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Abstract—The quality of flexible integrated circuit sub-
strates (FICS) is critical to the reliability of various elec-
tronic products, making intelligent defect measurement
essential for efficient manufacturing and cost-saving. How-
ever, existing solutions for substrate defect diagnosis heav-
ily rely on human visual interpretation, which leads to poor
efficiency and a high error rate. A novel vision-based de-
tection system consisting of a multi-scale imaging module
and a hierarchical structure based on the deep convolution
neural network (DCNN) is proposed in this paper. Rapid and
accurate fault diagnosis can be enabled for high-density
FICS, and various defects could be located and classified in
a coarse-to-fine resolution. Specifically, a new mechanism
of hierarchical decision based on DCNNs is built for FICS
fault diagnosis, wherein the challenge of unbalanced data
is addressed in the network learning process to reach a
good trade-off between detection accuracy and speed. The
substantial experiments and effectiveness comparison by
using the typical methods on three categories of FICS and
their corresponding eight-type faults reveal that the pro-
posed system could facilitate the solution of substrate fault
measurement and achieve high accuracy and efficiency,
which could provide essential information of FICS to divide
its industrial acceptance quality level.

Index Terms—Integrated circuit image, fault diagnosis,
hierarchical structure, deep learning, image processing.

I. INTRODUCTION

THE integrated circuit (IC) substrates have been vastly
utilized in almost all electronic products, and their func-

tion integrity and reliability are heavily dependent upon the
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quality of IC [1]–[3]. Surface defects are one of the most
critical defects among IC faults that frequently arise in prac-
tical assembly lines, which indubitably result in microscopic
electronic products with insufficient quality, dysfunction, or
even breakdown [4], [5]. Thus, it is essential to provide key
information on IC via effective intelligent fault measurement
systems for quality control in industrial processes.

Non-contact inspection methods, typically automatic optical
inspection (AOI), have become increasingly prevalent with
the grand advancements in imaging technologies [6]. It also
promotes the solutions for detecting simple and single IC
surface defects that were manually verified by personnel in the
traditional processes, which is time-consuming and inaccurate
[7]. Specifically, deep convolution neural network (DCNN)
frameworks have emerged as leading tools for large-scale
object detection and have performed well on public image
datasets [8]. The application of these trained models combined
with non-contact inspection schemes has effectively optimized
the result of IC quality control. However, flexible integrated
circuit substrates (FICS), as the advanced interconnecting
boards of ICs, pose great a challenge for intelligent fault di-
agnosis in real microelectronic production due to the diversity
and high detail of their surface defects.

The difficulty of IC fault diagnosis could be regarded as
three degrees according to the chip mounting density of three
IC development phases including FICS, flexible printed circuit
(FPC), and printed circuit board (PCB) [9]. The detection
strategies applied for the low-density PCB and FPC im-
ages generally adopt a pixel-by-pixel analysis-based protocol,
which is low in precision and efficiency when used to detect
faults on the high-density FICS. Moreover, FICS is often
discarded directly as soon as faults are detected on its surface
in real assembly lines, which leads to increased costs and
poor yield in existing works. Whereas most of these defective
FICS could be mended with only minor effort to meet actual
application demands. Superior algorithms for fault inspection
have been desired to boost diagnosis results and intelligence
degree in quality control processes of high-density FICS. [6].

II. RELATED WORK

The template reference contrast-based method initially de-
veloped by Wu et al. [10] exploited a Gerber-character-based
detection system applicable for single defect detection on
PCBs to tackle the problem of low efficiency. Oh et al. [11]



IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT

proposed the sequential matching scheme using finite tem-
plates to enable PCB inspection. Zheng et al. [12] described
a neural network-based detection model to identify PCB sur-
face defects with improved performance, which benefits from
introducing the continuous atrous convolution module and
optimizing the skip layer. Wang et al. [13] and Wang et al. [14]
leveraged the image segmentation scheme to locate defects on
FPCs, wherein the Gaussian low-pass filter and dimensional
increment matrix computation were employed in their methods
separately. Luo et al. [15] explored an inspection algorithm
for circular holes on FPCs’ surfaces using a modified tri-class
thresholding-based contour detection extraction.

Increasing miniaturization of chips has been aggravating the
complexity of FICS manufacturing, which leads to a high de-
fect risk and difficulty in surface defect detection as well [16],
[17]. Zhong et al. [7] presented a vision-based method that
utilized two cascaded procedures including a standard template
achieving and probability calculation between the background
and defect of FICS to distinguish the impurity fault. Hu et al.
[18] recognized the high-density FICS oxidation fault using
the directed acyclic graph support vector machines (DAG-
SVMS), which were trained by extracted 8-dimension color
image features. Luo et al. [2] presented a cascaded tow-stage
object detection architecture, consisting of two convolutional
neural networks modified by using the multi-hierarchical ag-
gregation and locally non-local blocks separately, to control
the quality of flexible substrates. To enhance the model’s
feature extraction ability from the substrate, Luo et al. [19]
reported a modified Faster R-CNN model by integrating the
multi-scale feature fusion and multiple receptive field fusion
modules to achieve flexible substrate defect inspection. How-
ever, their diagnosis results and intelligence degree in FICS
multi-fault detection need to be improved.

Aiming at the diversity of FICS faults and the inapplicability
of low-density IC inspection algorithms, there is an urgent
need to develop effective fault diagnosis methods to control the
FICS quality. Another accompanying demand is the construc-
tion of an advanced imaging module to acquire microscopic
details of substrates boosting the accuracy of fault detection.
Inspired by the DCNN framework and hierarchical decision
strategy, a novel intelligent system for FICS fault diagnosis is
proposed considering the tight incorporation of a microscopic
imaging tool and detection algorithm. The main contributions
of this paper can be summarized as follows:
1) A hierarchical tree-DCNN structure (HTDS) and multi-

scale microscopic imaging module are proposed. Multiple
diagnosis problems for FICS are decoupled into considered
subtasks and deployed in several stages of HTDS, where
FICS images with specific resolution are required suitably
in specific stages and a fault locator of HTDS is allowed in
alternative working states. The proposed diagnosis strategy
could facilitate the real application of FICS fault diagnosis.

