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Abstract—With increasing emphasis on vehicular automation
and traffic efficiency, the management and coordination of
platoon-based systems have become important. This research
introduces a unique control framework based on a behavioral
stability strategy, designed to enhance the cohesion of vehicle
platoons and improve their ability to resist disturbances. Our
approach integrates a vehicle scheduling system with a real-time
platoon control mechanism to enhance the behavioral stability,
robustness, and safety of the platoon. Given the heterogeneous na-
ture of vehicles, we propose an optimal platoon formation model.
This model strategically determines the number of platoons,
arranges the sequence of vehicles within each platoon, and selects
optimal cruising speeds to maximize platoon cohesion. To further
enhance system robustness, a centralized robust model predictive
controller is deployed for each platoon, ensuring stability against
stochastic perturbations in vehicle dynamics and guaranteeing
platoon safety. Finally, we conduct a simulation study involving
multiple platoons with 20 heterogeneous vehicles to validate the
effectiveness of the multi-layer optimization model.

Index Terms—Connected and Automated Vehicles, Platoon
Formation, Fuel Economy, Model Predictive Control, Robust
Optimization.

I. INTRODUCTION

VEHICULAR platooning depends on reliable communi-
cation technologies and advanced control methods to

form clusters of vehicles traveling at a designated speed along
the same route while maintaining safe inter-vehicle distances.
Research by [1] and others indicates that approximately two-
thirds of trucks in the United States are “platoon-capable”. The
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benefits of vehicle platooning include enhancing road capacity
[2]–[4], reducing pollutant emissions [5]–[7], and conserving
energy [8]–[10]. Specifically, when the safe distance between
two adjacent vehicles in a platoon is sufficiently close, the
lead vehicle can reduce the air resistance on the surface of
the following vehicle. Additionally, the cooperative nature
between vehicles results in smoother control signals, further
reducing fuel consumption. Literature [11] suggested that
when the distance between two adjacent vehicles in a platoon
is around 3.5 meters, the average fuel consumption of the
entire platoon can be reduced by 9%.

A classic scenario of vehicular platooning typically refers
to the formation of a convoy on a single lane [12]–[14]. The
main challenges faced by single-lane platooning include the
potential reduction in agility from an overly extended train-
like formation, which may subsequently impact traffic flow.
Furthermore, a fixed vehicular sequence and platoon speed
might result in increased fuel consumption, thereby failing
to enhance the environmental sustainability of the platoon.
For instance, large-sized trucks have more aerodynamic drag,
hence their position within a platoon plays a pivotal role
in influencing the platoon’s fuel consumption. Theoretical
analyses and empirical studies conducted on cooperative ve-
hicular platooning indicate that not all platoons are “inherently
equal”. The length of the platoon, its speed, and the sequence
of vehicles can make one platoon configuration “greener”
than another. Consistent with Literature [15], [16], given a
set of vehicles, there may exist an “optimal green” platoon
formation to achieve minimal fuel consumption. Additionally,
[17] delved into the challenges of dynamically scheduling
vehicles into platoons based on real-time traffic conditions and
individual vehicular attributes. Their findings suggest that flex-
ible scheduling, which factors in the real-time entry and exit of
vehicles, can lead to more fluid and efficient traffic movements.
Furthermore, [18] emphasized that different vehicle types,
when sequenced optimally, can leverage the strengths of one to
offset the limitations of another, creating a synergistic effect.
[19] introduced bidirectional reference dynamics with proven
string stability properties to mitigate the risk of string stability
and cohesiveness loss in uncertain heterogeneous platoons.
Therefore, it is necessary to provide insights into the formation
composition of heterogeneous vehicles.

In addition to facilitating the formation of vehicle platoons,
developing robust control mechanisms has become a critical
area of research [20]. Although classical theories have made
significant contributions to platoon control, several challenges
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remain due to factors such as vehicle heterogeneity, vehicle-
to-vehicle communication limitations, and uncertainties [20],
[21]. Uncertainty, arising from various sources such as ve-
hicle operations, sensor errors, and environmental conditions,
presents a significant challenge to controller performance [21].
These stochastic perturbations can potentially breach safety
boundaries, jeopardizing vehicle security. Therefore, design-
ing robust platoon controllers for uncertain environments is
essential to ensure both the formation and safe operation of
platoons. The design of robust platoon controllers relies on
forming cohesive multi-platoon structures characterized by
high cohesion. Such cohesive formations create the necessary
foundation for implementing effective control mechanisms.
Once multiple platoons are established, introducing a cen-
tralized Robust Model Predictive Control (RMPC) method
becomes essential to maintain coordination and ensure the safe
operation of the platoons under uncertain conditions.

II. LITERATURE REVIEW

Early research on vehicular platooning was mainly based
on optimal control theory, focusing on aspects like main-
taining vehicles at desired speeds and safe distances [22].
Additionally, numerous researchers have been dedicated to
exploring the fuel-saving effects of platoons under specific
conditions, such as vehicle speed, separation distance, and
vehicle sequence. An experiment was conducted by [23] on
a platoon consisting of two distinct vehicle types. The test
results demonstrated that, when the speed was set to 80
km/h with an inter-vehicle distance of 10m, the lead vehicle
could achieve a 6% reduction in fuel consumption, while
the trailing vehicle could realize a savings of 20% in fuel
consumption (with distance ranging between 7m and 14m).
Literature [1] further indicated that, in a scenario involving
a platoon of three heavy trucks, the rear vehicle achieves
minimum fuel consumption when the inter-vehicle distance
exceeds 12 meters. The middle vehicle consumes the least
fuel at relatively short distances, whereas the lead vehicle
consistently incurs the highest fuel consumption irrespective
of the set distance. These experiments underscore that vehic-
ular platooning can enhance driving efficiency, concurrently
fostering environmental sustainability.

Furthermore, the fuel efficiency of platooned vehicles is
significantly influenced by the type of vehicle and its position
within the platoon. According to [24], the benefits of fuel sav-
ings and emission reductions will be amplified in multi-platoon
scenarios. Wind tunnel experiments by [11] and [25] indicated
that larger vehicles experience greater aerodynamic drag than
smaller cars. This difference becomes especially noticeable at
higher speeds, as aerodynamic drag increases proportionally
with the square of the velocity. According to tests in the
literature [26], when a vehicle is located behind a large truck,
the wind resistance of the behind vehicle is significantly
reduced due to the large truck blocking the wind for the vehicle
behind it. At this point, [15] presented an optimal platoon
formation coupled with a fair benefit allocation mechanism
(FAM) to ensure platoon stability. Their strategy delineates
which vehicles should platoon and their respective speeds

to optimize system benefits. [27] introduced a decentralized
multi-agent system to address behavioral instability in platoon-
ing by redistributing benefits among members. [28] proposed
an eco-friendly platoon formation strategy for a diverse fleet
of electric vehicles on a single route. Utilizing a mathematical
model-based optimization, they determined the optimal num-
ber and configuration of platoons to maximize energy savings
and CO2 emission reduction. [29] investigated the influence of
cooperative adaptive cruise control vehicle platooning on the
capacity of multilane freeway merge bottlenecks, employing
simulation experiments integrating car-following and lane-
changing models with constraints on string length and inter-
string time gaps. Inspired by the above research, we propose
an optimal platoon formation method for multi-type vehicles,
aiming to maximize the collective benefits (fuel economy) of
the platoon.

From the perspective of platoon control, to counteract the
uncertainties and disturbances inherent in vehicular platoon
systems, numerous control methodologies have been proposed,
such as sliding mode control [30], robust tube control [31],
stochastic control [32], and robust model predictive control
[33]. The main advantage of RMPC is its ability to effi-
ciently regulate and manage the uncertainties and perturba-
tions present in the system while taking into account future
predictive models. It combines the advantages of traditional
MPC with the robustness of robust control in order to provide
a more reliable and flexible control solution. In addition, the
RMPC method is able to adapt to changes in road conditions
in real time, automatically responding to new information and
recalculating the control strategy, thus ensuring the stability
and safety of the vehicle platoon. [34] developed a novel
approach to solve the RMPC problem for linear discrete-
time systems with security constraints and objectives in the
presence of bounded disturbances. [35] proposed a robust
distributed model predictive platooning control for heteroge-
neous autonomous surface vehicles (ASVs) considering input
constraints and external disturbances. Besides, they introduced
an inter-vehicle safety constraint in the MPC optimization to
prevent ASV collisions. [36] designed an RMPC algorithm to
address the cooperative control of a connected vehicle pla-
toon facing parameter uncertainty. By employing this RMPC
algorithm, they derived a stability guarantee for the vehicle
platoon system with model uncertainty. While methods of
platoon formation and control have been explored in certain
scenarios, there are few studies that comprehensively consider
the integration of platoon formation with platoon control.

