let p(x|θ ) be the likelihood function of θ given the observa-

tions x. Then, Fisher information can be written as:

F(θ ) = E

[

(

∂

∂θ
ln p(x|θ )

)2
∣

∣

∣

∣

∣

θ

]

(2)

=
∫

x

(

∂ ln(p(x|θ ))
∂θ

)2

p(x|θ )dx (3)

=

∫

x

(

∂ p(x|θ )
∂θ

)2
1

p(x|θ )dx , (4)

where E[. . . |θ ] denotes the conditional expectation over val-

ues for x ∈ X with respect to the probability function p(x|θ )
given θ . Thus, Fisher information is not a function of a par-

ticular observation, since the random variable X has been

averaged out.

The discrete form of Fisher information is:

F(θ ) = ∑
x

p(x|θ )
(

∂ ln p(x|θ )
∂θ

)2

, (5)

= ∑
x

1

p(x|θ )

(

∂ p(x|θ )
∂θ

)2

. (6)

In this case, p(x) is a discrete probability distribution function,

such that x ∈ {x1, . . . ,xD}, where D is the alphabet size or

number of potential values for the variable X .

Furthermore, the n×n Fisher information matrix is defined

for several parameters θ = [θ1,θ2, . . . ,θn]
T, as follows

Fi j(θ ) = E

[(

∂

∂θi
ln p(x|θ )

)(

∂

∂θ j
ln p(x|θ )

)∣

∣

∣

∣

θ

]

. (7)

Statistical-mechanics models typically deal with Gibbs

measures, defined for a physical system in an equilibrium with

a large thermal reservoir, as follows:

p(x|θ ) = 1

Z(θ )
e−∑i θ iXi(x) =

1

Z(θ )
e−β H(x,θ) , (8)

where: the configuration variable x varies over the configu-

ration space; the set {θ i} includes time-dependent thermody-

namic variables (e.g., inverse temperature, pressure, magnetic

field, chemical potential, etc.); and the time-independent func-

tions Xi(x) are collective variables which determine the form

of action. The system’s Hamiltonian captures the total energy

at x: β H(x,θ ) = ∑i θ iXi(x), with β = 1/kBT being the in-

verse temperature (T ) of the environment in natural units, and

kB denoting the Boltzmann constant, and Z(θ ) = ∑x e−β H(x,θ)

is the partition function [28, 29].

Several previous studies [28–31] reported that Fisher infor-

mation matrix provides a Riemannian metric (more precisely,

the Fisher–Rao metric) for the manifold of thermodynamic

states. For instance, it was suggested that the scalar curvature

R of the thermodynamic metric tensor gi j(θ ) = Fi j(θ ) mea-

sures the complexity of the system [30].

Fisher information is also explicitly related to the gradient

of the corresponding order parameter(s) [6]:

Fi j(θ ) = β
∂φ i

∂θ j
, (9)
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where the order parameter φ i is a negative derivative of ther-

modynamic potential G = −kBT lnZ over some thermody-

namic variable θ i, i.e. φ i = − ∂G
∂θ i . The order parameter is

known to be related to the mean value of the corresponding

collective variable Xi [6, 32]:

φ i =−kBT 〈Xi〉 . (10)

During a second-order phase transition the order parameter

changes continuously when an independent variable is varied,

going to zero at the critical point, while Fisher information

exhibits divergence. In finite-size computational studies the

divergence can be approximated by maximization of Fisher

information [33, 34]. As pointed out by [6], not only does

this avoid the issue of identifying order parameters, but also

provides a natural interpretation of localizing the critical point

where the observed variable is most sensitive to the control pa-

rameter(s) / thermodynamic variable(s) (an interpretation ap-

plicable in both infinite and finite systems).

The following general relationship [6, 35]

Fi j(θ ) = 〈(Xi(x)−〈Xi〉) (X j(x)−〈X j〉)〉 (11)

gives the covariance matrix between the collective variables

Xi and X j. Thus, the Fisher information Fi j can be seen to

measure “the size of fluctuations about equilibrium” of the

collective variables Xi and X j [35].