2) The optimization for three DCNN frameworks and net-
work training protocol is accomplished. Three lightweight
DCNNs are built wherein special feature collection and
fusion modules are introduced for FICS microscopic faults,
and the addressed unbalanced data problem using the data-
balanced grouping strategy is able to strengthen the model’s

learning performance. This optimization would improve the
success rate and efficiency of FICS fault diagnosis.

The rest of this paper is organized as follows: the problem
formulation of the FICS fault diagnosis is presented in Section
II. The HTDS and DCNNs in each stage are described theoret-
ically and chosen for FICS sorting, quality classification, and
defect localization in Section III. Section IV presents several
comparative experiments to demonstrate the advantages of the
proposed structure. Section V lists the related conclusions and
works for further enhancements.

III. PROBLEM FORMULATION

Image fault detection could be seen as a pattern recognition
task. Considering the image sequence X = {x|x(i) ∈ R2×k}
with data dimensions of 2 and length of k ∈ Rd as an input to
a single model for the multi-fault detection and classification,
the undesirable result would be obtained usually due to the
presence of a large number of fault categories and the division
ambiguity of some of them. y(i) ∈ Λ is the discrete class label.

In our works, quality audit for image sequence is considered
to be decoupled into the cascaded subtasks, and then verifi-
cation processes are conducted hierarchically using a model
ŷt = ft(x

(i)
t , θ̂t) parametrized in θ̂ ∈ Θ, being Θ the set of

parameter space. Where t ∈ {1, 2, 3} denotes the correlated
three stages of fault diagnosis that differ from traditional single
multi-class classifiers using one-stop detection. Based on the
suggestion of information theory, the larger the value, the
stronger the relevance [20]. The relevance is defined by

H(X|Y ) = −
∑

pt(x)
∑

pt(x|y)log2(pt(x|y)) (1)
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Fig. 1. Pipeline of the high-density FICS fault diagnosis with three-stage
HTDS.

where pt(x) is the distribution function of x in each
stage. For an input image sequence X = {x|x(i) ∈ R2×k}
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in the FICS fault diagnosis process, the first stage model
ŷ1 = f1(x

(i)
1 , θ̂1) is to sort different FICS incoming, which

have a large H(x(i)|X) while a high image resolution also is.
However, it is tough to detach microscopic fault details from
high-resolution input image data, the input sequence X should
be resampled resulting X̂ = {x̂|x̂(̂i) ∈ R2×k̂}, wherein the re-
lation k̂ = ρk is built by a scale factor ρ(ρ > 1). The two-class
output sets of qualified and unqualified, which have different
relevance but similarities, are defined in the classification task
of the second stage model ŷ2 = f2(x

(i)
2 , θ̂2). Specifically,

the probability function p2(x̂
(̂i), θ) = θx̂

(î)

(1 − θ)1−x̂(î)

with
θ ∈ Θ under the sequence X̂ = {x̂|x̂(̂i) ∈ R2×k̂} is followed.
Deliberating most of images in sequence X are qualified, the
model ŷ3 = f3(x

(i)
3 , θ̂t) in the third stage is in alternative

working state and would be activated to locate faults when
the image has been detected as defective in the second stage.
Where the uniform distribution p3(x

(i)) is followed.

IV. METHODOLOGY

A. Hierarchical Framework
As shown in Fig.1, the proposed HTDS formulated by

ŷt = ft(x
(i)
t , θ̂t) with t ∈ {1, 2, 3} and θ̂ ∈ Θ is comprised

of three stages in a tree-like manner. Three-stage networks
of HTDS have been modified, which can perform three
significant processes for FICS sorting, quality classification,
and fault measurement. Firstly, automatic sorting is enabled
for the high-density FICS incoming, which is fundamental
intelligence in practical industrial processes but still relies on
personnel visual sorting. Secondly, based on the expert knowl-
edge that qualified FICS vastly outnumber defective ones in
microelectronic production, the FICS fault diagnosis is divided
into two stages: quality classification and fault measurement.
Specifically, a quality classifier categorizes substrates into
two-class results of qualified and unqualified, which makes
the substrate of different qualities with different workflows
following. The cascaded fault locator further identifies and
classifies the faults only if the quality classifier outputs unqual-
ified types. The HTDS is trained hierarchically by using the
presented data-balanced grouping strategy and then conducts
the FICS fault diagnosis from coarse to fine. The DCNN-based
hierarchical decision mechanism could speed up the FICS fault
diagnosis, and the unbalanced data problem addressed would
strengthen the learning performance of the network to improve
the accuracy.

Moreover, low-resolution substrate images are generally not
good at presenting fault details resulting in a high omission
rate for diagnosis algorithms in quality control processes. The
multi-scale microscopic imaging module, which is supposed
to offer substrate images at selectable scales required by
the proposed three-stage HTDS, is designed to contribute to
the diagnosis accuracy improvement of HTDS. As shown in
Table I, the FICS image examples captured by the proposed
multi-scale microscopic imaging module are mainly comprised
of the black background, yellow copper-clad conductor, and
copper foil with disparate faults.