The objective of this paper is to introduce a comprehensive
optimization framework designed to improve both the cohe-
sion and robustness of vehicle platoons. Our approach begins
with the strategic scheduling of vehicles, where each vehicle’s
data is transmitted to a centralized cloud-based controller. This
centralized system plays a crucial role in determining the
optimal configuration of vehicles within platoons, including
both the ideal vehicle arrangement and the appropriate number
of platoons needed. The primary focus during this scheduling
phase is to maximize fuel efficiency and enhance the overall
benefit of platooning by positioning vehicles in a way that
optimizes aerodynamic advantages and improves the vehicle’s
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behavioral stability.
Once the optimal platoon formations have been established

through this scheduling process, the focus shifts to ensuring
the stability and safety of the platoons as they operate on
the road. To achieve this, we introduce a centralized robust
model of predictive controller for each distinct platoon. This
RMPC model is specifically designed to address and mitigate
the effects of uncertain disturbances, such as communication
interferences, that could otherwise destabilize the platoon.
By employing this robust control strategy, we aim to fortify
the platoon system against uncertainties, ensuring that it can
maintain its speed and spacing under varying uncertain dis-
turbances. The key contributions of this paper are outlined as
follows:

• We design a multi-layer optimization framework to im-
prove fuel economy and robustness in multiple pla-
toons. This sophisticated architecture integrates a fuel-
efficient driving strategy, combining a comprehensive ve-
hicle scheduling system with a real-time platoon control
mechanism.

• We propose an optimal platoon formation model for
heterogeneous vehicle types. The model determines the
number of platoons, the sequence of vehicles within
the platoon, and the platoon’s optimal speed to enhance
platoon cohesion and vehicle behavior stability.

• Based on the multi-formation system, we design a cen-
tralized RMPC controller for each individual platoon.
This design not only addresses the uncertainties inherent
in vehicular dynamics and external disturbances but also
proactively manages potential disruptions in real-time
scenarios.

The structure of this paper is organized as follows. Section
III explains the motivation and basic assumptions of this
paper. Section IV introduces the optimal platoon formation
strategy, encompassing vehicle scheduling methods and an
economic efficiency model. Section V presents the RMPC
method under stochastic disturbances for a single platoon.
Simulation results are provided and analyzed in Section VI,
followed by simulation experiments detailed in Section VII.
The work of this paper and future research work are concluded
in Section VIII.

III. THE MOTIVATION AND BASIC CONSIDERATIONS

In the rapidly evolving field of automated transportation, ve-
hicle platooning has emerged as a pivotal technology promis-
ing enhanced road capacity and reduced fuel consumption.
Traditional vehicle formation control strategies, however, have
not typically prioritized the specific order of vehicles within
the platoon. Instead, these methods have been primarily con-
cerned with maintaining a stable and safe distance between
vehicles, without considering how the position of each vehicle
could optimize overall team benefits, such as fuel efficiency
or operational efficiency. According to literature [15] and [37],
the increase in fuel efficiency primarily comes from platooning
from the reduction in aerodynamic drag when vehicles travel
closely together. However, this aerodynamic benefit is not
evenly distributed among the different types of members.

Vehicles in the middle of the platoon experience the most
significant fuel savings, while the leading vehicle benefits the
least. Consequently, it is necessary for decision-makers to re-
optimize the vehicle sequence in platoons and then implement
the control strategy.

Acknowledging this gap, this paper introduces a novel
formation control model based on a behavioral stability strat-
egy. Behavioral stability refers to the ability of a platoon to
maintain its formation and cohesiveness over time, despite the
inherent differences in benefits received by individual vehicles
within the platoon. This concept is crucial because vehicles
might have differing incentives to remain in the platoon due to
unevenly distributed benefits such as fuel savings. Our model,
by integrating behavioral stability, ensures that all vehicles in
the platoon have sufficient incentive to remain part of the
group. This maintains the overall structure and cohesion of
the platoon, thus addressing a critical challenge in traditional
platooning dynamics where individual vehicle benefits are not
aligned with collective goals. Figure 1 shows the definition of
behavioral stability and platoon cohesion.

Platoon 1

Platoon 2

Large wind resistance, 
high fuel consumption

Low wind resistance, 
low fuel consumption 

In platoon 1, the owner think
the fuel consumption is high,
so the vehicle may leave the
platoon. This is defined as

"Unstable behavior"

Platoon 1 is has low
cohesion and Platoon2 has

high cohesion

Platoon 1

Platoon 2

Large wind resistance, 
high fuel consumption

Low wind resistance, 
low fuel consumption 

Platoon 1 has low cohesion and
the formation is easy to disband

Platoon 2 has high cohesion and
the formation is more stable

Behaviorally unstable

Behaviorally stable

Fig. 1. Definition of behavioral stability and cohesion.

After establishing the vehicle dispatch and formation strat-
egy to ensure behavioral stability within the platoon, our focus
shifts to addressing the challenges posed by the uncertain
disturbance. Specifically, we must consider the intercarrier
interference that vehicles encounter during vehicle-to-vehicle
communication while driving in formation. This interference,
exacerbated by high doppler frequencies, can disrupt the
critical communication signals between the leading vehicle
and the following vehicles, which are essential for maintaining
coordinated movement within the platoon. For each platoon,
the leading vehicle is responsible for transmitting its accel-
eration data to the other vehicles through V2V communica-
tion [38], [39]. However, in conditions with high Doppler
frequencies, these signals can become distorted, leading to
significant intercarrier interference. Such disruptions seriously
threaten communication integrity, which is vital for the pla-
toon’s synchronized operation. Traditional control methods
often struggle to handle these interferences, making it difficult
to maintain stable and safe platooning under these uncertain
conditions [40], [41].

To address this critical issue, we propose a robust central-
ized model predictive control method specifically designed for
vehicle formation control after the formation has been estab-
lished. Following the initial multi-formation strategy, which
handles the scheduling and positioning of vehicles, the focus
shifts to controlling the platoon once it is formed. In this phase,
the controller, located in the lead vehicle, oversees the entire
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RMPC

RMPC
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Collection
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Formation

Stochastic
Disturbance

CAV Platoons

How many
platoons are
formed, their

lengths and the
order of

vehicles in the
platoon

(Cloud control)

The centralized
robust controller for
each single platoon
to resist stochastic

disturbance during
driving process

(Centralized control
in leading vehicle)

Maero-scheduling

After completing 
the scheduling

Micro-control

Fig. 2. The system scenario and architecture of this paper.

formation, ensuring that it can effectively deal with uncertain
disturbances, such as intercarrier interference. By enhancing
the robustness of the system, our approach aims to maintain
the stability and safety of the platoon in real-world conditions
where communication channels are often subject to various
forms of interference. This research is driven by the necessity
to ensure that vehicle platoons remain at fixed distances and
speeds, even in uncertain dynamic environments. In summary,
our research first addresses vehicle platoon formation at a
macro level, ensuring behavioral stability by strategically
assigning vehicles to optimize overall efficiency. Following
this, we focus on robust control during platooning, tackling
challenges like inter-carrier interference that can disrupt V2V
communication. By combining strategic formation with robust
control methods, we enhance the safety, stability, and effi-
ciency of vehicle platoons in dynamic environments.

Our research is rooted in three fundamental hypotheses: 1.
We hypothesize that highway systems commonly comprise
more than two vehicle types; 2. We propose that a central cloud
control center uniformly schedules the distribution behavior
of vehicles at the macro level; 3. We posit that once platoon
formations are established, the lead vehicle assumes the pivotal
responsibility of coordinating and orchestrating fleet opera-
tions. Together, these hypotheses form the backdrop against
which our research endeavors to develop a comprehensive
framework for enhancing the efficiency and cohesion of multi-
platoon formations on highways.

IV. OPTIMAL VEHICLE PLATOON FORMATION MODEL

Figure 2 displays the system scenario and architecture of the
multi-level optimization framework. In the first layer of our
framework, we initiate the process of vehicle data collection,
which forms the basis for subsequent decision-making and
optimization tasks. By harnessing data from real-time traffic
monitoring systems, we establish a comprehensive under-
standing of vehicle movements within the designated area,

laying the groundwork for further analysis and optimization
of platoon formation strategies. For the second layer of our
framework, we address the complexity of traffic scenarios
involving multiple vehicle types by introducing an ecologically
based multi-platoon forming model. This model serves as the
foundational component aimed at enhancing the cohesion of
the formed platoon. Through this layer, we aim to optimize
platoon formation strategies to enhance structural stability,
ensuring that the resulting platoons exhibit high cohesion and
maintain a tightly coordinated formation. The symbols in the
model are as follows.

