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A Real-Time Cross-Domain Wi-Fi-based Gesture
Recognition System For Digital Twins
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Abstract—The rapid development of Internet of Things has led
more realization of digital twins (DT), such as healthcare, smart
homes, virtual reality, etc, gesture recognition is a fundamental
component of DT. Its implementation can provide users with
personalized services or improved human-computer interaction,
such as smart home control, in-car interaction, etc, most of
existing gesture recognition methods are based on vision or
wearable device. However, the vision-based methods face the
problem of privacy breach, whereas the wearable-based methods
may bring inconvenience to users. With the wide deployment of
Wi-Fi networks, lots of consumer devices are widely accessible
in people’s homes. Motivated by the fact that Wi-Fi signal
propagation can be affected by human motion, the opportunity
to use Wi-Fi signals for gesture recognition can be further
explored. However, the challenge is that the received Wi-Fi
signal shows great differences when the same person performs
the same gesture in different environments or different person
performs the same gesture in the same environment. Therefore,
the signal alignment across different domain needs to be solved.
In this paper, we propose a gesture recognition system named
Phase-Attention-based-Conv-CSI (PAC-CSI), which consists of
two modules: data processing and gesture recognition. In the
data processing module, we eliminate random phase noise in
channel state information (CSI) and perform phase calibration.
In the gesture recognition module, we feed the processed phase
sequence into a lightweight deep neural network for gesture
recognition. PAC-CSI can obtain the gesture category in about
200ms, which can meets the real-time requirements of DT. The
gesture recognition accuracy of our proposed system in a single
domain is 99.46%, and its performance across new locations,
orientations, users, and environments is 98.77%, 98.90%, 97.54%,
and 96.47%, respectively.

Index Terms—CSI (Channel State Information), Deep Learn-
ing, Digital Twin, Gesture Recognition, Wi-Fi, Wireless Sensing.

I. INTRODUCTION

D IGITAL twins (DT) have more opportunities to be real-
ized thanks to the Internet of Things’ rapid development

[1]–[3]. DT is a digital representation of the real physical
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world, which has been applied in a number of applications, for
example, a DT framework is proposed for smart manufacturing
[4], for a given task and application, the framework can
evaluate the suitability of different design solutions, Lu et
al. [5] proposed a novel DT-based anomaly detection process
flow, realizing continuous anomaly detection, Björnsson et al.
[6] built a DT for individual patients to finds the optimal drug,
DT has also been explored in the field of smart cities [7],
[8]. DT system can be integrated with the gesture recognition
system to build digital replicas of humans, obtain the gesture
categories performed by humans in real-time, and provide
personalized services for users. Building a DT requires sensors
to collect data and further process the data into usable infor-
mation for the DT. Traditional gesture recognition systems
are mainly based on visual sensors [9]–[11] or wearable
sensors [12]–[14]. But the vision-based methods require Line-
of-Sight (LoS) and good lighting conditions, which may not
be satisfied in weak light situations, besides, it also has the
risk of privacy disclosure. The wearable-based methods bring
additional device costs, and they are user-unfriendly due to the
inconvenience of wearing the device all the time. In recent
years, Wi-Fi communication technology and commercializa-
tion have achieved rapid development, researchers have started
to study the use of Wi-Fi signals for non-intrusive gesture
recognition [15]–[17]. In environments full of Wi-Fi signals,
the Wi-Fi signal reaches the receiver through the ground,
ceiling, and human body, the Wi-Fi signal propagation path
changes when a user performs a gesture, and the receiver can
capture the signal changes caused by the user’s gesture motion
and conduct gesture recognition. Non-intrusive Wi-Fi-based
gesture recognition system is suitable for integration with DT,
and can avoid the above challenges in vision-based methods
and wearable-based methods.

However, Wi-Fi-based gesture recognition suffers from the
cross-domain problem: the received Wi-Fi signal pattern is
not only affected by gesture motion, but also by different
environment and habits of users performing gestures. There-
fore the received Wi-Fi signal patterns can be different when
different users perform gestures or a same user performs
gestures in different environment or different location and
different orientation in the same environment, which affects
the performance of the gesture recognition system. We define
these gesture-independent factors as domain, including user,
location, orientation, and environment. Most existing Wi-Fi-
based gesture recognition systems are trained and tested in a
fixed domain, and they cannot accurately recognize gestures
in other domains. Some works have been explored to solve the
problem of cross-domain Wi-Fi gesture recognition. For ex-
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ample, authors in [18], [19] use generative adversarial network
(GAN) [20] to automatically extract domain-independent fea-
tures, then use these features for gesture recognition, authors in
[21], [22] manually extract domain-independent features from
channel state information (CSI) through signal processing
methods, and then use neural networks for gesture recognition.
However, the recognition accuracy of these existing works is
insufficient or the time complexity of signal processing is too
high to perform real-time gestures.