1) FICS Sorting: Rapid and precise judgment of various
FICS is a prerequisite for effective quality diagnosis and high

TABLE I
THE EXAMPLE OF HIGH-DENSITY FICS IMAGES WITH TYPICAL FAULTS

Type Sample Type Sample

SH OP

HU IM

UN ET

SC LH

reliability of FICS [7]. FICS images are of large sizes, and
there are macroscopic feature discrepancies apparent in the
image size, wiring method, and mounting chip area. Hence,
a DCNN-based lightweight model ŷ1 = f1(x

(i)
1 , θ̂1), θ̂1 ∈ Θ

with a large receptive field for feature extraction is considered
to sort different FICS images in the case of maintaining a good
trade-off of sorting efficiency and accuracy in stage 1. The
framework of the sorting network is plotted in Fig.2, which
mainly includes a total of six convolution layers (Covi, i =
1, 2, · · · , 6) and two fully connected layers (Fci, i = 1, 2).
Followed softmax can generate the likelihood to predict which
category the input FICS belongs to.

The input layer of the sorting network is organized by the
high-density FICS image stream {x(1), x(2), · · · , x(k)} with a
dimension of 2, which is preprocessed with compression and
random cropping. Here a threshold k < N (N ∈ R) is used
to split image data since the order in which substrates arrive is
chaotic. For convolution layers following, key image features
are extracted by a series of fixed-size kernels with convolution
width Cw1 and stride between kernels of Sc1 . In detail, the 2-
D convolution is to take a dot product between image matrix
I ∈ Rm×n and kernel K1 ∈ Rkm1×kn1 to gain representation
features

S[i,j] =ReLu(
∑
i∈ϵ

(
∑
km1

∑
kn1

I[i+km1
,j+kn1

]

·K1[km1
,kn1

]) + bc)

(2)

where bc means the bias vector, subscript ϵ is the number of
kernels, S[i,j] denotes the output point (i, j) of convolution
layer, and ReLu(∗) is referred to the activation function.

The max-pooling with pool width of Pw1 and stride between
pools of Sp1

is expected to downsample, which could alleviate
the statistical burden on subsequent layers by reducing the
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Fig. 2. DCNN framework for high-density FICS sorting in stage 1.

size of representation features. Max-pooling process returns
the maximum value within a certain subregion as follows:

Ŝ[i,j] = M{S[i,j]i×Pw1 :(i+Sp1 )×Pw1 ,j×Pw1 :(j+Sp1 )×Pw1

} (3)

where M{∗} denotes the max-pooling operator, and Ŝ[i,j] is
referred to the output of pooling layers at point (i, j).

Subsequently, two fully connected layers are followed after
those blocks to perform logical reasoning, in which the output
of fully connected layer Fc2 is calculated as

So = f((WF2)
TSF1 + bF2) (4)

where WF2
is the weight matrix between the fully connected

layers Fc1 and Fc2, bF2
means the relevant bias vector, SF1

denotes the input from the layer Fc1, and f(∗) indicates the
activation function. Eventually, the category of different FICS
is confirmed in the output layer based on the fully connected
layer output So. The family of input-output functions could
be obtained via the softmax to be

ŷ1 =
1∑Vk

i=1 e
((Wi)

TSo+B)


e((W1)

TSo+bf)

e((W2)
TSo+bf)

...
e((Wk)

TSo+bf)

 (5)

where ŷ1,
∑

i∈Vk
|ŷ1 = 1 is the output non-linearity probabil-

ity, Wi means the weight matrix between layer Fc2 and ith
output layer neurons, bf is referred to the bias vector, and Vk

denotes the high-density FICS categories.
2) FICS Quality Classification: Low-resolution substrate

images usually can not present defect details well, which could
worsen the success rate for detection algorithms. Therefore,
feeding the sorted high-density FICS images in stage 1 to the
quality classifier in stage 2 of HTDS directly is not an optimal
choice. The blocks of FICS microscopic images by resampling
can be considered as the input to perform feature extraction
for the following FICS quality classifier, which can promote
classification accuracy. However, defects in substrate image
blocks are tiny at the micron-scale and have the attribute with
different aspect ratios and scales (see Table I), which could
lead to a lack of the feature memory for deep network layers
by using fixed sliding windows. For these reasons, a DCNN-
based classification network, which is a binary classifier ŷ2 =

TABLE II
LIST OF NETWORK ARCHITECTURE FOR FICS QUALITY CLASSIFICATION

Input 128× 128× 1

Block-1×2
km2 × kn2× ϵ ReLU
[Pw2 Pw2 ] Avg Pooling

Block-2 ×2
km2 × kn2× ϵ ReLU
Dropout α
km2 × kn2× ϵ ReLU
[Pw2 Pw2 ] Avg Pooling

Block-3 ×2
km2 × kn2× ϵ ReLU
[Pw2 Pw2 ] Avg Pooling
Dropout α

Fc1
1024× 128 ReLU
Dropout α

Fc2
128×Nc ReLU
(Nc = # of Classes)
Softmax Layer

f2(x
(i)
2 , θ̂2), θ̂2 ∈ Θ with x

(i)
2 ∈ {0, 1}, is cascaded to classify

high-density FICS quality in Stage 2.
Inspired by the deep convolutional transfer learning network

(DCTLN) [21], a 1-D classifier in their work has 14 layers be-
tween input and output layers including six blocks of convolu-
tion and pooling layers followed by two fully connected layers,
which can categorize complex machine states. To exactly and
fast classify high-density FICS into considered two classes:
qualified and unqualified, a DCNN-based quality classification
network with six hidden layer blocks of convolution and
pooling, and two fully connected layers (Fci, i = 1, 2) is built.
The list of the proposed DCNN architecture used in stage 2 of
HDTS is shown in Table II, and Fig.3(a) plotted the network
architecture.