A. Notations in Model

Set:
I = {1, . . . , n}: Set of all vehicles, i ∈ I;
J = {1, . . . ,m}: Set of candidate platoon, j ∈ J ;
Ki: A subset of platoons which are selected by vehicle i;
Mj : A subset of all vehicles which belongs to platoon j.
Parameter:
k: The number of all candidate platoons;
vi: The speed of vehicle i traveling alone, i ∈ I;
β : The fuel consumption weight coefficient;
γ : The negative utility weight coefficient of vehicles;
F 0
i : The fuel consumption of vehicle i traveling alone;

C0
i : The cost of vehicle i traveling alone;

U j
i : The utility of vehicle i in platoon j, j ∈ Ki;

vmin : The minimum value of platoon speed;
vmax : The maximum value of platoon speed;
G : A sufficiently large number.
Decision Variables:

yj =

{
1 If platoon j is selected, j ∈ J ;

0 otherwise,

xji =

{
1 If vehicle i is assigned to platoon j, i ∈ I;
0 otherwise,
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vj : The optimal speed of platoon j.

B. The Cost and Utility Function of Platoon Formation

According to the literature [42] and [43], the fuel consump-
tion of vehicle i on the highway is related to the speed, so the
following function is defined:

F 0
i (v) = α0

i,1v
2 + α0

i,2v + α0
i,3, (1)

where αi,1, αi,2 and αi,3 are specific parameters for vehicle
i. In this function, by reducing parameter α0

i,1, the air resis-
tance can be reduced, which in turn saves energy. According
to Comprehensive Modal Emission Model (CMEM) [42],
α0
i,1 = 0.5AiΦρ, where Ai is frontal area of vehicle i, Φ

is air drag coefficient and ρ is a constant. α0
i,2 is the engine-

related parameters and α0
i,3 stands for fuel consumption caused

by acceleration and friction. Their values are derived from
CMEM. Further, the travel cost of driving alone for vehicle i
is:

C0
i = βF 0

i (vi) , (2)

where β is the fuel consumption weight coefficient. When ve-
hicle i is located in platoon j, the air resistance function αji,1
will become smaller, and the amount of reduction is related
to the size nj and sequence Sj of the platoon j. Experimental
results from Literature [15] indicate that when the number of
platoons exceeds 7, the overall platoon efficiency decreases.
This suggests that more platoons do not necessarily lead to
better performance. Thus, we define two sets I and J . I
contains all vehicles, J contains all candidate platoons and
the number of all candidate platoons does not exceed k = 5.
Assumed Sj is the sequence of vehicles in platoon j ∈ J .
The fuel consumption of vehicle i joint the platoon j:

F ji (vj , nj ,Sj) = αji,1(nj ,Sj)v
2
j + αji,2vj + αji,3, (3)

where vj is the speed of platoon j, nj is the total number of
vehicles in platoon j. Therefore, we define the cost function
Cj
i of vehicle i when it belongs to platoon j:

Cj
i = βF ji (vj , nj ,Sj) + γi |vj − vi| . (4)

The cost function Cj
i consists of two parts: the first part

represents the travel cost by vehicle i to join platoon j. In
contrast, the second part is a negative utility function with a
weighting factor γi that describes the sensitivity of vehicle i
to speed deviation. Specifically, when there is a deviation in
the driving speed of platoon j from the expected speed of the
vehicles, driving too fast will cause decision-makers to pay
more attention to the safety of the platoon, resulting in an
increase in negative utility; driving too slowly will result in
additional delays and congestion.

By calculating the difference between Equation (2) and
Equation (4), we define their difference as the utility or benefit
of vehicle i joining the platoon j. The expression is:

U j
i (vj , nj ,Sj) = C0

i − Cj
i

= β[F 0
i (vi)− F ji (vj , nj ,Sj)]− γi |vj − vi| ,

(5)

where C0
i is the travel cost of vehicle i when it is travelling

alone, Cj
i is the travel cost when vehicle i belongs to platoon

j. Here, we introduce binary decision variables yj and xji to
replace the optimal sequence (nj ,Sj). For instance, if y2 = 1,
then candidate platoon 2 is selected; if x32 = 1, vehicle 2 is
assigned to platoon 3. Thus, the total utility of vehicles in
platoon j has the following form:

Uj (vj ,Sj) = Uj (vj , yj , xji) =
∑
i∈Mj

U j
i (vj , yj , xji)

=
∑
i∈I

C0
i − β

∑
i∈Mj

F ji (vj , yj)−
∑
i∈Mj

γi |vj − vi|xji,
(6)

where Mj is the set of vehicles belonging to platoon j. We
will next introduce the optimal platoon formation model based
on this utility function (6).

C. Optimal Platoon Formation

The utility of platoon j (j ∈ Ki) is Equation (6), thus the
all platoons utility can be deduced as:

U (vj , yj , xji) =
∑
i∈I

C0
i −

∑
j∈J

∑
i∈Mj

Cj
i =

∑
i∈I

βF 0
i (vi)

−
∑
j∈Ki

∑
i∈Mj

βF ji (vj , yj)−
∑
j∈Ki

∑
i∈Mj

γi |vj − vi|xji,
(7)

where

F ji (vj , yj) = [αji,1v
2
j + αji,2vj + αji,3]yj . (8)

Furthermore, the optimal platoon formation model can be
written as:

max
vj ,yj ,xji

U(vj , yj , xji) (9a)

s.t.
∑
j∈J

yj ⩽ k, (9b)

vj ⩽ G · yj , j ∈ J , (9c)∑
i∈Mj

xji = 1, j ∈ Ki, (9d)

zmin ⩽
∑
i∈I

xji ⩽ zmax, j ∈ Ki, (9e)

vmin ⩽ vj ⩽ vmax, j ∈ Ki. (9f)

The objective of function (9a) is to maximize the overall
utility of all platoons. Constraint (9b) limits the total number
of platoons formed to no more than k. Constraint (9c) specifies
that only selected platoons can optimize their speed. Constraint
(9d) ensures that each vehicle is assigned to only one open
platoon. Additionally, constraint (9e) defines a range of the
total number of vehicles in each open platoon row i ∈ Mj .
Finally, constraint (9f) sets bounds on the velocity of each
forming platoon row. In our proposed multi-formation forming
model, the decision variables play a pivotal role in determining
the optimal configuration of platoons. These decision variables
include the selection of the platoons y∗j , the positioning of
vehicles within the platoon x∗

ji, and the optimal speed of
the platoon v∗j . By strategically selecting the queue for each
vehicle and assigning its position within the queue, the model
optimizes the utilization of available space within the platoon,
ensuring efficient and cohesive formations.
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Building upon the foundational layer of the multi-platoon
forming model (9), we next introduce a crucial component
aimed at ensuring the safety and efficiency of each single-
vehicle formation. Inspired by the principles outlined in the
referenced literature and the cohesive decision-making facili-
tated by the multi-platoon forming model, we propose imple-
menting a centralized robust control model for each formed
single platoon. This centralized robust model predictive control
concept will improve the robustness of the platoon in a highly
dynamic and uncertain traffic environment, thereby further
enhancing the safety and stability of the platoon system.
Through the integration of this centralized robust control
model, we aim to address uncertain disturbances inherent in
real-world traffic environments, ensuring safety and efficient
platooning operations.

V. ROBUST MPC MODEL FOR SINGLE VEHICLE PLATOON

After successfully completing the vehicle scheduling and
optimizing multiple formations to ensure behavioral stability,
our focus now shifts to the control problem of a single
formation. With the vehicles strategically positioned and the
formation set, the next critical task is to manage the dynamic
behavior of the formation as it maintains an optimal speed.
A key challenge in this phase is addressing potential dis-
turbances, such as those arising from V2V communication
interference. High Doppler frequencies can disrupt these com-
munication signals, leading to intercarrier interference, which
makes it difficult for the vehicles in the convoy to maintain
the necessary fixed spacing and speed, thereby increasing the
risk of collisions.

Traditional control methods often struggle to cope with such
interferences, contributing to an uncertain traffic environment.
To tackle this issue, we have developed a centralized robust
RMPC method specifically designed to enhance the platoon’s
resilience to intercarrier interference. By focusing on this
specific type of disturbance and its impacts, our approach
aims to ensure that the platoon operates safely and consis-
tently, maintaining the desired spacing and speed even under
uncertain conditions. This section delves into the strategies
and methodologies employed to achieve this robust control,
building on the foundational work of vehicle scheduling and
formation optimization to ensure the reliable operation of
vehicle platoons in dynamic environments.