Cross-domain gesture recognition still faces three chal-
lenges. First, a large number of labeled data samples need
to be obtained to train the model, which is labor-intensive
and requires specialized knowledge. Second, Wi-Fi signals
contain significant ambient noise and phase errors caused by
transmitter-receiver hardware, these noises affect the recogni-
tion accuracy.

Third, complex data processing methods or huge gesture
recognition models will bring too long gesture recognition
time, which limit the deployment on resource-constrained
devices, and in most application scenarios, the DT system
requires low latency between the real world and DT, otherwise,
it will affect the quality of service and even cause security
risks [23], therefore gesture recognition needs to have low
time complexity for real-time recognition. Existing research
works can achieve high gesture recognition accuracy [22], [24]
or perform recognition with low time complexity [16], but
existing works cannot perform gesture recognition with high
accuracy in real-time.

We noticed that the propagation path of the Wi-Fi signal
will change during the execution of a gesture motion, and
the change in the length of the propagation path is reflected
in the phase change of the Channel State Information (CSI).
Based on this, we propose a cross-domain gesture recog-
nition system: Phase-Attention-based-Conv-CSI (PAC-CSI).
PAC-CSI processes CSI phase to remove noise and gesture-
independent signal patterns, and use a data augmentation
method to augment the training samples, the proposed method
then performs gesture recognition with a lightweight attention-
based deep neural network. Due to the simple data processing
method and a lightweight neural network model, PAC-CSI
performs gesture recognition in real-time, which makes it
suitable for integration with DT. We use Unity to build a
DT system integrated with PAC-CSI, when the user gesture
is executed, the DT system can obtain the type of gesture
performed in real-time.

The main contributions of this paper are summarized as
follows:

• We propose a cross-domain gesture recognition system
for DT to address the performance degradation problem
of cross-domain gesture recognition. Our system can give
gesture classification results in real-time.

• We propose a data augmentation method to augment
the training samples, and the experiments show that our
data augmentation method can improve the accuracy of
gesture recognition.

• We use Unity to build a DT system integrated with our
gesture recognition system, the gesture state of human DT

in the DT system can be synchronized with real human
gestures.

The rest of this paper is organized as follows. Related works
are reviewed in Section II. Section III introduces PAC-CSI
in details before the performance evaluation in Section IV.
Section V concludes the paper and discusses future work.

II. RELATE WORK

This section first introduces the related work of DT, and
then introduces the research progress of Wi-Fi-based gesture
recognition.

A. Digital Twins
With the development of machine learning, deep learning,

and Internet of Things, DT has been researched and applied
in the fields of intelligent manufacturing, intelligent building,
and intelligent medical treatment. Lee et al. [4] proposed a
DT-based framework for smart manufacturing. The framework
integrates various DT models, such as product DT, process
DT, and resource DT, to create a comprehensive digital rep-
resentation of the manufacturing system. This framework can
improve product quality, shorten delivery times, and increase
manufacturing flexibility, but it requires accurate and timely
data. Lu et al. [5] proposed a novel DT-based anomaly detec-
tion process flow, and achieved continuous anomaly detection
of the centrifugal pumps in the HVAC system. Zhou et al.
[25] proposes an intelligent small object detection system
for digital twin in smart manufacturing with industrial cyber-
physical systems. The system uses a combination of computer
vision and deep learning techniques to detect small objects
in the manufaccturing environment, such as screws or nuts,
and integrates the detection results into the DT model of the
manufacturing system, therefore, the system can help reduce
errors ans increase efficiency in the manufacturing process,
but the system need for accurate and reliable object detection.
Ren et al. [26] embeds machine learning modules into DT, and
built a complete life cycle DT for sophisticated equipment,
in the application of diesel locomotives maintenance, the
abnormal axle temperature can alarm in advance a week or
so. In terms of emergency resource scheduling, Hu et al. [27]
focuses on the use of digital twin in the scheduling of hospital
emergency resources, the authors propose a system that uses
real-time data to generate a DT of the hospital emergency
department, which can then be used to simulate different
scheduling scenarios and optimize resource allocation. The
system can help improve patient outcomes by ensuring that
the right resources are available at the right time. [6] builds
DT for individual patients, and finds the optimal drug for the
patient through computationally treated. Barricelli et al. [28]
use wearable sensors to collect the athlete’s fitness-related data
to build the athlete’s DT, and analyze it in the DT system
to dynamically predict the health status of athlete and give
suggestions. At present, there are few studies on DT-based
smart homes, however, with the further development of DT
related technology, DT-based smart home applications can
greatly improve the user’s life happiness and home security
level, the gesture recognition is a fundamental component for
DT-based smart homes.
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B. Wi-Fi-based Gesture Recognition

In recent years, there have been many works on Wi-Fi-
based gesture recognition. These works can be divided into
two categories: non-cross-domain and cross-domain, the non-
cross-domain works perform model training and gesture recog-
nition under one domain setting without considering the cross-
domain problem, and the cross-domain works study gesture
recognition in cross-domain.