Using this general expression, one may consider a generic

case of a d-dimensional Ising-type magnetic model with a

probability density expressible in the form of equation (8)

[28]. For this model, Brody and Rivier [28] have shown that

critical behaviour of thermodynamic quantities can be ana-

lyzed in terms of the reduced temperature t = T/Tc − 1, lead-

ing to the general expression [28]:

Fi j(θ )∼
(

|t|−α |t|b−1

|t|b−1 |t|−γ

)

. (12)

One may demonstrate divergence of certain elements of the

Fisher information matrix at the critical point (where T → Tc

and t → 0) for specific cases of d and the corresponding values

of critical exponents (e.g., for the 3-dimensional Ising model

all matrix elements diverge).

III. FISHER INFORMATION IN A KINETIC ISING

MODEL

We consider an isotropic ferromagnetic 2d lattice Ising

model of size N = L×L, with no external field. If the system

is in state s = s1, . . . ,sN ,si ∈ {+1,−1}, then the Hamiltonian

is given by

H(s) =− ∑
〈i, j〉

sis j , (13)

where 〈i, j〉 denotes a sum over the 2N unique pairs of lattice

neighbours, bold type s denotes a state vector of spins and

normal/lower case Greek type si denotes individual ±1 spin

of site i. In the following, we also use capitals S,Si to denote

random variables, and σ to denote a specific spin value ±1.

For the kinetic model we consider discrete-time Glauber

spin-flip dynamics [36]: at each time step a site i is selected

uniformly at random and its spin flipped with probability

Pi(s) =
[

1+ eβ ∆Hi(s)
]−1

, (14)

where ∆Hi(s) =H(si)−H(s) is the energy difference between

the spin-flipped and original state, and units are considered

normalized so that Boltzmann constant kB is 1. Here a super-

script i denotes flipping the i-th spin.

The following analytical expression, obtained by Onsager,

is well-known for the magnetization as a function of tempera-

ture [37]:

M =±
(

1−
[

sinh

(

log(1+
√

2)
Tc

T

)]−4
) 1

8

(15)

=±
[

1− sinh−4(2β )
]1/8

(16)

for T < Tc, where Tc =
2

log(1+
√

2)
; and M = 0 for T ≥ Tc.

Fisher information of the spin at a specific site i can then

be analytically derived as a function of inverse temperature β
(see Appendix VII for details):

Fi(β ) =
coth2(2β )sinh−8(2β )

(

1− sinh−4(2β )
)7/4

(

1−
(

1− sinh−4(2β )
)1/4

)

(17)

As shown in Appendix VII, Fisher information of each spin

diverges at critical temperature, as expected. In other words,

as T → Tc from below, i.e., β → βc from above, where βc =
1
2

log(1+
√

2), Fisher information Fi(β )→ ∞.

For the disordered case T ≥ Tc, the magnetization M = 0

and the probabilities p(Si =σ)= 1
2

are constant in the thermo-

dynamic limit according to (30), specified in Appendix VII,

resulting in a trivial result: Fi(β ) = 0.

IV. FISHER TRANSFER ENTROPY

We introduce here a novel measure, Fisher Transfer En-

tropy, which quantifies a sensitivity gain from a (state) tran-

sition of an observable random variable X , in the context of

another observable random variable Y , to an unknown param-

eter θ :

FY→X (θ ) = FXn+1|Xn,Yn
(θ )−FXn+1|Xn

(θ ) , (18)

where
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FXn+1|Xn
(θ ) =

∫

xn

∫

xn+1

(

∂ ln(p(xn+1|xn,θ ))

∂θ

)2

p(xn+1|xn,θ ) dxn dxn+1 (19)

=
∫

xn

∫

xn+1

(

∂ p(xn+1|xn,θ )

∂θ

)2
1

p(xn+1|xn,θ )
dxn dxn+1 , (20)

and

FXn+1|Xn,Yn
(θ ) =

∫

xn

∫

yn

∫

xn+1

(

∂ ln(p(xn+1|xn,yn,θ ))

∂θ

)2

p(xn+1|xn,yn,θ ) dxn dyn dxn+1 (21)

=

∫

xn

∫

yn

∫

xn+1

(

∂ p(xn+1|xn,yn,θ )

∂θ

)2
1

p(xn+1|xn,yn,θ )
dxn dyn dxn+1 . (22)

The term FXn+1|Xn
(θ ), specified in equations (19)–(20), quan-

tifies the transient (or dynamic) sensitivity of a state transition

from Xn to Xn+1 of the observable random variable X , to pa-

rameter θ . The term FXn+1|Xn,Yn
(θ ), given by equations (21)–

(22), accounts for the transient sensitivity to θ of a state transi-

tion from Xn to Xn+1 given Yn: that is, the transition of the vari-

able X in the context of variable Y . Hence, the resulting differ-

ence between the terms, FY→X (θ ), captured by (18), measures

the gain in transient sensitivity when variable Y is accounted

for in the transition from Xn to Xn+1. That is, if variables X

and Y are independent, and FXn+1|Xn
(θ ) = FXn+1|Xn,Yn

(θ ), there

is no transient sensitivity gain: FY→X (θ ) = 0. Unlike Fisher

information, the introduced Fisher Transfer Entropy and its

terms measure (a gain in) transient, or dynamic, sensitivity

for a state transition, rather than (a gain in) the amount of in-

formation contained in different variables.