A. Uncertain System State for Vehicle Platoons

For the vehicle i (i ∈ Mj) in platoon j, the discrete
dynamic system has the following form:pji (t+ 1) = pji (t) + τ · vji (t) +

τ2

2
· aji (t);

vji (t+ 1) = vji (t) + τ · aji (t),
(10)

where pji (t), vji (t) and aji (t) are the position, velocity, and
acceleration (control signal) of the vehicle i in platoon j.
Besides, τ is a relatively small time interval of continuous
time, r is a constant representing the reaction time and L is

the vehicle length. According to literature [44], the spacing
error and velocity error of the platoon j are defined as:{

△ ejp,i(t) = pji−1(t)− pji (t)− r · vji (t)− L;

△ ejv,i(t) = vji−1(t)− vji (t).
(11)

Thus, we can deduce the state error of the platooning vehicle[
△ejp,i(t+ 1)

△ejv,i(t+ 1)

]
=

[
1 τ
0 1

][
△ejp,i(t)

△ejv,i(t)

]
+

[
τ2

2
τ

]
aji−1(t)

+

[
−( τ

2

2 + rτ)
−τ

]
aji (t).

(12)

The system state is defined as eji (t) = [△ejp,i(t),△ejv,i(t)]
T,

and the dynamics system can be represented as follows:

eji (t+ 1) = Aeji (t) + Baji (k) + Daji−1(k), (13)

where A =

[
1 τ
0 1

]
, B =

[
−( τ

2

2 + rτ)
−τ

]
, D =

[
τ2

2
τ

]
.

Furthermore, in order to obtain a compact form of systematic
error about platoon j. We define the following variables:

ej(t) = col{ej1(t), ej2(t), . . . , eji (t), . . .}, i ∈ Mj ,

aj(t) = col{aj1(t), a
j
2(t), . . . , a

j
i (t), . . .}, i ∈ Mj .

(14)

The compact form of platoon j has the following form:

ej(t+ 1) = GAej(t) + GBaj(t) + GDaj,0(t), (15)

where aj,0(t) is the acceleration of leading vehicle in platoon
j, and matrices GA, GD and GB are defined by:

GA = diag {A,A, . . . ,A} ,GD = col{D,0,0, . . . ,0},

GB =


D 0 0 · · · 0 0
B D 0 · · · 0 0
0 B D · · · 0 0
...

...
... · · ·

...
...

0 0 0 · · · B D

 .

Remark 1: In general, the leading vehicle in a platoon
provides a reference trajectory for the following vehicles,
allowing for the acceleration aj,0(t) of the lead vehicle to
be determined in advance. According to literature [45], we
assume that the leading vehicle is driving at an optimal speed
vj , based on ecological driving obtained by the planning layer.
Therefore, the reference acceleration aj,0(t) of the leading
vehicle is set to 0m/s2 as the equilibrium state of the vehicle
motion. Therefore, (15) can be written as:

ej(t+ 1) = GAej(t) + GBaj(t). (16)

In real-world scenarios, the robustness of controllers cannot
be guaranteed due to the discrepancy between traditional
control models and discretized vehicle dynamics systems.
For instance, in low-visibility environments, sensors may be
influenced by external factors such as rain or snow, resulting
in inaccurate measurement information and model mismatch
between the control model and the actual vehicle being con-
trolled. Therefore, we consider a more realistic model that
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incorporates comprehensive uncertainty caused by measure-
ment errors, uncertain traffic conditions, and model mismatch.
Thus, the uncertain dynamic system of platoon j is:

ej(t+ 1) = GAej(t) + GBaj(t) + Gwwj(t), (17)

where wj(t) is a lumped uncertainty and Gw is a known matrix
which is related to uncertain perturbation wj(t). In this paper,
we assume that the uncertain disturbance belongs to a Ball
uncertain set: wj(t) ∈ BallΦ, and the Ball uncertain set has
the form:

BallΦ = {∥wij(t)∥2 ≤ Φ, i ∈ Mj}. (18)

Remark 2: For p ∈ [1,∞], we define the p-norms ∥ · ∥p on
Cn and Rn by the relation

∥x∥p =
{

(
∑
i |xi|

p
)
1/p

, 1 ≤ p < ∞,
limp→∞ ∥x∥p = maxi |xi| , p = ∞.

(19)

The 2-norm of uncertain perturbation in BallΦ uncertain set

is:
√

|wj(t)|2 ≤ Φ. Unlike bounded disturbances (robust
min-max), Ball uncertain set is a new construction form for
uncertain disturbances, which can improve the robustness of
the control system and prevent it from being too conservative.

In addition, in order to ensure the safety of vehicle move-
ment, we propose the following related constraints for vehicle
i in platoon j:

emin
p,i ≤ △ejp,i(t)−D ≤ emax

p,i ; (20)

emin
v,i ≤ △ejv,i(t) ≤ emax

v,i ; (21)

amin
i ≤ aji (t) ≤ amax

i . (22)

The constraints related to position and speed error are
represented by equations (20) and (21) in the above formula,
respectively. Specifically, D is the desired vehicle distance,
the emin

p,i and emax
p,i denote the upper and lower bounds of the

position error of the workshop, while emin
v,i and emax

v,i represent
the upper and lower bounds of the speed error of the workshop.
Equation (22) specifies the upper and lower bounds related to
vehicle acceleration, while amin

i and amin
i denote the upper

and lower bounds of the acceleration of vehicle i. These
constraints ensure that the position and speed errors remain
within the prescribed bounds and the vehicle acceleration is
limited to a safe range during the control process. The proper
enforcement of these constraints is crucial for ensuring the
safe and effective operation of the system.

Next, we construct the system constraint set for platoon j.
At time t, we suppose that emin

j = col
{
emin
p,i , e

min
v,i , i ∈ Mj

}
,

emax
j = col

{
emax
p,i , emax

v,i , i ∈ Mj

}
, thus the lower and upper

bounds of system state ej(t) is: emin
j ≤ ej(t) ≤ emax

j .
Similarly, let amin

j = col
{
amin
i , i ∈ Mj

}
and amax

j =
col {amax

i , i ∈ Mj}, the bounds of acceleration about total
vehicles are: amin

j ≤ aj(t) ≤ amax
j . Then, the platoon system

constraint set at time t can be summarized as{
E =

{
e : emin

j ≤ ej(t) ≤ emax
j

}
;

A =
{

a : amin
j ≤ aj(t) ≤ amax

j

}
.

(23)

B. Closed-loop Robust MPC Formulation for Vehicle Platoon

In this paper, we employ a linear feedback control strategy
to achieve closed-loop control. The specific form of this
control strategy is:

aj(t) = kjej(t) + uj(t), (24)

where kj can obtained off-line and uj(t) is a new decision
variable. Thus, the closed-loop form of the state equation is:

ej(t+ 1) = GAej(t) + GBaj(t) + Gwwj(t)
= GAej(t) + GB [kjej(t) + uj(t)] + Gwwj(t)
= Gψej(t) + GBuj(t) + Gwwj(t),

(25)

where Gψ = GA + GBkj . The goal of each platoon sys-
tem is to achieve a stable platoon control with fixed inter-
vehicle distances, while simultaneously reducing the influence
of uncertain disturbances during driving and outputting real-
time control signals for the vehicles. Based on the worst-case
principle [46], we construct an MPC-based centralized robust
control model for each formed platoon. Specifically, let Np is
the prediction time domain, ej(t+h|t) and uj(t+h|t) are the
predicted state and predicted acceleration, wj(t+ h|t), where
h = 1, ..., Np. In addition, the vehicle state error e(t|t) at the
initial time t is known. Thus, the objective function of platoon
system j at time t is:

L(t) =
Np−1∑
h=0

Lp(ej(t+ h|t),uj(t+ h|t)) + Ψ(ej(t+Np|t)),

(26)
where Lp(·) is stage objective function and Ψ(·) is terminal
objective function. Their specific expressions are:

Lp(·) = ej(t+ h|t)TQ ej(t+ h|t) + uj(t+ h|t)TR uj(t+ h|t),
Ψ(·) = ej(t+Np|t)TQN ej(t+Np|t),

(27)

where Q, R and QN are positive definite diagonal matrices
of known dimensions. For notational simplicity, we introduce
compact forms of the error state, control, and uncertain per-
turbations of the platoon system in all predicted time slots: Xj = col{ej(t+ h|t), h = 1, 2, . . . , Np};

Uj = col{uj(t+ h|t), h = 0, 1, . . . , Np − 1};
Wj = col{wj(t+ h|t), h = 0, 1, . . . , Np − 1}.

(28)

Based on the Equation (17), we can deduce the whole system
state equation in all predicted time:

Xj = Mψej(t|t) + MBUj + MWWj , (29)

where
Mψ = col

{
Ghψ, h = 1, 2, . . . , Np

}
, (30)

MB =


GB 0 0 · · · 0

GϕGB GB 0 · · · 0
G2
ϕGB GϕGB GB · · · 0
...

...
...

...
...

GNp−1
ϕ GB GNp−2

ϕ GB GNp−3
ϕ GB · · · GB

 ,

(31)
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MW =


GW 0 0 · · · 0

GϕGW GW 0 · · · 0
G2
ϕGB GϕGW GW · · · 0
...

...
...

...
...

GNp−1
ϕ GW GNp−2

ϕ GW GNp−3
ϕ GW · · · GW

 .