1) Non-Cross-Domain: Although most of the non-cross-
domain gesture recognition algorithms suffer from severe
performance degradation when the domain changes, these al-
gorithms are still an important fundamental for the research of
Wi-Fi gesture recognition algorithms. WiFinger [17] calibrates
and denoises the collected CSI, then selects subcarriers that
are more sensitive to motion, and uses the multi-dimensional
DTW algorithm to compare them with the predefined gestures
to obtain the gesture recognition results. WiKey [29] uses But-
terworth low-pass filter and PCA to remove the noise in CSI,
then uses DWT to extract features from the denoised CSI, and
uses KNN algorithm to recognize the user’s keystrokes. CSI-
Time [30] treats CSI data as multi-dimensional time series data
and then uses deep learning methods for activity classification,
in addition, CSI-Time utilizes two data augmentation strategies
to expand the training samples for improving recognition
accuracy. SignFi [16] analyzing the changes in signal strength
and phase caused by the movement of the hands and arms, and
using a convolutional neural network to classify 276 sign lan-
guage gestures. In the laboratory environment, SignFi achieves
a sign language recognition accuracy of 98.01%. Zhang et al.
[31] proposed a neural network consisting of DenseNet and
LSTM for activity classification using spectrograms derived
from CSI, they augmented data by dropout, adding Gaussian
noise, frequency filtering, etc, and achieved around 90% of
recognition accuracy on a small-size dataset. ABLSTM [32]
proposed an attention-based bi-directional LSTM for human
activity recognition, and achieved recognition accuracy high
than 95%, they believe that handcrafted features inevitably
lose implicit gesture information, so they use the amplitude of
CSI without additional processing as the model input.

2) Cross-Domain: CARM [15] uses discrete wavelet trans-
form (DWT) to extract features from the denoised CSI to
obtain the duration and frequency of activities, and use the
hidden markov model (HMM) for gesture classification, the
CARM achieves recognition accuracy of 96%, when the envi-
ronment changes, in the worst case, the accuracy drops to 72%.
WiDar3.0 [21] extracts the BVP feature from the denoised
CSI data to represent the velocity coordinate system with the
human body as the origin, which is independent of the domain,
and then uses a deep neural network consisting of CNN
and GRU for gesture classification, Widar3.0 is a one-fits-all
gesture recognition model that can adapt to different domains
after only one-time training, but its cross-domain recognition
accuracy can only reach 82.6%, and the time complexity of
BVP extraction algorithm is too high to perform real-time ges-
ture recognition. WiHARAN [18] uses GAN to align features
in multiple environments to obtain environment-independent
features for gesture classification, WiHARAN can achieve

an average cross-environment gesture recognition accuracy
of 85.71%. MCBAR [33] uses GAN and semi-supervised
learning method to extract environment-independent features
for gesture classification based on labeled CSI data in the
source domain and unlabeled CSI data in the target domain.
CsiGAN [19] also uses GAN to extract user-independent fea-
tures for cross-user behavior recognition. WiHF [22] extracts a
domain-independent arm motion change pattern from CSI, and
then uses a dual-task deep neural network for simultaneous
gesture recognition and user identification. WiGRUNT [24]
denoise the random phase error caused by hardware with
CSI-Ratio, then visualization the CSI-Ratio phase value as an
image, and design a network for gesture recognition: ResNet
with the spatial-temporal attention mechanism, in the result,
WiGRUNT achieves gesture recognition accuracy of 96.6%,
93.8%, 93.7% in terms of cross-location, cross-orientation,
and cross-environment, respectively. WiGRUNT uses a deep
neural network to automatically explore key gesture features
distributed in CSI-Ratio for cross-domain gesture recognition,
and achieves a higher recognition accuracy than WiDar3.0 and
WiHF which use handcrafted domain-independent features for
gesture recognition, this indicates that handcrafted features
will lose implicit gesture information. This inspires our system
design, only the necessary data processing is performed to
avoid loss of implicit gesture information, and the neural
network is used to automatically extract domain-independent
features.

III. SYSTEM OVERVIEW

The PAC-CSI and DT sytem is thoroughly introduced in this
section. The system architecture overview of the integration
of PAC-CSI and DT is shown in Figure 1. PAC-CSI modify
the gesture state of the human DT through the open API of
the DT system, and then the DT system can analyzes the
state of the human DT according to different service scenarios
and performs corresponding processing, for example, in a
smart home scenario, the DT system performs home appliance
control and modifies the state of the corresponding home
appliance DT according to the gesture state of the human DT.
In the following subsections, we first introduce the basics of
CSI and CSI-Ratio, and then introduce the data preprocessing
module and gesture classification module of PAC-CSI in detail.
Finally, we introduce our DT system.