The terms FXn+1|Xn
(θ ) and FXn+1|Xn,Yn

(θ ) can be represented

using the Chain Rule for Fisher Information [38]:

FA,B(θ ) = FA(θ )+FB|A(θ ) , (23)

and so, in general, Fisher Transfer Entropy can be decom-

posed as follows:

FY→X (θ ) = FXn+1,Xn,Yn(θ )−FXn,Yn(θ )

−
[

FXn+1,Xn(θ )−FXn(θ )
]

. (24)

To obtain a discrete form for FTE, one simply applies the

discrete form for Fisher Information to each term in equation

(24) above (see specific examples in Appendix VIII).

V. FISHER TRANSFER ENTROPY IN A KINETIC ISING

MODEL

In this section we derive Fisher Transfer Entropy (FTE) for

a kinetic Ising model, focusing only on the disordered phase,

i.e. the simpler case of T ≥ Tc, as β → βc from below. In

this phase Fisher information is trivially zero: Fi(β ) = 0, as

established in the previous section. Henceforth, X is the ran-

dom variable associated with a given lattice site, and Y is the

random variable representing one of its lattice neighbours.
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FIG. 1. Left: q as a function of T . Right:
∂ q
∂ T

as a function of T .

Results obtained after 10,000 runs of Ising model of size N = 512.

The first term in the FTE is given as follows (see Appendix

VIII):

FXn+1|Xn
(β ) =

4

q(N − 2q)

(

∂q

∂β

)2

, (25)

where, in the thermodynamic limit,

q =
1

2
〈Pi(S)〉 (26)

with i being the site index, S the stochastic variable represent-

ing the system (lattice) vector, and a state vector s representing

an instance of S. Pi(S) is the flipping probability of spin Si in

a given spin configuration S (n.b. equation (14)). In general,

q is a function of β or T . Results of a numerical estimation of

q are shown in Fig. 1 (left).

A numerical estimation of
∂q
∂T

shows, cf. Fig. 1 (right), that

it is positive at critical temperature, and the estimates increase

as the differences ∆T decrease, so that
∂q
∂T

→ ∞. Since ∂
∂β =

−T 2 ∂
∂T

, we can conclude that
∂q

∂β →−∞ at critical point. As

1 > q > 0, the total transient sensitivity of a state transition

from Xn to Xn+1 diverges at βc: NFXn+1|Xn
(β )→ ∞.
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The second term in the FTE is given by following expres-

sion (obtained in Appendix VIII):

FXn+1|Xn,Yn
(β )= 4







(

∂q

∂β U−− q
∂U−
∂β

)2

qU2
− (NU−− 2q)

+

(

∂q

∂β U+− q
∂U+
∂β

)2

qU2
+ (NU+− 2q)






,

(27)

where U is the internal energy (as a function of β , see equation

(46)), and U− = 1− 1
2
U and U+ = 1+ 1

2
U . It has been estab-

lished that ∂U
∂β → −∞ logarithmically as β → βc from below

[39]. This, together with numerical observation
∂q
∂β → −∞,

yields divergence of the total transient sensitivity of a state

transition from Xn to Xn+1 in context of Yn at critical point as

well: NFXn+1|Xn,Yn
(β )→ ∞.

The difference between (27) and (25) yields the desired

Fisher Transfer Entropy defined by (18), as the gain in tran-

sient sensitivity. In the thermodynamic limit, we obtain

FY→X (β )→
Aq,U

(

∂q

∂β

)2

+BU
∂q

∂β
∂U
∂β +Cq,U

(

∂U
∂β

)2

N
, (28)

where coefficients Aq,U , BU and Cq,U are positive at the critical

point (see Appendix VIII).