(32)
The feedback control strategy (25) can be rewritten as:

aj = KXj + Uj , (33)

where

K = diag {kj , h = 1, 2, . . . , Np} .

Furthermore, the overall constraint of platoon j overall pre-
diction slots Np can be written as:{

X =
{

X : Xmin
j ≤ Xj ≤ Xmax

j

}
;

U =
{

U : Umin
j ≤ KXj + Uj ≤ Umax

j

}
.

(34)

where

Xmin
j = col

{
emin
j , h = 1, 2, . . . , Np

}
,

Xmax
j = col

{
emax
j , h = 1, 2, . . . , Np

}
,

Umin
j = col

{
amin
j , h = 1, 2, . . . , Np

}
,

Umax
j = col

{
amax
j , h = 1, 2, . . . , Np

}
.

Now, by letting
QX = diag{Q, . . . ,Q︸ ︷︷ ︸

Np−1

,QN};

Rα = diag{R, . . . ,R︸ ︷︷ ︸
Np

}, (35)

and defining the unprocessed original model with uncertain
perturbation for platoon j has the following form:

min
Uj

Exp
Wj∈BallΦ

[
XT
j QXXj + UT

j RUUj

]
(36a)

s.t. Xj = MAej(t|t) + MBUj + MWWj , (36b)
Xj ∈ X,∀Wj ∈ W, (36c)
Uj ∈ U,∀Wj ∈ W. (36d)

For each platoon j, we develop the above optimization
model to enable real-time control of the vehicles within the
platoon. Specifically, in the presence of uncertain disturbances,
we use the expected value of the value function as the
optimization objective, while satisfying the uncertain state and
control constraints to achieve robust control of each platoon.
However, the model (36) is computationally difficult to handle
due to the stochastic disturbances. The next work of this paper
is to derive a computationally tractable equivalent framework
for Model (36) based on robust equivalence theory.

C. Robust Counterpart Framework of Model (36) under Ball
uncertain set

In this section, we deduce the robust counterpart framework
for Model (36) under the scope of the Ball uncertain set.
Uncertainty, an inherent feature in real-world systems, can
significantly influence the behavior and performance of control
systems. In the context of our study, the Ball uncertain set
provides a structured way to encapsulate such uncertainties
[47], [48]. Within this framework, our primary focus is to
derive robust counterparts for both state constraints and control
constraints. These robust counterparts ensure that our model
remains computationally feasible even in the presence of
uncertainties. By the following theorem, we provide robust
equivalences for uncertain constraints.

Theorem 1: Given a metric Φ under the Ball uncertain
set, the robust counterpart framework of the state constraints
Xmin
j ≤ Xj ≤ Xmax

j is:

Cj,1 :

{
MBUj +Φ

√
(MW)2 ≤ Xmax

j − Mψej(t|t);
−MBUj +Φ

√
(−MW)2 ≤ −Xmin

j + Mψej(t|t).
(37)

Theorem 2: Given a metric Φ under the Ball uncertainty
set, the robust counterpart framework of the control constraint
Umin
j ≤ KXj + Uj ≤ Umax

j is:

Cj,2 :

{
FUj +Φ

√
(KMW)2 ≤ Umax

j − KMψej(t|t);
−FUj +Φ

√
(−KMW)2 ≤ −Umin

j + KMψej(t|t).
(38)

where F = (KMB + I).
For the proofs of Theorem 1 and Theorem 2, please refer

to Appendices A and B, respectively. Thus, we derive a
computationally tractable robust counterpart model for Model
(36) under the Ball uncertainty set, which has the following
concrete form:

min
Uj

[
XT
j QXXj + UT

j RUUj

]
s.t. Cj,1 and Cj,2.

(39)

It can be observed that model (39) is a computationally solv-
able semi-definite programming model. Convex optimization
algorithms, such as Sequential Quadratic Programming, can
effectively solve this model. Next, we devise a robust control
algorithm based on the foundation of solving the platoon
formation model and the robust control model (Algorithm 1).

D. Computational Complexity Analysis

For the proposed RMPC model (36) of each platoon, the
presence of uncertain perturbations makes the state update
equations and corresponding constraints intractable. To over-
come this problem, we construct a spherical uncertainty set
based on robust optimization theory, and under this uncertainty
set, we derive a computationally tractable equivalent form (39)
of the model (36). In the framework of Algorithm 1, the
computational burden is mainly generated by the RMPC of
each platoon. In our setting, the data collection and platoon
formation decisions are obtained offline, thus the computa-
tional efficiency of the algorithm depends on the choice of
prediction time domain and control time domain on the RMPC
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Algorithm 1: The Algorithm of RMPC
Input: Compute optimal platoon numbers y∗j , vehicle

sequences x∗
ji and platoon travel speed v∗j by

the model (9)
1 Obtain the feedback gain K offline;
2 Construct the Ball uncertain set and determine the

measure Φ;
3 Select prediction time domain Np;
4 for j ∈ Ki do
5 Measure the initial state error ej(t|t);
6 Generate stochastic disturbances Wj of measure Φ

under a fixed distribution;
7 while t ≤ T do
8 Compute optimal solution Uj by model (39);
9 Generate the actual control a∗j = KXj + U∗

j ;
10 Implement the first step control a∗j (t|t) ;
11 Update t = t+ 1;
12 end
13 end

Output: the vehicle acceleration a∗
j in platoon j.

model. At each rolling horizon optimization, feedback control
is triggered, and Algorithm 1 is executed to obtain the control
signal of all following vehicles. From the above analysis, it
can be concluded that the computational complexity of the
proposed algorithm depends on the number of constraints Cj,1
and Cj,2. Assume that the number of vehicles in platoon j is
Nveh and the prediction time domain is Np, then the number
of Cj,1 and Cj,2 are 8NvehNp and 4NvehNp. In Section
IV below, we will demonstrate the computational efficiency
of Algorithm 1 to illustrate the real-time capability of the
proposed algorithm.

TABLE I
PARAMETER SETTINGS IN OPTIMAL PLATOON FORMATION MODEL

Symbol Value

Number of all vehicles n = 20
Heavy vehicles H = 6
Medium vehicles M = 7
Light vehicles L = 7
Number of candidate platoons m = 5
Maximum number of platoons k = 5

A sufficiently large number G = 1×106

Minimum vehicle number in platoon zmin = 5 veh
Maximum vehicle number in platoon zmax = 7 veh
Minimum speed of a platoon vmin = 15m/s

Maximum speed of a platoon vmax = 40m/s

VI. SIMULATION RESULTS

In this section, we conduct simulation experiments to verify
the effectiveness of the proposed framework. First, we intro-
duce the data collection process and calculate the average
speed for each vehicle. Subsequently, using the proposed
optimal platoon-forming strategy, we form multiple platoons

TABLE II
PARAMETER SETTINGS OF PLATOON CONTROL

Symbol Value

Minimum vehicle acceleration in platoon amin
i = -3m/s2

Maximum vehicle acceleration in platoon amax
i = 3m/s2

Minimum velocity error emin
v,i = -2m/s

Maximum velocity error emax
v,i = 2m/s

Minimum spacing error emin
p,i = 0m

Maximum spacing error emax
p,i = 3m

Desired vehicle distance D = 10m
Prediction time domain Np = 3 s
Control time domain Nc = 0.5 s
Time interval τ = 0.5 s
Reaction time r = 0.5 s
Vehicle length L = 2m

3 9 6 8 1 7 1 2 3 7 1 6 5 7 2 0 7 8 2 4 9 8 2 9 1 9 3 3 3 9 3 7 6 0 4 1 8 0

3 7 6 7 9 2 1 2 1 3 1 6 3 3 2 0 5 4 2 4 7 4 2 8 9 4 3 3 1 5 3 7 3 5 4 1 5 6

3 5 5 7 6 8 1 1 8 8 1 6 0 9 2 0 2 9 2 4 5 0 2 8 7 0 3 2 9 1 3 7 1 1 4 1 4 1

3 3 9 7 4 6 1 1 6 4 1 5 8 5 2 0 0 5 2 4 2 5 2 8 4 6 3 2 6 6 3 6 8 7 4 1 0 7

3 2 7 7 2 3 1 1 4 0 1 5 6 0 1 9 8 1 2 4 0 1 2 8 2 2 3 2 4 2 3 6 6 3 4 0 8 5
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1
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Fig. 3. The utility estimates under different utility parameters β and γ.

of 20 vehicles of various types. We then observe the effects
of different negative benefit parameters, γ and β, on platoon
formation to select the appropriate weight parameters that
maximize the benefit of all platoons. In the third step, we
implement a centralized robust platoon controller in the lead
vehicle of each platoon. This controller counteracts the effects
of uncertain noise from V2V communication on the stability of
the platoon system, enhancing the safety and resilience of the
vehicle platoon. Additionally, we implement all simulations
in Matlab/Simulink-based solver version R2020, running on a
2.8-GHz 64-bit Core i7-8400U CPU machine under Windows
10 Professional.