A. CSI and CSI-Ratio

1) CSI: Wi-Fi signal propagation from transmitter to re-
ceiver is affected by reflection, scattering and fading effects,
the combination of which is reflected in CSI. Wi-Fi signals
are propagated from the transmitter to the receiver through
static paths like LoS paths and wall reflection paths, and
dynamic paths caused by human gesture motion. We divide
the propagation paths into static paths and dynamic paths, the
CSI can be expressed as

H(f, t) = Hs(f, t) +
∑
p∈P

Ap(f, t)e
−j2π

dp(t)

λ , (1)
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Fig. 1. System overview.

where Hs(f, t) is the CSI component corresponding to the
static path, P is the dynamic path set, Ap(f, t) is the CSI
amplitude corresponding to the dynamic path p, and dp(t) is
the length of the dynamic path p that changes with time, the
meanings of various symbols can be checked in Table IV.

In practice, due to the hardware imperfections of commer-
cial Wi-Fi, the received CSI additionally introduces random
phase errors ϵ(f, t) caused by carrier frequency offset, sam-
pling frequency offset, and timing alignment offset [15]:

H̄(f, t) = ejϵ(f,t)
(
Hs(f, t) +

∑
p∈P

Ap(f, t)e
−j2π

dp(t)

λ

)
. (2)

Due to these time-varying random phase errors, the phase
value of the acquired CSI data contains a lot of noise and
cannot be used directly. Therefore, we need to eliminate the
random hardware phase errors.

2) CSI-Ratio: Since the hardware is shared by multiple
antennas connected to the same NIC, the received CSI of
different antenna share the same random hardware phase error.
We can choose one antenna on the receiver and divide that
antenna’s CSI using the other antenna’s CSI to remove random
phase errors. Without loss of generality, considering the case
of only one dynamic path [34]:

R(f, t) =
H̄m(f, t)

H̄n(f, t)

=
Hs,m(f, t) +Am(f, t)e−j2π

dm(t)
λ

Hs,n(f, t) +An(f, t)e−j2π
dn(t)

λ

.

(3)

Since the physical distance of different antennas of the same
receiver is close, and the human gesture motion in a short time
has little change to the propagation path length, the difference
of the two reflection path lengths at two close-by antennas can
be considered as a constant ∆d [35]:

R(f, t) =
Hs,m(f, t) +Am(f, t)e−j2π

dm(t)
λ

Hs,n(f, t) +An(f, t)e−j2π∆d
λ e−j2π

dm(t)
λ

. (4)

Let A = Hs,m(f, t) , B = Am(f, t) , C = Hs,n(f, t) ,
D = An(f, t)e

−j2π∆d/λ , Z = e−j2πdm(t)/λ , then there is

R(f, t) =
A+BZ

C +DZ
, (5)

which is in the form of Mobius transformation [34]. Since the
Mobius transformation can be decomposed into translation,
inversion, similarity, and rotation transformations, these trans-
formations do not change the correlation of the phase with the
propagation path. Therefore, we adopt CSI-Ratio to eliminate
random phase errors.

B. Data Processing

1) data processing: One CSI packet for Intel 5300 NIC is
in form:

CSIt =

H1,1 H1,2 ... H1,30

H2,1 H2,2 ... H2,30

H3,1 H3,2 ... H3,30

 , (6)

where Hi,j represents the CSI value of the j-th subcarrier
of the i-th antenna, the Intel 5300 NIC is equipped with
three antennas, and each antenna provides CSI data on 30
subcarriers. Generally speaking, gesture perform takes one to
several seconds, so the receiver can obtain a CSI sequence
related to the gesture:

CSI = [CSI1, CSI2, ..., CSIT ] ∈ CT×3×30. (7)

For the three antennas of the receiver, we choose the antenna
that is least sensitive to gesture as the reference antenna
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[36]. Specially, we calculate the amplitude-variance ratios of
all subcarriers of all antennas, choose the antenna with the
smallest sum of the amplitude-variance ratios of all subcarriers
as the reference antenna, and then divide the CSI data of the
other two antennas by the CSI data of the reference antenna
to get the CSI-Ratio:

CR = [CR1, CR2, ..., CRT ] ∈ CT×2×30. (8)

Due to the different physical locations of different antennas
on the same receiver, the data of two antennas can depict the
impact of gestures on the signal from different perspectives,
we treat the data of the two antennas as two different samples,
furthermore, this approach makes our method applicable to
receivers with only two antennas.

CRi = [CRi
1, CRi

2, ..., CRi
T ] ∈ CT×30, (9)

where i indicates index of antennas, then extract the phase
P of CSI-Ratio, for brevity, the antenna index superscript are
omitted below.

P = angle(CR)

= [angle(CR1), angle(CR2), ...angle(CRT )]

= [P1, P2, ..., PT ] ∈ RT×30.