As shown in Fig.4(b), FICS microscopic image blocks can
be taken after being amplified by using the optical microscope.
These image blocks can be used to build input layers of a FICS
quality classifier. As for the convolution layers, the deformable
convolution network (DCN) is introduced to strengthen the
ability of the network’s adaptive modeling for high-detail FICS
defects. Therefore, the adaptation based on equation (2), which
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Fig. 3. High-density FICS quality classification in the unbalanced data situation in stage 2. (a) The DCNN framework of FICS quality classifier, (b)
The data-balanced grouping strategy used in the classification process of (a).

is performed by adding learn-able offset ∆p = [∆px,∆py] and
predicted weight ∆mn, is continuous for irregular sampling.
The update is accomplished as follows:

S′
[i,j] =

∑
i∈ϵ

(
∑
km2

∑
kn2

I ′[i+km2
+∆px,j+kn2

+∆py ]

·K2[km2 ,kn2 ]
·∆mn)

(6)

where K2 means the kernel, S′
[i,j] is referred to the output fea-

ture mapping matrix, and I ′[i,j] indicates the input associated
with microscopic image blocks of the FICS. At the same time,
to acquire high-level image mappings for the dense sampling
in equation (6), the bilinear interpolation operator is selected
and defined by

I ′[i,j] =
∑

∆x,∆y

I ′i+∆x,j+∆y · g
(
pi+∆x, pi+km2

+∆px

)
· g

(
pi+∆y, pi+kn2

+∆py

) (7)

where the subscript [∆x,∆y] means the offset metrics from a
center point of the convolution region, and g(∗) is the double
copy of a 1-D kernel formulated by g(a, b) = max(0, 1−|a−
b|), a, b ∈ Rd. Based on those analogous processes of feature
extraction in equations (2-5), the output ŷ2 is obtained and the
FICS quality is estimated.

The unbalanced sample data, which could result in inade-
quate learning performance for network models, is ubiquitous
in the actual microelectronic fabrication since it is greatly
challenging to fairly access many substrate faults [21], [22]. In
our work, the faithful combination of decoupling the diagnosis
task into three phases and the data-balanced grouping strategy
is considered to promote the detection accuracy for networks
in the unbalanced sample situation. As drawn in Fig. 3(b), cate-
gories of training sample data Φ can be grouped semantically.
Concretely, various FICS fault types {x(1)

2 , x
(2)
2 , · · · , x(Fk)

2 }
contained Fk ∈ Rd entries would be organized into the
superclass CF , which is seen as the single element category
against with the qualified FICS type CN (CN /∈ CS). A finer
partition in fault type set CF will be completed as we approach
the next stage of HTDS. In the learning process, qualified class
CN is combined with superclass CF that has been balanced
with the amount of qualified class CN as the two-class training
data. In other words, a multi-classification task is cast to the
dichotomous problem, which helps prevent the over-fitting of
network models because of the average probability distribution

of the image sample data. From a mathematical point of view,
the probability distribution with a lost gravity center in an
unbalanced sample situation Φ is considered as the Bernoulli
distribution, and the corresponding probability function has
been changed and given by p(x

(i)
2 ; θ) = θx

(i)
2 (1 − θ)1−x

(i)
2

with x
(i)
2 ∈ {0, 1}. Particularly, the output result set CF will

be submitted to stage 3 directly.
3) FICS Fault Localization: Fault diagnosis is considered

to be carried out by leveraging two cascaded stages after FICS
sorting in our three-stage HTDS, instead of those single multi-
class detectors trained to identify and classify faults directly
in existing methods, which is time-consuming and low in
accuracy. The hierarchical decision mechanism introduced for
FICS fault diagnosis is expected to offer speedup and weaken
the risk of diagnosis errors as well. Considering the fact that
the majority of FICS, over 90%, are qualified in practical
assembly lines, there is thus unnecessary to execute the entire
three stages of HTDS to control quality for each substrate. To
optimize the diagnosis efficiency, the fault locator in stage 3
of HTDS is considered as an alternative working mode, which
will be activated to work on FICS fault localization while only
stage 2 outputs unqualified images. On this basis, two-class
output results involving repairable and unrepairable categories
are defined for the fault locator to increase the raw material
utilization and final yield.

The goal of stage 3 of HTDS is supposed to locate and
classify faults under the classified FICS fault set if given by
stage 2. Based on the suggestion of the advanced version of
You Only Look Once (YOLOv3) [23], the original architecture
has been built using the DarkNet53 backbone network, which
is comprised of five residual modules for extracting image
features in different sizes. The core conception of YOLOv3
is to generate image feature mappings with three shifty scales
after each of three residual modules, e.g., at sizes of 52× 52,
26 × 26, and 13 × 13. These extracted image mappings can
be merged to construct the sparse feature pyramid connection
(SFPC) to predict desired objects. Good result on those tasks
related to large and multi-class object detection for YOLOv3
has been reported. Pay attention to faults on microscopic FICS
image blocks having the attributes of different aspect ratios and
scales at the micron scale, A YOLOv3-based architecture, for-
mulated ŷ3 = f3(x

(i)
3 , θ̂3), θ̂3 ∈ Θ, x(i)

3 ∈ CF , i ∈ [1, Fk], is
built by using a multi-scale dense feature pyramid connection



IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT

Feature 
map layer 1

13×13

Feature 
map layer 2

26×26

Feature 
map layer 3

52×52

Feature 
map layer 4
104×104

2x 2x2x

Input

Darknet53

DCN Convolutional module Channel merging Upsampling

4x

4x

8x

step 2

step 6

step 8

Detection output





OP 1.00SH 0.99 LH 0.91

(n,1) (m,n)

Block-free
…

Stride: Sm

S
tride:S

m

…

m

n

Block of microscopic image

FICS image  

x

x

y

O

O

(a) (b)

Fig. 4. FICS Fault Localization. (a) Modified YOLOv3-based framework with MDFPC, (b) Acquirement of FICS microscopic image blocks using a
metallurgical microscope.