A. Data Collection

Vehicle data collection uses its traffic status information on
fixed road segments. In this initial phase, we calculate the
speed of each vehicle traveling individually on a fixed road
segment through the California Traffic Performance Measure-
ment System [49]. Through the vehicle detection station in this
system, we can obtain the vehicle density, number of vehicles
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Fig. 4. The optimal platoon formation under four cases.

TABLE III
THE UTILITY OBJECTIVES AND OPTIMAL VELOCITY OF FOUR CASES

Case 1 Case 2 Case 3 Case 4
β = 1 γ = 0.1 β = 0.7 γ = 0.3 β = 0.3 γ = 0.7 β = 0.1 γ = 1

Platoon1 optimal speed v∗1=15m/s v∗1=15m/s v∗1=15m/s v∗1=15m/s

Platoon2 optimal speed v∗2=15m/s v∗2=15m/s v∗2=18.6m/s v∗2=31m/s

Platoon3 optimal speed v∗3=15m/s v∗3=15m/s v∗3=40m/s v∗3=40m/s

Platoon4 optimal speed v∗4=15m/s v∗4=15m/s v∗4=15m/s v∗4=21m/s

Total valuation U(v∗j , y
∗
j , x

∗
ij)=4180.00 U(v∗j , y

∗
j , x

∗
ij)=2870.11 U(v∗j , y

∗
j , x

∗
ij)=1096.25 U(v∗j , y

∗
j , x

∗
ij)=287.62

and average speed of vehicles in a fixed road section [50].
Finally, the vehicle information of this road section is uploaded
to the cloud to generate corresponding decisions. The individ-
ual driving speeds of 20 vehicles are: v = [v1, . . . , v20] =
[15m/s, 18m/s, 17m/s, 23m/s, 13m/s, 20m/s, 31m/s,
24m/s, 34m/s, 28m/s, 31m/s, 30m/s, 25m/s, 32m/s,
35m/s, 40m/s, 41m/s, 29m/s, 38m/s, 35m/s].

B. Optimal Platoon Formation

In this subsection, we aim to identify optimal platoon forma-
tions in a traffic system consisting of 20 vehicles. The system
comprises 6 heavy vehicles, 7 medium vehicles, and 7 light
vehicles. For clarity, all vehicles are numbered sequentially
from heavy to light (i = 1, . . . , 20). We denote the vehicle
types as H , M , and L, respectively [15]. The basic parameters
are given in Table I. Besides, there are 5 candidate platoons
in the system, and the values of αji,1, αji,2 and αji,3 in each
platoon are:

α1i,1 = 0.6, α1i,2 = 0.2, α1i,2 = 0.3;

α2i,1 = 0.7, α2i,2 = 0.5, α2i,2 = 0.3;

α3i,1 = 0.5, α3i,2 = 0.3, α3i,2 = 0.2;

α4i,1 = 0.7, α4i,2 = 0.2, α4i,2 = 0.5;

α5i,1 = 0.9, α5i,2 = 0.4, α5i,2 = 0.3.

(40)

Numerical results in Figure 3 show the total utility estimates
of all platoons under different parameters β and γ. We can
observe that when the fuel consumption weight coefficient β
increases, the utility value (that is, the willingness value of
the vehicle i to join the formation j) will increase, and when
the negative utility weight coefficient γ increases, the utility
value will decrease. In order to further observe and select the
appropriate parameters to maximize the benefits of platoon
forming, we identified 4 platoons among all candidate rows,
as shown in Figure 4. This figure contains the total number
of vehicles in each platoon and the number of each type of
vehicle in the platoon, where subscripts denote specific vehicle
types (e.g., “12M” signifies a medium-sized vehicle with the
serial number 12). Additionally, Table III lists the optimal
solutions for every platoon, including the optimal speed vj
and utility estimates U(v∗j , y

∗
j , x

∗
ji). From the observations in

Figure 4 and Table III, it is evident that the overall utility is
the largest under the optimal platoon formation sequence of
β = 1 and γ = 0.1, with all four platoons traveling at 15m/s.

C. Control Performance Verification

Through the above-mentioned macro architecture of vehicle
multi-formation based on economy, we will design a cen-
tralized robust controller for each platoon to cope with the
stochastic noise in the traffic environment. It is evident from
the preceding section that the platoon comprising 20 vehicles



11

0 5 10 15 20 25 30 35

0

0.2

0.4

0.6

0.8

1
Platoon1

(a) Acceleration of vehicle 6H

0 5 10 15 20 25 30 35

-1

-0.8

-0.6

-0.4

-0.2

0
Platoon2

(b) Acceleration of vehicle 3H

0 5 10 15 20 25 30 35

-1

-0.5

0

0.5

1
Platoon3

(c) Acceleration of vehicle 1H

0 5 10 15 20 25 30 35

-1

-0.5

0

0.5

1
Platoon4

(d) Acceleration of vehicle 5H

Fig. 5. The leading vehicle accelerations of four platoon.
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Fig. 6. The acceleration, velocity, position and relative distance of the vehicles in 4 platoons. First row: Platoon1, Second row: Platoon2, Third row: platoon3,
Fourth row: Platoon4.

in Case 1 (β = 1 and γ = 0.1) yields the utmost utility
value. Consequently, we shall devise a centralized robust
controller for each optimal platoon. Specifically, the initial
velocity of the four optimal formations is set at 15m/s,
while the initial position of the vehicles in each formation is
randomly generated within the range of [-100, 0]m. Moreover,

the initial acceleration of all vehicles in the formation is
set to 0m/s2. Furthermore, each formation’s controller is
positioned on the lead vehicle, and the motion state of the
leading vehicle is known within a time frame of [0, 35] s.
As depicted in Figure 5, we provide the acceleration of
the leading vehicle in the four formations. It is important
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Fig. 7. The velocity error and spacing error of the vehicles. First row: Platoon1, Second row: Platoon2, Third row: platoon3, Fourth row: Platoon4.
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Fig. 8. The computational efficiency of robust platoon controllers.

to note that we assign distinct acceleration profiles to each
platoon to assess whether the proposed platoon controller can
maintain stability for trailing vehicles across different driving
conditions, such as frequent acceleration and deceleration. The
remaining parameter settings for platoon control are provided
in Table II.

In order to verify the effectiveness of the proposed pla-
toon control method, we conduct simulation experiments on
different types of external stochastic disturbances. For pla-
toon1, the stochastic disturbance wi1(t) obeys the Uniform
distribution, that is, wi1(t) ∼ U(−0.02, 0.02); For platoon2,
the stochastic disturbance wi2(t) obeys the Uniform distri-
bution, that is, wi2(t) ∼ U(−0.05, 0.05); For platoon3, the
stochastic disturbance wi3(t) obeys the Gaussian distribution,
that is, wi3(t) ∼ N(0, 0.01); For platoon4, the stochastic
disturbance wi4(t) obeys the Gaussian distribution, that is,
wi4(t) ∼ N(0, 0.03).

The effect of the platoon controllers is shown in Figure
6. In Figure 6, we plot the vehicle acceleration, velocity
and position generated by each platoon under the robust
controller. From the sub-figures (6a)-(6d), it can be seen that
the acceleration of all following vehicles is strictly limited
within the set interval [-3m/s2, 3m/s2] in the presence of
stochastic disturbances. It can be observed from sub-figures
(6e)-(6h) that platoons 1-4 track the speed of the leading

vehicle stably after 10 s, 12 s, 24 s and 22 s respectively, that
is, travel at the expected speed 15 m/s. From sub-figures (6i)
and (6l), it can be analyzed that even in the traffic environment
with stochastic disturbances, the vehicles in each platoon can
form a stable formation, travel at a fixed distance and a
stable speed without any chain collisions. Besides, we also
show the position information of the following vehicle relative
to the leader. It can be seen from the subfigures (6m)-(6p)
that the distance between vehicles in platoons 1-4 is stable
at D=10m. The above experimental results show that the
proposed platoon controller can guarantee the safety and ro-
bustness of the following vehicle no matter whether the leading
vehicle is driving under acceleration, deceleration, periodic
acceleration/deceleration or frequent acceleration/deceleration.