Given logarithmic divergence ∂U
∂β →−∞ and the results of

numerical estimations suggesting that
∂q
∂β → −∞, being neg-

ative in any case, and thus making the product
∂q

∂β
∂U
∂β always

positive, we obtain that the total Fisher Transfer Entropy di-

verges, N FY→X (β )→ ∞ at the critical point, as β → βc from

below.

Since ∂
∂β =−T 2 ∂

∂T
, we also obtain

N FY→X (T )→

T 4

(

Aq,U

(

∂q

∂T

)2

+BU
∂q

∂T

∂U

∂T
+Cq,U

(

∂U

∂T

)2
)

, (29)

and so, as T → Tc from above, the total Fisher Transfer En-

tropy diverges as well: N FY→X(T )→ ∞.

In other words, at the critical regime, divergence of

the transient sensitivity in context of the neighbors, i.e.

NFXn+1|Xn,Yn
(β ), is faster than divergence of the transient sen-

sitivity per se, NFXn+1|Xn
(β ), and so the gain in transient sen-

sitivity diverges overall. Interestingly, this can be contrasted

with zero Fisher information: Fi(β ) = 0, on the disordered

side; highlighting that FTE reveals changes in dynamic sensi-

tivity that Fisher information does not.

VI. DISCUSSION AND CONCLUSION

This study introduced Fisher Transfer Entropy, a measure

which quantifies a gain in sensitivity to a control parameter.

This gain is obtained during a state transition of an observable

random variable X (“destination”), in the context of another

observable random variable Y (“source”). The new measure

combines several characteristics of two well-known measures:

transfer entropy and Fisher information. It captures transient

and contextual qualities of transfer entropy, as well as sensi-

tivity of Fisher information. The “destination” variable per

se may be insensitive to changes in some control parame-

ter θ , resulting in zero Fisher information FX(θ ). Moreover,

even a transition between the states of the “destination” vari-

able may gain no sensitivity to the control parameter changes,

with FXn+1|Xn
(θ ) = 0. However, when such a transition oc-

curs in context of some external influence, e.g., provided by

“source” Y , the transient dynamics may become sensitive to

changes in θ , with non-zero transient contextual sensitivity:

FXn+1|Xn,Yn
(θ ) 6= 0. The gain in transient sensitivity is brought

about by the source-destination interaction, which may be due

to either direct influence or some indirect contextual contribu-

tion from the source.

It is well-known that non-zero transfer entropy does not

necessarily mean that the source has a causal effect on the des-

tination [40], and so the introduced Fisher Transfer Entropy is

not intended to capture any sensitivity or gain in causal inter-

actions between the variables. It does, nevertheless, capture

the gain in transient sensitivity of the destination variable in

presence of the source variable. Informally, Fisher Transfer

Entropy refers to the amount of informational sensitivity that

a source variable adds to the next state of a destination vari-

able; i.e., addressing the question “if I know the state of the

source, how much does that help in gaining sensitivity of the

state transition of the destination, to changes in some control

parameter?”.

One may then pose the question, “In which situations would

Fisher Transfer Entropy reveal interesting dynamics?” As

pointed out in preceding paragraphs, the proposed measure

is focussed on sensitivity of transient dynamics, in context

of some external source interacting with the dynamics under

the consideration. We can expect that such interactions ex-

hibit some non-trivial dynamics in the vicinity of phase tran-

sitions, when variables are characterised by critical behaviour

and so may be particularly sensitive to changes in the under-

lying control parameter. Moreover, the gain in the sensitiv-

ity within an interacting system may further characterise the

strength and/or complexity of the interaction.

We applied the approach to a kinetic Ising model. Fisher

Information was analytically shown to diverge at the criti-

cal point approaching from one side (cf. empirical results

of another study confirming this derivation [41]), and staying

zero on the other side. We followed with a detailed analysis

of Fisher Transfer Entropy and demonstrated its divergence

at the critical point, approaching from the same side where

Fisher Information itself is actually zero. The reason for zero

Fisher Information is that the opposite spin states are in bal-

ance on that side and remain insensitive to the temperature,

whereas the interactions in the transient dynamics are sensi-

tive to the temperature. Furthermore, the results show that

sensitivity of transient dynamics diverges faster in presence

of the interactions with the lattice neighbours of Ising model,

yielding non-zero Fisher Transfer Entropy.