(MDFPC) and updated hyperparameters to locate FICS faults
in stage 3. The detailed framework is illustrated in Fig.4(a).

Compared to the original YOLOv3 framework, structural
modifications of our fault locator have been made as follows:

1) MDFPC is exploited by adding the lower network layers
at the size of 104 × 104 and the element’s combination
of different proportions to better collect image cues for
representing FICS micron-scale faults.

2) DCN is used instead of the convolution of each residual
block to adaptively extract high-detail features from FICS
faults with huge variability in size. Also, the size of the
upsampling steps of 2[5] is expanded to 4, 6, and 8, which
are adopted to fuse other information from convolution
layers to reuse high-level feature mappings better.

B. Multi-objective Learning Schemes

1) Object 1: For different high-density FICS images with
diverse and plentiful faults, the proposed three-stage HTDS
should be able to sort FICS and further enable intelligent fault
diagnosis without human involvement. Specifically, the FICS
sorter aims to replace the manual vision classification process.
Therefore, the optimization objective in stage 1 of HTDS is
to minimize FICS sorter error based on various low-resolution
substrate images, the loss function is defined

L1 = − 1

T

 T∑
j=1

Vk∑
i=1

I[ŷ1,i=Vk] log
e((Wi)

TSo+bf)∑Vk

g=1 e
((Wg)

rSo+bf )

 (8)

where I[∗] indicates the indicator function, Vk is referred to the
FICS categories, and T means the number of training samples
fed into the network each time.

2) Object 2: Considering attributes of high-density FICS
samples in number, features, and unbalanced sample problem,
fault diagnosis followed FICS sorter is cast into two sub-
steps including indispensable FICS quality classification and
alternative FICS fault localization to boost the quality control
efficiency and accuracy. FICS quality classifier is trained to
classify FICS high-resolution microscopic image blocks into
expected two categories, qualified and unqualified, and give
instruction on whether the cascaded FICS fault locator will
work for further fault localization or not. Thus, the optimiza-
tion objective in stage 2 of HTDS is to maximize quality

classification error based on the balanced binary training data.
The loss function is defined

L2 =
1

T

T∑
i=1

[yture ̸= f2(x
(i)
2 , θ̂2)] (9)

where

[yture ̸= f2(x
(i)
2 , θ̂2)] =

{
1, yture ̸= f2(x

(i)
2 , θ̂2)

0, yture = f2(x
(i)
2 , θ̂2)

(10)

where x
(i)
2 denotes the ith new input sample acquired, while

yture is the true label.
3) Object 3: Multi-class faults on FICS microscopic image

blocks in the output unqualified set CF need to be identified
and classified, and further located on raw FICS images. As il-
lustrated in Fig.4(b), the FICS image is orderly scanned by us-
ing the metallographic microscope with a fixed receptive field
and progressive scan manner of stride Sm(Sm ≤ 3000pixels)
to generate FICS microscopic image blocks. Four-position
indicators of each bounding box of the receptive field, e.g.,
the box coordinates (bx, by, bw, bh), will be stored in time. For
instance, for a raw FICS image with the dimension of m×n,
a position tensor of 1×m/bw ×n/bh can be produced in the
scan process. Therefore, incorporating the fault localization
on microscopic image blocks and the corresponding position
tensor could enable accurate recovery of fault position on the
raw FICS image. The optimization objective in stage 3 of
HTDS is to minimize the sum-squared error based on fault
samples.

Based on works derived from the original YOLO detector
[23], [24], the multi-part loss function is defined

L3 = λcoord

S2∑
i=0

B∑
j=0

Iobjij [(χi − χ̂i)
2 + (γi − γ̂i)

2]

+ λcoord

S2∑
i=0

B∑
j=0

Iobjij [(
√
wi −

√
ŵi)

2 + (
√
hi −

√
ĥi)

2]

+

S2∑
i=0

B∑
j=0

Iij(Ci − Ĉi)
2 + λnoobj

S2∑
i=0

B∑
j=0

Inoobj
ij (Ci − Ĉi)

2

+

S2∑
i=0

Iij
∑

c∈class

(pi(q)− p̂i(q))
2

(11)
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Here Iobjij means the target object that is assumed to present in
the ith location of the region, χ, γ, w and h indicate the current
position and size of the image, q denotes the number of entire
objectives to be recognized, p(q) is referred to the probability
that the objective belongs to the particular class q, λcoord

and λnoobj indicate the scalars weighting each confidence loss
function, S is the size of divided cell in each feature mapping,
and B is the number of prediction boxes in each cell.

The process of transfer learning [21] and end-to-end training
protocol are adopted to unify the training process in this paper,
which could enable multiple losses to propagate weights for
different ranges of network layers. Each of the three-stage
HTDS is trained by the stochastic gradient descent (SGD) [25]
and backpropagation solution [21] based on three optimization
objects mentioned above. The update of weights θ1, θ2 and θ3
is completed backward as follows:

∆Θ =


θ1 ← θ1 + η ∂L1

∂θ1

θ2 ← θ2 + η
(

∂L2

∂θ2
− µ∂L1

∂θ1

)
θ3 ← θ3 + η

(
∂L3

∂θ3
− µ∂L1

∂θ1

) (12)

where µ denotes the hyperparameter weighting the FICS sorter
strength in the training process, and η is the learning rate.
To accelerate the training process and optimize the weights
iteratively, the initial network parameters in θ2 of the quality
classifier of HTDS could be set using the FICS sorter’ weights
trained in θ1 due to the similarity of the training process and
samples, and then they are cascaded to train for θ1∪θ2. Where
specified network layers should be frozen ensuring the same
size of networks to achieve matched parameter sharing. The
analogous training protocol can be applied to the fault locator
of HTDS. However, the proposed HTDS of this paper works
step by step since our purpose is to control the quality of high-
density FICS from coarse to fine by decoupling the diagnosis
problem into specific subtasks.