In Figure 7, we illustrate the velocity and inter-vehicle spac-
ing errors between two consecutive vehicles in four platoons
under the robust control strategy. It is evident from sub-figures
(7a)-(7d) that the following vehicles in all platoons can track
the time-varying expected speed of the leading vehicle. Even
when the driving state of the leading vehicle changes suddenly,
such as during emergency acceleration or deceleration, the
following vehicles in each platoon remain controlled close
to the expected speed. In addition, we can also realize that
the speed consistency of formation vehicles is guaranteed
even in the presence of stochastic disturbances. Sub-figures



13

0.661 

0.000 0

2.08 

1.29 

0.90 

1.95 

1.474 

0

1.31 
1.14 

0.85 

1.19 

0.649 

0

1.09 

0.76 

1.572 

0

0.96 

0.0

0.5

1.0

1.5

2.0

2.5

NMPC Platoon 1 Platoon 2 Platoon  3 Platoon 

Ψ(ρ) 1&2 Ψ(ρ)   2&3 Ψ(ρ)  3&4 Ψ(ρ)  4&5

0.0

0.5

1.0

1.5

2.0

2.5

Platoon 1 Platoon 2 Platoon 3 Platoon 4

2.08 

1.29 

0.90 

1.95 

1.31 
1.14 

0.85 

1.19 
1.09 

0.96 
0.83 

T(s) 1&2 T(s) 2&3 T(s) 3&4 T(s) 4&5 T(s) 5&6

0.76

Fig. 9. The string amplitude value of four platoons in the frequency domain.
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Fig. 10. Comparison of travel cost metric value when vehicles travel individually and when vehicles travel in platoons (The lower the cost, the more stable
the convoy behavior).

(7e)-(7h) demonstrate the spacing error between two consec-
utive vehicles in four platoons. The discernible observation is
that, despite the influence of stochastic disturbances on the
formation system, the vehicle spacing error in each platoon
consistently remains above 0m. This compellingly demon-
strates the efficacy of the proposed robust control strategy,
which diligently guarantees the platoon’s safety and effectively
mitigates the potential risks of chain collisions among the
following vehicles.

Furthermore, we show the computational efficiency of four
platoons under the proposed centralized RMPC method in
Figure 8. When the prediction time domain Np = 3.5 s
and the control time domain Nc = 0.5 s are selected, the
execution time of Algorithm 1 can be effectively completed
within the control time domain, and the average calculation
times of the four platoons are 0.19 s, 0.15 s, 0.25 s, and
0.07 s respectively. These experimental results demonstrate
that the proposed centralized control algorithm effectively
ensures timely and responsive decision-making within each
platoon, facilitating smooth and efficient fleet operations. By
completing the execution of Algorithm 1 within the designated
control time domain, the controller demonstrates its capability
to meet stringent real-time requirements, essential for ensuring

safe and reliable platooning maneuvers on highways.

Given the introduction of uncertain measurement errors in
platoon systems, traditional time-domain string stability analy-
sis becomes challenging. Hence, we adopt a frequency domain
approach to evaluate local string stability under stochastic dis-
turbances [51]. First, we apply the Discrete Fourier Transform
function to the spacing error △ejp,i(t) and the transfer function
is Ξji (s) =

∑
t△ejp,i(t) exp

−sηt, where s ∈ [0, π], η =
√
−1.

Then, we introduce a metric function Ti(s) = | Ξj
i (s)

Ξj
i−1(s)

|,
defined as the absolute value of the ratio of Fourier transforms
of spacing errors between adjacent vehicles. If Ti(s) exhibits
a decreasing trend along the platoon, it indicates the string
stability of the platooning system under the RMPC method
in the frequency domain. We calculate the amplitude of each
vehicle through the transfer function of the spacing error and
obtain the string amplitude of the spacing error. As shown
in Figure 9, we show the amplitudes of four strings arranged
in the frequency domain. It can be seen that Ti(s) gradually
decreases from the beginning to the end of the platoon. This
shows that the proposed robust platoon controller has strong
robustness under different stochastic disturbances, and the
string stability of the vehicle platoon system is guaranteed.
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TABLE IV
THE TRAVEL COST METRIC VALUE UNDER FORMATION 1, FORMATION 2 AND VEHICLES TRAVEL INDIVIDUALLY

Platoon1 Platoon2 Platoon3 Platoon4 Platoon1 Platoon2 Platoon3 Platoon4
Optimal Speed 15m/s 15m/s 15m/s 15m/s Optimal Speed 17m/s 15m/s 20m/s 20m/s

Individual Cost 1764.7 1111.7 1171.9 993.8 Individual Cost 904.8 1512.1 1656 969.2
Formation 1 Cost 1059.7 719.2 634 709.8 Formation 2 Cost 897.5 920.5 1340.2 1822
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Fig. 11. The spacing error of every platoon under NMPC, RBMPC and RMPC methods.

VII. COMPARISON EXPERIMENT

We conduct a comparative experiment on two aspects.
Firstly, we evaluate the travel costs of vehicles traveling
under different platoon formation strategies versus traveling
independently. The evaluation aims to illustrate the advantages
of the proposed optimal platooning strategy in terms of vehicle
behavior and fuel economy. Secondly, at the macroscopic
level, we compare the proposed ball-based RMPC method
with the nominal robust control method (without interference
immunity) and the robust bounded control method to verify
that the RMPC model can improve the impact of stochastic
disturbances.

A. Platoon Valuation

In this section, we aim to vehicle travel costs under three
formations: Economic-based formation driving (Formation 1),

formation driving without considering economy (Formation 2)
and independent driving. This assessment seeks to validate the
advantages of the proposed optimal platoon formation model
in terms of vehicle cohesion. The specific settings in the three
cases are β = 1 and γ = 0.1, β = 0.001 and γ = 1, β = 1.
Correspondingly, we define the travel cost metric function of
platoon j as:

MetricFj =
∑
i∈Mj

[αji,1(v
∗
j )

2+αji,2v
∗
j +αji,3]y

∗
j +

∣∣v∗j − vi
∣∣ ,

(41)
and we can obtain the metric value of the vehicle traveling
alone by solving Equation (1). Formation 1 and Formation 2
will produce two different vehicle formation situations, so we
use two figures to show the formation composition and corre-
sponding travel costs under the three strategies. Figure (10a)
compares the cost value under the economic-based vehicle pla-
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toon driving and vehicle driving alone. Figure (10b) compares
the cost value under the non-economic vehicle platoon driving
and vehicle driving alone. It can be seen from the two figures
that the vehicle travel cost under Formation 1 (ours) is always
less than the vehicles traveling alone, however in Formation
2 the cost of vehicles traveling in a platoon is higher than the
cost of traveling alone. For example, the overall cost of Platoon
4 is higher than the cost of traveling alone, which will lead to
poor cohesion and unstable behavior of vehicles in Platoon 4,
and this platoon will face the risk of disbandment. Table IV
shows travel cost metric value under Formation 1, Formation
2 and vehicles travel individually. From numerical analysis,
the travel costs of the four platoons under the economic-based
multi-platoon forming strategy (Formation 1) are reduced by
39.95%, 35.30%, 45.89% and 28.57% respectively compared
with the cost of traveling alone. Upon examination, the follow-
ing conclusions can be drawn: the proposed platoon formation
method always lowers the travel cost of vehicles traveling in
a platoon than the estimates from their independent driving.
Consequently, individual vehicles have no incentive to depart
from the platoon, affirming the behavioral stability of the four
platoon systems established.

B. Ablation Study

In this subsection, we conduct a comparative experiment
to show the advantage of the safety and robustness inherent
in our proposed RMPC method, the Robust Bound (Min-
max) control method (RBMPC) and the Nominal MPC method
(NMPC). Firstly, with parameters set at β = 1 and γ = 0.1, we
determine the optimal platoon count number for the sequence
of vehicles within each platoon. Following this determination,
our ablation analysis is initiated, primarily aimed at contrasting
the interference suppression abilities of the RMPC, RBMPC
and NMPC methods. The design idea of the RBMPC model
is based on reference [33], we assume that there are upper and
lower bounds for uncertain disturbances, and solve the vehicle
acceleration at the boundaries of the disturbance based on the
worst-case principle. Besides, the RMPC model is presented
through model (15) and the NMPC model is shown below:

min
Uj

[
XT
j QXXj + UT

j RUUj

]
s.t. Xj = MAej(t|t) + MBUj ,

Xj ∈ X,
Uj ∈ U.