(10)

The original CSI-Ratio phase sequences are shown in Figure
2a, it can be seen that these phase sequences contain outliers
and phase wrapping problems due to measurement limitations.
This will affect the recognition accuracy of the neural network,
so it needs to be processed. We first use a Hampel filter with
a window size of 3 to remove outliers, the filtering results are
shown in Figure 2b. The phase calibration is then performed
using the phase calibration algorithm, for phase data at each
period, if the absolute value of the phase difference with the
previous period is greater than 2π − ϵ, we add or subtract
the phase data with 2π until the absolute value of the phase
difference is within 2π − ϵ, where ϵ is empirically set to 0.3,
phase calibration resulting in Figure 2c, it should be noted that
due to the noise of CSI-Ratio, our phase calibration algorithm
cannot be effective for all samples, but it’s simple and efficient,
and handles most cases, the experimental results also show
that our phase calibration algorithm is effective, see section
IV for details. At the sampling rate of 1000Hz, the phase
sequence length of most gesture samples is more than 1500,
which slows down the training and inference time of the deep
neural network model and takes up a lot of memory. And the
time for the user to perform the gesture is not constant, that is,
different data samples have different sequence lengths, which
brings inconvenience to the processing of the deep neural
network. A common solution for different sequence lengths of
data samples is to zero-pad each batch of sequence samples to
the same length, however, the zero-pad strategy may affect the
recognition ability of the model. We solve the above problem
by resample to unify the sequence length of all data samples
to 500:

P̃ = resample(P ) = [P̃1, P̃2, ..., P̃500] ∈ R500×30, (11)

the results are shown in Figure 2d. This solution reduces the
computational complexity of deep neural network, and solves
the problem of inconsistent sequences lengths of samples, and
further eliminates high-frequency noise. Experiments show
that the resample can reduce inference time consumption while
ensuring the accuracy of gesture recognition.

2) data augmentation: As shown in equation 5, CSI-Ratio
is in the form of Mobius transformation. Assumed that the
CSI-ratio dynamic components caused by gesture motion
are fixed, different domain settings or transformations will
bring different CSI-Ratio static components, and the inversion
transformation will change both the static component of the
CSI-Ratio and the trajectory direction of the CSI-Ratio on the
complex plane. These factors will change the phase pattern of
CSI-Ratio. As shown in Figure 3, Figure 3a represents signal
trajectory of the dynamic component 0.2 · ej t

150π; t ∈ [0, 300)
with different static component components or after inversion
transformation, specifically, the CSI-Ratio trajectory in the first
quadrant is the dynamic component with static component
1.3 · ej 1

4π , in the second quadrant is the dynamic component
with static component 1.1 · ej 13

20π , in the fourth quadrant is
the inversion transformation of the CSI-Ratio trajectory in the
first quadrant. Figure 3b upper, middle, lower are the phases of
CSI-Ratio trajectory in the first, second, and fourth quadrants
of the complex plane, respectively. We noticed that the phase
change trend of the same dynamic component is different with
different static components or after inversion transformation,
but it is roughly the vertical or horizontal flip of the original
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Fig. 2. Data processing result.



JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 6

0.75 0.25 0.25 0.75 1.25

0.75

0.50

0.25

0.25

0.50

0.75

1.00

1.25

I

Q

(a) CSI-Ratio Trajectory

0 50 100 150 200 250 300

0.7
0.8
0.9

0 50 100 150 200 250 300
0.9
0.8
0.7

Ph
as

e

0 50 100 150 200 250 300
Time

2.0

2.2

(b) Phase

Fig. 3. Phase results of a dynamic component with different static compo-
nents.

phase change trend. Based on this, we augment the training
dataset by taking the opposite number or reversing along the
time dimension or both of two for the phase sequence of the
training samples.

C. Gesture Recognition

PAC-CSI uses a lightweight neural network model to extract
features of phase sequences and perform gesture recognition.
Specifically, we first normalize the phase sequence samples
to remove gesture-uncorrelated phase scale gaps caused by
different static components or Mobius transforms. Then we
extract features from the normalized phase sequence with an
attention-based one-dimensional convolutional neural network,
the extracted features are then feed into the FC layer to get
gesture recognition results.

1) Phase Sequences Normalization: As shown in Figure
3, the same dynamic path length change has different phase
scales in different static components or after different trans-
formations. We normalize the phase sequence, which makes
the phase values of all samples scaled between -1 and 1. After
normalization, the neural network can better focus on the trend
of phase change rather than the scale of phase.

P i
N = 2 · P̃ i −min(P̃ i)

max(P̃ i)−min(P̃ i)
− 1, (12)

where i represents the subcarrier indicate, PN is the normal-
ized phase sequence.

2) Network Architecture: Heavyweight deep neural net-
work models will consume more computing resources, slow
down the inference time of the model, and limit the model
deployment on resource-constrained devices. The neural net-
work model used in PAC-CSI is consists of one-dimensional
convolutional layer and lightweight attention layer, which
enables our system to perform real-time gesture recognition.
The network structure is shown in Figure 4, network is
consisting of Conv1D Blocks and Attention Blocks. As shown
in Figure 4a, Conv1D Block consists of a conv1d layer with
stride 1 and a conv1d layer with stride 2, all conv1d layers are
followed by a BatchNorm layer [37] and a ReLU layer. Our
Attention Block design is inspired by CBAM [38], CBAM
is a lightweight attention module for Conv2D, the additional

computational overhead caused by adding the CBAM attention
module is small. Therefore our Attention Block is designed as
a 1D convolutional version of CBAM, as shown in Figure 4b.