V. EXPERIMENTAL VALIDATION

A. AOI System

As shown in Fig.5(a), the high-density FICS quality AOI
system mainly consists of the hardware component of the
proposed multi-scale microscopic imaging tool and the HTDS-
based fault diagnosis procedure. Choosing an advanced imag-
ing tool could help overcome the problems caused by the use
of uncomplicated processing algorithms [26]. Fig.5(b) demon-
strates the proposed multi-scale microscopic imaging module
constructed by the area-scan camera (ASC) and the charge-
coupled device (CCD) fixed on the metallurgical microscope,
which is mounted on the precise X-Y positioning device. It
can image substrate individually at different scales generating
FICS images and microscopic image blocks as the input for
stages 1 and 2 of HTDS.

As for the microscope lens, the maximum and minimum
view scopes are 2.13mm × 2.84mm, 13.71mm × 18.29mm
separately, and each lens magnification corresponds to an im-
age resolution of FICS under test. The discrimination precision
of 0.07µm/pixel is able to be achieved. Accordingly, the
plan achromatic objective named PL L5X/0.12 is exploited

with the actual working distance of 26.10mm. On the other
hand, the camera with the average frame rate of 17frames/s
is chosen. Three-color structural light-emitting diode (LED)
offers constant illumination intensity, which promotes the
quality of the captured substrate image to ensure effective
image processing. For an image acquisition process of the
substrate, the multi-scale imaging module needs to perform
double scans automatically, including a global view of ASC
to collect a FICS image and then microscopic image blocks
acquired by CCD via microscope successive scanning.

Algorithm 1 FICS fault diagnosis using the proposed HTDS

Input: the FICS image stream X = {x|x(i) ∈ R2×k} .
Ensure:

Set the initial parameters of AOI system;
for i = 1 : k

Classify different FICS based on FICS sorter in stage 1;
Collect microscopic image blocks X̂ = {x̂|x̂(̂i) ∈ R2×k̂};

for j = 1 : T
Judge FICS quality based on FICS classifier in stage 2;
if unqualified == True

Locate fault based on FICS fault locator in stage 3;
Classify FICS fault pattern and build fault set Cd =
{x1, x2, · · · , xk};

else
Continue;

end if
end for

Calculate modification factors ∆k = {∆1, · · · ,∆k};
Update parameters of AOI system;

end for
Output: fault patterns and factors ∆k of the fault diagnosis.

* k denotes the length of the collected datasets, and T refers to the number
of image blocks acquired from a microscope.

B. Fault Diagnosis

1) Dataset: Based on the previous works [7], [34], the
dataset is organized and comprised of three subsets, which
cover typical high-density FICS fault types in real assembly
lines. In detail, subset 1 containing 9871 FICS images for
three substrate categories is established for stage 1 of HTDS to
evaluate and choose a FICS sorting model, in which 7879 and
1992 images are in the training and validation set separately.
Faults, repairable types involving scratch (SC), undercut (UN),
impurity (IM), landless hole (LH), and hump (HU), unre-
pairable types including etch-back (ET), open (OP), and short
(SH), are collected from 9871 FICS images of stage 1, and
the rest of 452 is populated by expert inspectors. In total, 528
images for eight-type faults and corresponding qualified FICS
images of 863 are in subset 2 for stage 2 of HTDS. 528 fault
images for eight categories are labeled in subset 3 for stage 3.
A testing dataset containing 3810 high-density FICS images
acquired from different sections of actual substrate assembly
lines is generated to reveal the adaptability of each of the
three DCNN networks. With the data augmentation solution,
the training datasets are also expanded properly.
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Fig. 5. Substrate fault diagnosis device. (a) AOI system applicable for FICS quality diagnosis, (b) Multi-scale microscopic imaging module contained
AOI system of (a).

2) Training Detail: Each of the three DCNN frameworks is
trained for 3000 iterations by using SGD with the momentum
of 0.9 and initial learning rate of 1 × 10−3, which is then
declined by a factor 0.6 every 1000 iterations. Where the input
images of three stages of the proposed HTDS are resized to
227×227, 128×128, and 416×416, and corresponding batch
sizes are set to be 32, 16, and 8 due to the limitation of training
samples. The size and stride of convolution and pooling
kernels are set to be [Cw1

: 7, Sc1 : 3] and [Pw1
: 3, Sp1

: 2]
separately in FICS sorter. As for the quality classifier, the
dropouts α of 30% are adopted to prevent over-fitting. While
scalars λcoord and λnoobj are set to be [5, 0.5] by the original
author’s suggestion of YOLOv3 [24] in fault locator. The
training is completed on the NVIDIA GTX1080, and the
trend of training losses denotes that three networks will both
converge after about 1200 training iterations respectively.

3) Diagnosis Result: Each of the three DCNN architectures
is carried out on testing datasets and repeated ten times with
images amounting to 127 each time. The quantitative metrics
including false positive (FP), false negative (FN), true positive
(TP), and true negative (TN) are counted to calculate statistical
indicators: sensitivity (Se) and precision (Pr). The accuracy
(Ac) and F1-score are computed based on Se and Pr, which
are also given in [6], [7]

Se =
TP

TP + FN
× 100% (13)

Pr =
TP

TP + FP
× 100% (14)

Ac =
TP + TN

TP + TN + FP + FN
× 100% (15)

F1-score =
2

1/Se+ 1/Pr
× 100% (16)

Where the closer the Ac and F1-score is to 100%, the better
the performance of the network indicates. The effect evaluation
of improved three DCNN structures is performed to show that
the DCNN architecture is selected and modified correctly for
each stage. The related pseudocode is shown in Algorithm 1
and diagnosis results are summarized in Table III, in which the
performance regarding running time (T ), Ac, and F1-score for
each stage are listed and compared. As seen from Table III,
the total time cost of stage 1 and stage 2 is as low as 0.058s,

and average values of Ac and F1-score of 95.21% and 94.62%
are reached respectively. Importantly, this is a typical process
since stage 3 of HTDS does not work in most cases. For the
whole HTDS, a total running time of 0.189s and accuracy over
94% are achieved.