Collective transfer entropy was previously analytically

shown to peak on the disordered side of the phase transition

[4]. And so it remains an intriguing question whether collec-

tive Fisher Transfer Entropy, generalised to account for influ-

ences of all lattice neighbours, may also have a (post-critical)

peak on the disordered side.
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There are several other avenues for future research and ap-

plications. We believe that measuring Fisher Transfer En-

tropy may be particularly useful in systems with strong cou-

pling and interacting components. For example, interactions

within bipartite systems may undergo critical changes near

or at phase transitions, and estimating the gain in transient

sensitivity may reveal and/or characterise specific phase tran-

sitions driven by external influences. Similarly, many real-

world complex networks are interdependent, and recent the-

oretical work on “networks formed from interdependent net-

works” suggests that when interdependencies are introduced,

some well-known properties no longer hold (e.g., scale-free

networks coupled with other networks lose their robustness to

random failures [42]). Again, Fisher Transfer Entropy mea-

sured within such networks may identify salient pathways for

critical information dynamics.

VII. APPENDIX A: FISHER INFORMATION

We follow [4] in specifying the distribution

p(Si = σ) = ∑
s

p(S = s)p(Si = σ |S = s) (30)

=
1

2
(1+σ〈Si〉) → 1

2
(1+σM) (31)

as N → ∞. Using thermodynamic limit for T < Tc (16), we

can rewrite the probability distribution as

p(Si = σ) =
1

2
(1±σ

[

1− sinh−4(2β )
]1/8

) , (32)

where the ± reflects the bifurcation in the system. This allows

us to analytically derive Fisher information of a single site i as

a function of inverse temperature β , by substituting p(Si = σ)
into (6), and setting θ = β , and x = Si:

Fi(β ) = ∑
Si

(

∂ p(Si|β )
∂β

)2
1

p(Si|β )

=
coth2(2β )sinh−8(2β )

2
(

1− sinh−4(2β )
)7/4

(

1±
(

1− sinh−4(2β )
)1/8

)

+
coth2(2β )sinh−8(2β )

2
(

1− sinh−4(2β )
)7/4

(

1∓
(

1− sinh−4(2β )
)1/8

)

=
coth2(2β )sinh−8(2β )

(

1− sinh−4(2β )
)7/4

(

1−
(

1− sinh−4(2β )
)1/4

)

We can evaluate this expression as T → Tc from below, i.e.,

β → βc from above, where βc =
1
2

log(1+
√

2). In doing so,

we again follow [39], by specifically changing the sign of ε in

the corresponding equations (15) and (18) [39]:

sinh(2β ) = 1+
√

2ε +O
(

ε2
)

(33)

coth(2β ) =
√

2− ε +O
(

ε2
)

(34)

It follows then that as β → βc from above and ε → 0, Fisher

information Fi(β )→ ∞.

VIII. APPENDIX B: FISHER TRANSFER ENTROPY

The analysis presented here is limited to the simpler case of

T ≥ Tc, as β → βc from below.

The relevant probability functions are given as follows [39]:

p(σ ′|σ) =







1− 1
N

q
pσ

σ ′ = σ

1
N

q
pσ

σ ′ =−σ
(35)

p(xn+1|xn) =







1− 1
N

q

p(xn)
xn+1 = xn

1
N

q

p(xn)
xn+1 =−xn

(36)

where q is defined, in the thermodynamic limit, according to

(26):

q =
1

2
〈Pi(S)〉 (37)

with i being the site index, S the stochastic variable represent-

ing the system (lattice) vector, and a state vector s representing

an instance of S.

Next, we have [39]:

p(σ ′′|σ ,σ ′) =







1− 1
N

qσ ′
pσσ ′ σ ′′ = σ

1
N

qσ ′
pσσ ′ σ ′′ =−σ

(38)

where

qσ ′ =
1

4

〈

Pi(S)+σ ′〈S jPi(S)〉
〉

(39)

p(xn+1|xn,yn) =







1− 1
N

qy

p(xn,yn)
xn+1 = xn

1
N

qy

p(xn,yn)
xn+1 =−xn

(40)

where qy = qyn is defined according to (39).