D. DT System

We use Unity to build a DT system. Specifically, we build a
scene and human DT in the DT system, and integrate the DT
system with the gesture recognition system so that the gesture
motion of the human DT is synchronized with the real-world
human gesture motion in real-time.

1) Human Gesture Modeling: Thanks to the development
of deep learning in recent years, we can automatically model
human gesture motions using deep learning methods. We
model human gestures using [39], this work can automatically
generate 3D models of human motion from text, which can
greatly reduce the workload of human gesture modeling. We
take gesture Clap and Sweep as examples, and the modeling
results are shown in Figure 5.

2) Scene Modeling: Unity has a wealth of materials avail-
able, which can greatly reduce the difficulty of development,
and its scalability allows us to easily integrate it with the
gesture recognition system, so we use Unity as our DT system
platform. We built a simple scene using Unity, and introduced
the modeled human DT into the digital scene. By integrating
with PAC-CSI, the human DT gesture motion in the scene is
synchronized with the real human gesture motion, as shown
in Figure 6.

IV. EXPERIMENT AND EVALUATION

This section presents the experiment implementation details
and evaluation the experiment results.

a) Dataset: Widar3 [21] published a dataset for Wi-Fi
cross-domain gesture recognition research, it contains data on
gestures performed by multiple users in different location,
orientation, environment. We choose nine gestures on the
Widar3 dataset for experiments, as shown in Figure 7. We
designed two datasets: Base and Extend. The Base dataset
contains six gesture classes, while the Extend dataset contains
nine gesture classes. The selection of data samples is shown
in Table I. We conduct experiments on the Extend dataset to
verify the performance of PAC-CSI on more gesture classes,
while the remaining experiments were conduct on the Base
dataset. Specifically, we conduct five experiments, in each
experiment, the data of one instance were divided into a
verification set and a test set with a ratio of 1:4, and the
data of the remaining four instances were used as a training
set, the experimental result is averaged over five experiments.
We perform cross-location, cross-orientation and cross-user
experiments on environment 1 with similar data settings. In
the cross-environment experiment, the data of one environment
were divided into a verification set and a test set with a ratio
of 1:4, and the data of the remaining environment were used
as a training set, the average result of the experiments was
taken as the final result.
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(c) Network Architecture

Fig. 4. Network structure.

(a) Sweep (b) Clap

Fig. 5. Human gesture modeling.

Fig. 6. Scene modeling with Unity.

b) Implement detail: We use Adam optimizer with an
initial learning rate of 10−4 in training, and adjust the learn-
ing rate with a Cosine Annealing strategy [40]. We set the

TABLE I
DATA SAMPLES

Dataset Env User Location Orientation Instance

Base
1 5,10,11,12,

13,14,15,16 1,2,3,4,5 1,2,3,4,5 1,2,3,4,5

2 1,2,3,6 1,2,3,4,5 1,2,3,4,5 1,2,3,4,5
3 3,7,8,9 1,2,3,4,5 1,2,3,4,5 1,2,3,4,5

Extend 1 13,14,15,16,17 1,2,3,4,5 1,2,3,4,5 1,2,3,4,5
2 1,2,3 1,2,3,4,5 1,2,3,4,5 1,2,3,4,5

Fig. 7. Gesture labels.

batch size to 128, and train for 10000 iterations, and the
adjust learning rate every 50 iterations, the learning rate is
shown in Figure 8. All experiments are performed on a PC
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equipped with Intel 12600K CPU and RTX 3060 GPU. In
the scenario of multi-receiver deployment, when the user
performs a gesture, multiple data samples are acquired in the
corresponding receiver, and multiple receivers provide gesture
information from different perspectives, which can improve
the accuracy of gesture recognition. Most of the existing work
[21], [24] combines the data samples of multiple receivers,
and obtains a feature containing the information of multiple
receivers to input into the network. Although the information
of multiple receivers can also be used in this way, it cannot
adapt to the settings of different number of receivers. We use a
multi-receiver fusion mechanism to enable our model to adapt
quickly to environments with different number of receivers.
Specifically, in the training process, we separate multiple data
samples from multiple receivers, and in the testing process,
we comprehensively consider the classification results of all
receivers to obtain the final classification result, specifically,
the network model obtains a gesture probability distribution
based on the data samples of each receiver, and we take the
average of the gesture probability distributions of all receivers,
the gesture label with the highest probability in the average
probability distribution is used as the final gesture recognition
result.