The proposed HTDS shows relatively better efficiency and
accuracy for FICS quality control due to the application of
the hierarchical decision mechanism and DCNN framework
established for each stage. However, qualified FICS images
sometimes are divided as the unqualified category and it is a
close call, and part of the ET type is seen as SH (see Table I).
In fact, a small percentage of wrong predictions of qualified
FICS are allowed to become unqualified ones to some extent
in the FICS manufacturing process, since the key task is to
pick up each fault strictly, and fault types ET and SH are both
included in the unrepairable type.

C. Comparison and Validation

1) Comparison among individual networks: To evaluate
the efficiency and accuracy, the proposed three-stage DCNN
frameworks of HTDS are individually compared with the
shallow convolution network: vehicle logo recognition system
(VLRS) [27] equipped with two hidden layer pairs of convolu-
tion and pooling and a fully connected layer, which can enable
the grouping of eleven-type vehicle logos, and large-scale net-
works: AlexNet [28], DCTLN [21], and ResNet-CBAM [29].
The first four lines of Table III present FICS sorting results in
stage 1. It is easy to see that the modified DCNN architecture
and lightweight structure show higher classification speeds
than those large. In contrast, the lightweight model suffers
some accuracy degradation, which is not allowed since the
diagnosis result will be of low accuracy by resulting from the
wrong choice of input FICS images.

To analyze the classification accuracy among the lightweight
model network, the proposed FICS quality classifier is com-
pared against four networks in stage 2, VLRS [27], AlexNet
[28], DCTLN [21], and ResNet-CBAM [29]. As summarized
in Table III, the conclusion can be drawn that both DCNN
architectures could fast response for relatively simple binary
classification tasks, but the proposed DCNN framework yields
4% higher classification accuracy than others due to the
introduction of the DCN module. Furthermore, the over-fitting
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TABLE III
COMPARISON RESULTS OF VARIOUS METHODS USED IN DIFFERENT STAGES

Model
Stage 1 Stage 2 Stage 3 Average

T (s) Ac(%) F1-score(%) T (s) Ac(%) F1-score(%) T (s) Ac(%) F1-score(%) T (s) Ac(%) F1-score(%)

VLRS [27] 0.097± 0.017 84.30± 6.12 82.75± 4.31 0.088± 0.019 85.69± 6.19 83.63± 3.39 / / / 0.093 85.00 83.19

AlexNet [28] 0.216± 0.015 89.07± 1.52 90.31± 2.21 0.176± 0.015 90.24± 1.73 92.08± 0.99 / / / 0.196 89.66 91.20

DCTLN [21] 0.160± 0.022 87.37± 4.04 82.96± 2.83 0.127± 0.014 84.81± 1.50 80.05± 3.13 / / / 0.144 86.09 81.51

ResNet-CBAM [29] 0.117± 0.009 92.39± 3.46 90.13± 2.59 0.085± 0.011 91.33± 2.29 90.92± 2.01 / / / 0.093 91.86 90.53

HTDS(Ours)
0.037± 0.0100.037± 0.0100.037± 0.010 96.29± 1.1896.29± 1.1896.29± 1.18 95.74± 2.6595.74± 2.6595.74± 2.65 0.036± 0.0050.036± 0.0050.036± 0.005 94.12± 1.0794.12± 1.0794.12± 1.07 93.49± 2.0793.49± 2.0793.49± 2.07 / / / 0.0360.0360.036 95.2195.2195.21 94.6294.6294.62

/ / / / / / 0.147± 0.0160.147± 0.0160.147± 0.016 92.13± 1.2692.13± 1.2692.13± 1.26 96.31± 1.9596.31± 1.9596.31± 1.95 0.1470.1470.147 92.1392.1392.13 96.3196.3196.31

MSCDAE [30] / / / / / / 0.100± 0.054 70.79± 4.88 85.61± 3.57 0.100 70.79 85.61

R-CNN [31] / / / / / / 0.167± 0.022 88.15± 3.56 94.03± 2.61 0.167 88.15 94.03

YOLOv7 [32] / / / / / / 0.150± 0.035 91.03± 2.37 90.55± 2.18 0.150 91.03 90.55

YOLOv8 [33] / / / / / / 0.146± 0.019 92.09± 1.97 93.11± 3.04 0.146 92.09 93.71

problem tends to occur because of the inadequacy of the
learning sample for training processes, such as the large-scale
structure AlexNet that usually handles complex objects based
on the learning on the vast public dataset.

The improved YOLOv3-based framework for object detec-
tion is compared with the multi-scale convolution denoising
autoencoder (MSCDAE) [30] network, which can inspect fab-
ric surface defects, the faster R-CNN [31], and the advanced
YOLO versions of YOLOv7 [32] and YOLOv8 [33] in stage 3.
The results are listed in Table III implying that ours, R-CNN,
and advanced YOLO versions have a better effect on fault
localization accuracy than MSCDAE, but their speed suffers a
weak discount than the lightweight MSCDAE. A slight time
delay meets the real-time requirement of the actual industrial
process. Moreover, the modified YOLOv3 outperforms ad-
vanced YOLO versions in FICS fault localization, especially in
terms of the F1-score, because of the introduction of MDFPC
and DCN modules for relatively small samples and micron-
scale faults. The advanced YOLO versions usually reach the
expected detection results through full training with large-scale
datasets.