Then, according to the discrete form of (20),

FXn+1|Xn
(β ) = ∑

xn,xn+1

(

∂ p(xn+1|xn,β )

∂β

)2
1

p(xn+1|xn,β )
. (41)

When symmetry is unbroken, in the thermodynamic limit the probability p(xn) =
1
2
, and so (36) entails

∂ p(xn+1|xn,β )

∂β
=







− 2
N

∂q

∂β xn+1 = xn

2
N

∂q
∂β xn+1 =−xn

(42)
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Substituting (42) and (36) into (41) produces

FXn+1|Xn
(β ) =

4

q(N − 2q)

(

∂q

∂β

)2

. (43)

Now we consider the discrete form of the more complicated

term (22):

FXn+1|Xn,Yn
(β ) = ∑

xn,yn,xn+1

(

∂ p(xn+1|xn,yn,β )

∂β

)2
1

p(xn+1|xn,yn,β )
. (44)

Reducing (39) for the case T ≥ Tc, and noting that 〈S jPi(S)〉=
0 [4], results in qy =

1
2
q. However, the conditional probability

p(xn+1|xn,yn), specified by (40), does in general depend on β ,

creating several possibilities, dependent on spins of xn+1, xn,

and yn. According to [39], for infinite lattices,

p(Si = σ ,S j = σ ′)→ 1

4

[

1+(σ +σ ′)M− 1

2
σσ ′U

]

, (45)

where internal energy U is dependent on β , and is given by

[4, 39]

U =−coth2β

[

1+
2

π
(κ sinh2β − 1)K(κ)

]

(46)

with

K(κ) =

∫ π
2

0

dφ
√

1−κ2 sin2 φ
. (47)

Hence, the joint probability p(xn,yn), which appears in de-

nominators of (40), depends on β , as follows (we again use

M = 0 for T ≥ Tc):

p(xn,yn) =
1

4

[

1− 1

2
xnynU

]

=







1
4

[

1− 1
2
U
]

xn = yn

1
4

[

1+ 1
2
U
]

xn =−yn

(48)

We shall abbreviate U− = 1− 1
2
U and U+ = 1+ 1

2
U , so

p(xn,yn) =







1
4
U− xn = yn

1
4
U+ xn =−yn

(49)

and

∂ p(xn,yn)

∂β
=







1
4

∂U−
∂β xn = yn

1
4

∂U+
∂β xn =−yn

(50)

Taking derivative over β in (40), and using qy =
1
2
q, pro-

duces

∂ p(xn+1|xn,yn)

∂β
=

∂

∂β







1− 1
2N

q

p(xn,yn)
xn+1 = xn

1
2N

q

p(xn,yn)
xn+1 =−xn

(51)

=
1

2N











−
(

∂q

∂β
1

p(xn,yn)
− ∂ p(xn,yn)

∂β
q

p2(xn,yn)

)

xn+1 = xn

∂q

∂β
1

p(xn,yn)
− ∂ p(xn,yn)

∂β
q

p2(xn,yn)
xn+1 =−xn

(52)

So we have (for either case xn+1 =±xn):

(

∂ p(xn+1|xn,yn)

∂β

)2

=
1

4N2





∂q
∂β p(xn,yn)− q

∂ p(xn,yn)
∂β

p2(xn,yn)





2

(53)

=
4

N2























(

∂ q
∂ β

U−−q
∂U−
∂ β

U2
−

)2

xn = yn

(

∂ q
∂ β

U+−q
∂U+
∂ β

U2
+

)2

xn =−yn

(54)

where the last step used (49) and (50).

Substituting (54) and (40) into (44) and considering eight

possible spin permutations of xn+1, xn, and yn, yields

FXn+1|Xn,Yn
(β ) =

8

N







(

∂q

∂β U−− q
∂U−
∂β

)2

U3
− (NU−− 2q)

+

(

∂q

∂β U−− q
∂U−
∂β

)2

2qU3
−







(55)

+
8

N







(

∂q
∂β U+− q

∂U+
∂β

)2

U3
+ (NU+− 2q)

+

(

∂q
∂β U+− q

∂U+
∂β

)2

2qU3
+







(56)

= 4







(

∂q
∂β U−− q

∂U−
∂β

)2

qU2
− (NU−− 2q)

+

(

∂q
∂β U+− q

∂U+
∂β

)2

qU2
+ (NU+− 2q)






.