A. Overall Result
The overall result of PAC-CSI is shown in Figure 9.

The PAC-CSI achieved recognition accuracy of 99.46% for
in-domain, and in the case of cross-domain, PAC-CSI can
also get recognition accuracy of 98.77%, 98.90%, 97.54%,
96.47% in terms of cross-location, cross-orientation, cross-
user, and cross-environment, respectively, The experiment
results demonstrated the cross-domain recognition ability of
PAC-CSI. It can be seen from the confusion matrix that
Clap gestures and Slide gestures are easily misclassified when
performing cross-domain gesture recognition, since the right
hand in the Clap gesture follows essentially the same trajectory
as the Slide gesture.

B. Comparative Study
We compared our PAC-CSI with existing methods [21],

[22], [24], the result is shown in Table II. The performance
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Fig. 8. Learnng rate.

of PAC-CSI is slightly lower than that of WiGRUNT in in-
domain experiment, but our PAC-CSI achieves the highest
recognition accuracy in all cross-domain experiments. The
recognition accuracy of PAC-CSI outperforms the current best
solutions by 2.15%, 5.05%, 1.89%, and 2.74% in terms of
cross-location, cross-orientation, cross-user, cross-env, respec-
tively. The experimental results on the Extend dataset also
demonstrate that PAC-CSI can maintain a high recognition
accuracy even with more gesture classes. Since SignFi [16]
uses amplitude which is highly correlated with domain factors
as gesture features, it can be seen that when the domain
changes, the recognition accuracy of SignFi is greatly affected,
especially when the environment changes, its recognition
accuracy drops severely. WiHF [22] simultaneously recognizes
gesture categories and user identification, while PAC-CSI does
not have this function. And the superiority of PAC-CSI is not
only in the recognition accuracy, but also in the computational
efficiency. As shown in Table III, the total time-consuming of
PAC-CSI is lower than all comparison methods because of the
simple data processing flow and lightweight network structure.
Although removing the resampling operation makes the data
processing time slightly reduced, the excessively long data
length greatly affects the model reasoning time. The overall
time consumption has increased by more than 20%. It can
be seen that after removing the attention module, the time
consumption of gesture recognition is only reduced a little,
which shows that the improvement of network complexity by
our attention module is negligible. The data processing time
consumption of Widar3 is extremely high, and each sample
requires 126.523s, which is not enough to support real-time
gesture recognition. In the inferring of neural networks, the
lightweight network structure makes the inferring of PAC-
CSI more efficient than other methods. Overall, PAC-CSI
outperforms existing methods in real-time gesture recognition.

TABLE II
RESULT COMPARE TO EXIST METHODS

In Domain Cross Location Cross Orientation Cross User Cross Env
PAC-CSI 99.46% 98.77% 98.90% 97.54% 96.47%

PAC-CSI-Extend 97.40% 96.81% 94.89% 93.15% 92.03%
SignFi 94.22% 81.29% 73.32% 82.66% 54.43%
Widar3 92.7% 89.7% 82.6% 88.9% 92.4%
WiHF 97.65% 92.07% 81.89% -1 91.07%

WiGRUNT 99.71% 96.62% 93.85% 95.65% 93.73%
1 WiHF performs user identification simultaneously, so there are no cross-user result.

TABLE III
THE TIME CONSUMPTION OF DATA PROCESS AND GESTURE RECOGNITION

Method Data Processing Gesture Recognition Total
PAC-CSI 0.173s 0.044s 0.217s

PAC-CSI-No-Att1 0.173s 0.029s 0.202s
PAC-CSI-No-Resample2 0.147s 0.116s 0.263s

SignFi 0.112s 0.017s 0.129s
Widar3 126.523s 0.02s 126.543s
WiHF 1.128s 0.051s 1.179s

WiGRUNT 0.425s 0.185s 0.61s
1 PAC-CSI-No-Att refers to the network with the attention block removed.
2 PAC-CSI-No-Resample refers to the removal of the resample step from the data

processing.
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Fig. 9. Experiment result.

C. Impact of Data Processing

We conduct experiments to illustrate the impact of data
processing on recognition accuracy. As shown in Fig 10,
where ’w/o csi ratio’, ’w/o calibration’, ’w/o resample’ means
remove CSI-Ratio, phase calibration, and resample in data
processing step, respectively, when the CSI-Ratio step is
removed, the recognition accuracy drops significantly, this is
because gesture information is swamped by non-negligible
hardware random phase noise. Phase calibration improves
the recognition accuracy from 83.51% to 96.47% in cross-
environment experiments, demonstrating the effectiveness of
our phase calibration algorithm. And it can be seen from
the figure that the resample operation not only maintain the
recognition accuracy, but also slightly improves the recogni-
tion accuracy because it avoids the impact of too many zero-
pads on the model.

We conduct experiments in in-domain scenario to illustrate
the effectiveness of the data augmentation method. Specifi-
cally, we randomly select 1/4, 1/2, 3/4 and all of the training
data for network training, and perform training with and with-
out data augmentation method, respectively. The experimental
results are shown in Figure 11. In the experiment of using 1/4
of the data samples without data enhancement, the recognition
accuracy is only 74.81%, and after data augmentation, the
recognition accuracy improved 21.82%. When using 1/2, 3/4

and all data samples, the improvement in recognition accuracy
of data augmentation decreases successively. Our data aug-
mentation method greatly improves the recognition accuracy
when the training samples is insufficient. When the training
samples are sufficient, the performance improvement brought
by the data augmentation method is relatively small.