In addition, to verify the presented YOLOv3 detector is op-
timally modified for FICS fault localization, different feature
mappings are selected and contributed to the output prediction
based on the original YOLOv3 framework. The detection
accuracy and time consumption using various configurations
are listed in Table IV. From Table IV, it is easy to see that
detection accuracy increases with the inclusion of multiple
feature mappings in the output prediction, which could infer
that specified network layers are required since FICS fault
localization tasks contain various micron-scale objects with
different aspect ratios and scales. However, the time consump-
tion with different configurations is almost the same.

TABLE IV
EFFECTS OF DIFFERENT OUTPUT LAYER OPTIONS

Configuration
Prediction by the maps in size of following

Ac(%) T (s) F1− score(%)
13× 13 26× 26 52× 52 104× 104

Original YOLOv3 [35]
√ √ √

83.12± 2.25 0.140± 0.019 85.52± 3.01

Modified YOLOv3
√ √ √

92.13± 1.26 0.147± 0.016 96.31± 1.95

Option 1
√ √ √

85.35± 3.98 0.142± 0.020 88.63± 2.65

Option 2
√ √ √

87.12± 1.42 0.145± 0.021 91.28± 2.00

2) Comparison among the combination of networks:
Three comparative investigations are performed to explore
the effectiveness and repeatability of the proposed three-stage

HTDS, wherein stages 1 and 2, stages 2 and 3 are separately
combined and compared with single multi-class networks in an
end-to-end manner. Stages 1 and 2 of HTDS are picked up to
directly output the qualified and unqualified result of FICS and
compared with the mentioned-above network models, VLRS
[27] and AlexNet [28]. The classification effects for considered
two quality states of FICS are plotted in Fig.6 indicating that
the single multi-class networks are relatively poor in accuracy.
It is reasonable that extracting feature representation of like
tiny objects of 80×80 pixels from the high-density FICS image
of 18846 × 12785 pixels is difficult. That is, the receptive
field of convolution windows for FICS images is too large
leading to the deficiency of the semantic information about
those tiny faults contained for the output prediction. More
importantly, the process of automatic FICS sorting has not
been considered in the existing methods, instead of screening
out by professionals. Overall, it is an optimized strategy to
classify high-density FICS quality in two stages.

TABLE V
COMPARISON RESULTS OF VARIOUS METHODS IN AN END-TO-END

MANNER

Model T (s) Ac(%) F1-score(%) SDT (s) SDAc

VLRS [27] 0.093± 0.014 63.58± 5.88 59.53± 5.71 0.009 3.078
AlexNet [28] 0.187± 0.012 69.03± 1.79 71.92± 3.42 0.007 1.046

HTDS (Stage 1+ Stage 2) 0.069± 0.010 92.93± 0.84 93.27± 1.65 0.007 0.496

MSCDAE [30] 0.098± 0.017 65.29± 1.89 83.77± 2.95 0.010 1.185
R-CNN [31] 0.154± 0.015 71.15± 2.72 87.59± 3.01 0.008 1.563

YOLOv7 [32] 0.149± 0.013 88.91± 1.59 89.51± 1.98 0.009 1.359
HTDS (Stage 2+ Stage 3) 0.164± 0.010 92.45± 0.89 95.83± 1.37 0.006 0.580

Accordingly, stages 2 and 3 are selected to directly output
the FICS fault category and locate them on the given raw FICS
image. Fig.6 presents the comparative results, in which a high
error rate exists among compared methods. Conceivably, since
the property of high-density FICS faults with the micron scale
and different aspect ratios and scales, it is tough to obtain
information-rich image feature mappings by those learning-
based algorithms in an end-to-end solution, and many features
tend to disappear in the shallow network layers in convolution
processes. Also, it is more prone to overfitting for FICS fault
types. The hierarchical detection allows for better FICS quality
classification and fault localization results, especially on the
F1-score, and the final two-type output partition helps to save
costs and improve yield in the practical industrial process.

Last but not least, the proposed three-stage HTDS out-
performs the combination of these single network models to
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tackle the task of FICS sorting, quality classification, and fault
localization. It is easy to see from Table V that the average
test time of 0.069s and 0.164s with the standard deviation
(SDT ) of 0.007s and 0.006s and the accuracy over 92% with
the standard deviation (SDAc) less than 0.580 are obtained in
different combination of proposed three stages of HTDS. In the
end, the proposed cascaded structure decouples the substrate
quality control problem into three subtasks and performs FICS
diagnosis, which can achieve a good trade-off in diagnosis
efficiency and accuracy.

VI. CONCLUSION

The combination of the hierarchical decision mechanism
and DCNN presents a systematic method for information
measurement with multi-tasks in this paper, which is further
introduced into intelligent fault diagnosis in microelectronic
fabrication. The processes of FICS sorting, quality classifica-
tion, and fault localization are achieved automatically using
the proposed DCNNs, which facilitate quality control because
of the superiority in adaptability and robustness. In conclusion,
the proposed three-stage HTDS presents a promising applica-
tion for FICS diagnosis due to the good trade-off in detection
time and accuracy. The shortened detection time contributes
to the feasibility of periodically evaluating the quality and
locating the fault of high-density FICS. However, the results
suggest some work in the future.
1) The detected faults could be classified more precisely than

the existing considered partition, such as mild, moderate,
and severe faults.

2) The demonstration of the fault measurement process by
using the presented three-stage HTDS in this paper, while
the incremental learning-based network model could be
attempted to enable the detection of increasingly extensive
substrate fault types.
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