(57)
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The difference between (57) and (43) yields the desired

Fisher Transfer Entropy defined by (18). In the thermody-

namic limit, we obtain

FY→X (β )→
Aq,U

(

∂q

∂β

)2

+BU
∂q

∂β
∂U
∂β +Cq,U

(

∂U
∂β

)2

N
, (58)

with coefficients Aq,U , BU and Cq,U given as follows:

Aq,U =
4

q

(

1

U−
+

1

U+
− 1

)

=
4

q

(

1− U2

4

) (59)

BU = 4

(

1

U2
−
− 1

U2
+

)

=
8U

(

1− U2

4

)2
(60)

Cq,U = q

(

1

U3
−
+

1

U3
+

)

= q
2+ 3U2

2
(

1− U2

4

)3
. (61)

The total Fisher Transfer Entropy within the system is then

given by:

N FY→X(β )→ Aq,U

(

∂q

∂β

)2

+BU

∂q

∂β

∂U

∂β
+Cq,U

(

∂U

∂β

)2

.

(62)

The coefficients Aq,U , BU and Cq,U are positive at the critical

point, since q > 0 and U →
√

2 [39]: Ac =
8
q
, Bc = 32

√
2, and

Cc = 40q.
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maier, Physical Review Letters 111, 177203 (2013).

[5] R. A. Fisher, Philosophical Transactions of the Royal Society,

A 222, 309 (1922).

[6] M. Prokopenko, J. T. Lizier, O. Obst, and X. R. Wang, Physical

Review E 84, 041116 (2011).

[7] J. T. Lizier, M. Prokopenko, and A. Y. Zomaya, Physical Re-

view E 77, 026110 (2008).

[8] J. T. Lizier, M. Prokopenko, and A. Y. Zomaya, in Guided Self-

Organization: Inception, Emergence, Complexity and Compu-

tation, Vol. 9, edited by M. Prokopenko (Springer Berlin Hei-

delberg, 2014) pp. 115–158.

[9] X. R. Wang, J. M. Miller, J. T. Lizier, M. Prokopenko, and L. F.

Rossi, PLoS ONE 7, e40084 (2012).

[10] R. V. Ceguerra, J. T. Lizier, and A. Y. Zomaya, in Artificial Life

(ALIFE), 2011 IEEE Symposium on (IEEE, 2011) pp. 54–61.

[11] M. Prokopenko, J. T. Lizier, and D. C. Price, Entropy 15, 524

(2013).

[12] M. Prokopenko and J. T. Lizier, Scientific Reports 4, 5394+

(2014).

[13] M. Prokopenko and I. Einav, Physical Review E 91, 062143

(2015).

[14] A. Stam, Information and Control 2, 101 (1959).

[15] N. M. Blachman, Information Theory, IEEE Transactions on

11, 267 (1965).

[16] B. R. Frieden, Physics Letters A 169, 123 (1992).

[17] B. Nikolov and B. R. Frieden, Physical Review E 49, 4815

(1994).

[18] A. R. Plastino and A. Plastino, Physical Review E 52, 4580

(1995).

[19] A. Plastino, A. R. Plastino, and H. G. Miller, Physics Letters A

235, 129 (1997).

[20] T. Yamano, The European Physical Journal B 86, 1 (2013).

[21] B. R. Frieden, American Journal of Physics 57, 1004 (1989).

[22] B. R. Frieden, A. Plastino, A. R. Plastino, and B. H. Soffer,

Physical Review E 60, 48 (1999).

[23] B. R. Frieden, A. Plastino, A. R. Plastino, and B. H. Soffer,

Physical Review E 66, 046128 (2002).

[24] B. R. Frieden and R. A. Gatenby, Physical Review E 88, 042144

(2013).

[25] R. Echeveste and C. Gros, Frontiers in Robotics and AI 1

(2014).

[26] F. Takens, in Dynamical Systems and Turbulence, Warwick

1980, Lecture Notes in Mathematics, edited by D. Rand and

L.-S. Young (Springer, Berlin / Heidelberg, 1981) pp. 366–381.

[27] D. J. MacKay, Information Theory, Inference, and Learning Al-

gorithms (Cambridge University Press, Cambridge, 2003).

[28] D. Brody and N. Rivier, Phys. Rev. E 51, 1006 (1995).

[29] G. Crooks, Physical Review Letters 99, 100602+ (2007).

[30] W. Janke, D. A. Johnston, and R. Kenna, Physica A 336, 181

(2004).

[31] D. C. Brody and A. Ritz, Journal of Geometry and Physics 47,

207 (2003).

[32] I. R. Ukhnovskii, Phase transitions of the second order: collec-

tive variables method (World Scientific, 1987).

[33] X. R. Wang, J. T. Lizier, and M. Prokopenko, in Proceedings

of the 12th International Conference on the Synthesis and Sim-

ulation of Living Systems (Alife XII), Odense, Denmark, edited
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