D. Impact of Data Acquisition

Although different antennas on one receiver provide gesture
information from different perspectives due to differences in
their physical locations, the multi-perspectives gesture infor-
mation that only one receiver can provide is limited due to the
closing physical distance. Then multiple receivers can capture
the influence of gestures on the signal from more perspec-
tives to improve the accuracy of recognition. We conduct
experiments to compare the impact of different number of
receivers on the accuracy of recognition. The experimental
results are shown in Figure 12. In a scenario with only one
receiver, the accuracy of in-domain gesture recognition can
only reach 86.76%. This is because in the case of only one
receiver, when gestures are performed at certain locations or
orientations, the impact of the gesture motion on the signal
cannot be well captured by the receiver due to the occlusion
of the user’s body. Multiple receivers in different locations
solve this problem and provide different perspectives on the
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impact of gestures on the signal, resulting in higher recognition
accuracy.

The difference in data sample rate will also affect the
accuracy of recognition. We conduct experiments to compare
the recognition accuracy with different sample rates. For all
sample rate settings, we use the same data processing method,
which is to unify the sequence length of all data samples to
500. The experimental results are shown in Figure 13. It can
be seen that at a sample rate of 50Hz, the insufficient sample
rate leads to the loss of gesture details, and ultimately the
recognition accuracy is affected, while the sample rate above
100Hz is sufficient to capture the details of daily gestures, and
higher sample rate has very little improvement in recognition
accuracy.
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E. Impact of Network And Hyperparameter

We conduct experiments to investigate the impact of net-
work structure and hyperparameters on the results. As shown
in Figure 14, compared to the network without attention, chan-
nel attention and spatial attention brought different degrees of
improvement, since the temporal dimension is more relevant
to gestures than information from different subcarriers, spa-
tial attention brought greater improvement in accuracy. Our
attention block combines two attention mechanisms, and the
results were significantly better than those of networks without
attention or with only one attention mechanism. The effects
of different hyperparameters on the experimental results are
shown in Figure 15. The learning rate adjustment strategy
adjusts the learning rate to make the model converge better,
so we used a learning rate adjustment strategy during training.
For different learning rates, when the initial learning rate was
10−5, the convergence was too slow, and when the initial
learning rate was 10−3 or 10−2, the convergence process was
unstable, and when without Cosine Annealing strategy, the
model is difficult to converge to the most optimum, therefore,
we chose an initial learning rate of 10−4. Regarding batch
size, when the batch size was 64 or 32, the model had not
yet converged at the end of training, while the results were
similar for a batch size of 256 and 128. Considering training
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time and model performance, we selected a batch size of 128.

V. CONCLUSION

In conclusion, we have introduced a cross-domain gesture
recognition system for DT. Our system effectively addresses
the issue of random hardware phase errors in CSI by lever-
aging the CSI-Ratio. By applying the CSI-Ratio, we have
successfully eliminated these random phase errors, resulting in
improved accuracy of the CSI. Furthermore, we have rectified
phase value errors using a phase calibration algorithm, which
significantly enhances the precision and reliability of the
phase sequences. The integration of an attention-based multi-
layer one-dimensional convolutional network in our system
has enabled the achievement of robust and accurate gesture
recognition. Through experiments conducted on the open
dataset widar3, our system achieved an impressive accuracy
of 99.46%. Furthermore, our system demonstrated remarkable
accuracy in cross-location, cross-orientation, cross-user, and
cross-environment scenarios, with gesture recognition accura-
cies of 98.77%, 98.90%, 97.54%, and 96.47%, respectively.
These results underscored the substantial advancements our

TABLE IV
SYMBOLS

Indices
f index of subcarrier (f ∈ {1, ..., 30})
t index of period (t ∈ {1, ..., T})

Parameters
λ subcarrier wavelength
H(f, t) CSI of subcarrier f in period t
Ha,f CSI of antenna a and subcarrier f
CSIt CSI in period t
CRt CSI-Ratio in period t
CRa

t CSI-Ratio of antenna a in period t
Pt phase of CSI-Ratio in period t
P̃t resampled phase of CSI-Ratio in period t
P̃ f resampled phase of subcarrier f

system brought compared to existing methods, solidifying its
effectiveness and practical applicability. Moreover, our gesture
recognition system achieved low recognition times, success-
fully meeting the real-time demands of DT systems. It should
be noted that our work is based on manually segmented gesture
data sets, and does not have user recognition capabilities. We
believe that in the daily application of gesture recognition,
gesture data can be automatically segmented to achieve gesture
recognition including user authentication is very important. In
future work, we will explore the potential for further appli-
cations of gesture recognition and user identification through
automatic data segmentation in DT systems.
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