We apply different levels of stochastic disturbances to the
four resulting optimal platoons, i.e., wi1(t) ∼ U(−0.02, 0.02);
wi2(t) ∼ U(−0.05, 0.05); wi3(t) ∼ N(0, 0.01); wi4(t) ∼
N(0, 0.03). Figure 11 shows the spacing error of every pla-
toon under the RMPC method, RBMPC method and NMPC
method. Specifically, as can be observed from subfigures
(11a)-(11d), when the platoon system is subjected to stochastic
disturbances, the inter-vehicle spacing error under the NMPC
method exceeds the safety constraint threshold, indicating
that the platoon exists potential risk of collision. Under the
RBMPC method, we can find that the spacing errors of
vehicles in platoons 1 and 2 are both greater than 0, and

safety constraints are violated in platoons 3 and 4 (Subfigures
11e-11h). Although the driving safety of vehicles in Platoons
1 and 2 can be guaranteed under the RBMPC method, the
distance between vehicles in Platoon 4 gradually decreases,
which shows that there is a risk of collision in Platoon 4.
This is not difficult to explain. The characteristics of stochastic
disturbances in platoons 1 and 2 are stochastic perturbation.
The proposed RBMPC can effectively improve the robustness
of the system. However, when the stochastic disturbances
have no boundary information but characteristic information
(expectation and variance), the RBMPC method begins to
violate safety constraints and cannot guarantee vehicle safety.
It can be seen from subfigures (11i)-(11l), that the spacing
error under the proposed RMPC method consistently remains
above zero. For example, the average spacing error of Platoon
1 under the RMPC method is 0.1181m, under the RBMPC
method is 0.09342m, and under the NMPC the mean spacing
error is -0.1173m. In general, the NMPC method tends to
decrease the spacing between consecutive vehicles, posing a
risk of collision over extended driving durations. The RBMPC
method can reduce the influence of bounded disturbances but
cannot deal with uncertain disturbances with stochastic char-
acteristics. Contrastingly, the RMPC method that we propose
exhibits superior versatility and robustness. It is capable of ef-
fectively dealing with various types of uncertain disturbances,
including those with stochastic characteristics. This enhanced
capability enables the RMPC method to provide reliable and
stable control over platoon formations, even in dynamically
changing and unpredictable traffic environments. Furthermore,
the experimental results underscore the effectiveness of the
RMPC method in comparison to the NMPC and RBNPC
methods. The RMPC method ensures enhanced vehicle safety
and robustness within the platoon system by effectively coun-
teracting uncertainties. This superior performance highlights
the potential of the RMPC method to address the challenges
posed by dynamic and unpredictable traffic conditions.

VIII. CONCLUSION

In this paper, we presented a robust model predictive
control framework for the multi-lane platoons under the fuel
economy principle. Our approach uniquely integrated a vehicle
scheduling system and an online platoon control system to
enhance the efficiency of platoon formations. Moreover, we
introduced an optimal platoon formation model tailored for
heterogeneous vehicle types, aiming to maximize platooning
utility. This model innovatively decides on the number of
platoons, the sequence of vehicles within the platoon, and
the platoon speed. Through numerical analysis, we observed a
substantial reduction in travel costs for platoons formed under
the economic-based multi-platoon forming strategy, ensuring
the behavioral stability and high cohesion of the platooning ve-
hicles. Based on the above multi-formation structure, our study
introduced a centralized robust controller for each platoon,
designed to address complexities and uncertainties prevalent
in vehicular dynamics and potential external disturbances.
The RMPC method exhibited superior versatility and robust-
ness, and effectively dealt with various types of uncertain
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perturbations, including those with stochastic characteristics.
Experimental results further validated the effectiveness of the
RMPC method, showcasing its superiority over alternative
methods such as NMPC and RBNPC.

In this initial study, we acknowledge that the research pre-
sented in this manuscript operates under certain assumptions,
including a limited number of vehicles in the experiments.
Moving forward, our future work will aim to address these
limitations by expanding the scale of the experiments to
include a larger number of vehicles, thereby providing a more
comprehensive assessment of our approach. Additionally, we
will explore the optimization problem of integrated scheduling
and control in greater depth, including complex scenarios
such as lane changing and the lateral and longitudinal control
of vehicles within the platoon. By broadening our focus to
encompass these aspects, we aim to enhance the robustness
and applicability of our approach, ensuring it can effectively
manage a wider range of real-world driving conditions.

APPENDIX A
For the state constraint Xmin

j ≤ Xj ≤ Xmax
j , we write it as:{

Xj ≤ Xmax
j ;

−Xj ≤ −Xmin
j .

(42)

Taking the equation Xj = Mψej(t|t) + MBUj + MWWj into
the above equation, we can deduce:{

Mψej(t|t) + MBUj + MWWj ≤ Xmax
j ;

−Mψej(t|t)− MBUj − MWWj ≤ −Xmin
j .

(43)

Due to the stochastic nature of Wj , we can obtain:{
MWWj ≤ Xmax

j − Mψej(t|t)− MBUj ;

−MWWj ≤ −Xmin
j + Mψej(t|t) + MBUj .

(44)

Based on the Worst-Case Principle (WCP) [48], the above
inequality can be written as:{

sup∥wi
j(t)∥2≤Φ[MWWj ] ≤ Xmax

j − Mψej(t|t)− MBUj ;

sup∥wi
j(t)∥2≤Φ[−MWWj ] ≤ −Xmin

j + Mψej(t|t) + MBUj .

⇓ (Theorem 1.3.4 by [47]){
Φ
√
(MW)2 ≤ Xmax

j − Mψej(t|t)− MBUj ;

Φ
√
(−MW)2 ≤ −Xmin

j + Mψej(t|t) + MBUj .

Proof of Theorem 1 is complete.

APPENDIX B
For the uncertain control constraint Umin

j ≤ aj ≤ Umax
j , we

write it as: {
aj ≤ Umax

j ;

−aj ≤ −Umin
j .

(45)

Taking the Equations aj = KXj + Uj and Xj = Mψej(t|t) +
MBUj + MWWj into the above equation, we can deduce:{

K(Mψej(t|t) + MBUj + MWWj) + Uj ≤ Umax
j

−K(Mψej(t|t) + MBUj + MWWj) + Uj ≤ −Umin
j

⇓ F = (KMB + I){
KMψej(t|t) + FUj + KMWWj ≤ Umax

j

−KMψej(t|t)− FUj − KMWWj ≤ −Umin
j

⇓ (WPC){
sup∥wi

j(t)∥2≤Φ[KMWWj ] ≤ Umax
j − KMψej(t|t)− FUj

sup∥wi
j(t)∥2≤Φ[KMWWj ] ≤ −Umin

j + KMψej(t|t) + FUj

⇓ (Theorem 1.3.4 by [47]){
FUj +Φ

√
(KMW)2 ≤ Umax

j − KMψej(t|t)
−FUj +Φ

√
(−KMW)2 ≤ −Umin

j + KMψej(t|t)

Proof of Theorem 2 is complete.

REFERENCES

[1] M. Muratori, J. Holden, M. Lammert, A. Duran, S. Young, and
J. Gonder, “Potential for platooning in u.s. highway freight transport,”
SAE International Journal of Commercial Vehicles, vol. 10, 03 2017.

[2] D. Jia, K. Lu, J. Wang, X. Zhang, and X. Shen, “A survey on platoon-
based vehicular cyber-physical systems,” IEEE Communications Surveys
& Tutorials, vol. 18, no. 1, pp. 263–284, 2016.

[3] J. Zhou, D. Tian, Z. Sheng, X. Duan, G. Qu, D. Cao, and X. Shen,
“Decentralized robust control for vehicle platooning subject to uncer-
tain disturbances via super-twisting second-order sliding-mode observer
technique,” IEEE Transactions on Vehicular Technology, vol. 71, no. 7,
pp. 7186–7201, 2022.

[4] P. Fernandes and U. Nunes, “Multiplatooning leaders positioning and
cooperative behavior algorithms of communicant automated vehicles for
high traffic capacity,” IEEE Transactions on Intelligent Transportation
Systems, vol. 16, no. 3, pp. 1172–1187, 2015.

[5] X. T. Yang, K. Huang, Z. Zhang, Z. A. Zhang, and F. Lin, “Eco-driving
system for connected automated vehicles: Multi-objective trajectory
optimization,” IEEE Transactions on Intelligent Transportation Systems,
vol. 22, no. 12, pp. 7837–7849, 2021.

[6] Y. Bian, C. Du, M. Hu, S. E. Li, H. Liu, and C. Li, “Fuel economy
optimization for platooning vehicle swarms via distributed economic
model predictive control,” IEEE Transactions on Automation Science
and Engineering, vol. 19, no. 4, pp. 2711–2723, 2022.

[7] D. Chen, S. Ahn, M. Chitturi, and D. A. Noyce, “Towards vehicle
automation: Roadway capacity formulation for traffic mixed with regular
and automated vehicles,” Transportation research part B: methodologi-
cal, vol. 100, pp. 196–221, 2017.

[8] C. Zhai, F. Luo, Y. Liu, and Z. Chen, “Ecological cooperative look-
ahead control for automated vehicles travelling on freeways with varying
slopes,” IEEE Transactions on Vehicular Technology, vol. 68, no. 2, pp.
1208–1221, 2019.

[9] M. Hu, C. Li, Y. Bian, H. Zhang, Z. Qin, and B. Xu, “Fuel economy-
oriented vehicle platoon control using economic model predictive con-
trol,” IEEE Transactions on Intelligent Transportation Systems, vol. 23,
no. 11, pp. 20 836–20 849, 2022.

[10] A. Alam, B. Besselink, V. Turri, J. MåRtensson, and K. H. Johansson,
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