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Abstract—In-vehicle network monitoring is one of the impor-
tant elements in vehicular network management and security.
Most of the existing network monitoring approaches rely on
measuring every part of the network. Such approaches over-
burden the network by transmitting active probes. In this work,
we propose a new in-vehicle network monitoring approach that
benefits from network tomography and the advances in deep
learning to infer the network delay performance. Specifically, the
available measurements can be used to estimate the performance
of the remaining network where direct measurements cannot be
applied. Performance evaluation has been conducted using in-
vehicle network simulation with different TSN (Time-Sensitive
Network) traffics and the proposed monitoring approach shows
the delay estimation accuracy of up to 99%.

I. INTRODUCTION
A. Background and Motivation

Network monitoring plays an indispensable role in network
performance management. It can help achieve better man-
agement of network resources such as in load-balancing and
bandwidth allocation. Moreover, with the new application of
Ethernet-based vehicular architecture, vehicles will be more
vulnerable to IP based attacks such as black holes and denial-
of-service (DoS). Therefore, network monitoring is one of
the key tasks in securing the network by which it can detect
anomalies caused by such attacks. Current network monitoring
approaches rely on direct auditing of full network including
the internal network devices [1]. In in-vehicle network, di-
rect measurement of network elements (e.g., ECU/links) is,
however, not feasible due to traffic overhead, mission-critical
requirements and difficulty in accessing a closed in-vehicle
system.

Inspired by Vardi’s work [2], an indirect approach called
Network Tomography that is based on end-to-end network
measurement can be used to infer the network’s link-level
metrics. Network tomography eliminates the need for internal
measurement, and hence, it incurs less overhead in total.
End-to-end measurements can be obtained using either active
or passive monitoring. Active monitoring relies on actively
sending designated probes for the purpose of measuring the
end-to-end performance, while passive monitoring exploits the
existing traffic. In this paper, we propose a novel approach
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for inferring link-level and path-segment as well as end-to-
end path-level performance metrics in an accurate and timely
fashion, by measuring performance along selected paths. To
do so, we combine traditional network tomography with deep
learning; the former is used to infer performance metrics in
the network, partially, depending on the availability of passive,
end-to-end measurements; the latter takes as input the results
of this partial network tomography in order to train a deep
neural network that is then used to estimate values of path-
level metrics for the whole network. End-to-end path metrics
can be trivially calculated by aggregating inferred (by partial
network tomography) and estimated (by our trained model)
metrics. The key motivation behind our work is the fact
that link-level performance measurements may not always be
available, feasible or economical to measure at all times in
in-vehicle networks, especially using active measurements. At
the same time, the performance characteristics of the network
may be varying depending on the state of the vehicle and
the drivers/passengers usage patterns of its various subsystems
(e.g. for infotainment). In this paper, we focus on inferring
and estimating delays but we believe that our approach is
applicable to a wider range of performance metrics.

B. Related Work

Most of existing works, [3], [4], employ active measure-
ments to monitor network performance. Conversely, limited
works have examined passive measurements [5]-[7]. Simi-
lar to these studies, we consider passive tomography, with
end-to-end delay measurements. The desire to use passive
tomography is due to multiple reasons: first, for a complicated
in-vehicle network, inserting large number of probes might
consequently affect the mission-critical network performance.
Second, with passive tomography, the existing traffic can
provide more realistic and accurate measurements than the
ones with inserted probes which are different to the actual
traffic. Third, the issues related to placing and minimising
the number of monitors [8] are eliminated with passive to-
mography. Hence, for the aforementioned reasons, we employ
passive measurements. However, the approach can be extended
to active measurements.

On the other hand, for machine learning-based solutions,
there are very limited number of studies, such as [9], [10],
that consider employing machine learning with network to-
mography. Authors in [10] used neural network to infer link-



level parameters where they focus on optical networks and link
attenuation. Neural network is utilised in [9] to estimate path-
level performance based on measuring parts of the network.
Our work is different to the approach presented in [9] in that it
deals with varying performance characteristics in the network,
and does not rely on active measurements. Moreover, in our
proposal, end-to-end measurements are used to extract link-
level performance metrics through partial network tomogra-
phy, and as a result, training our neural network-based model
is done with both end-to-end and link-level data.

C. Contribution

In this work, we propose a new monitoring approach for
in-vehicle network that is based on network tomography
and deep neural network. In particular, we assume that only
part of end-to-end measurements are available. We use such
available measurements to infer metrics of the internal network
elements where direct monitoring is not possible. Further, we
use the available measurements to estimate unmeasured parts
of the network using neural networks. Our contribution is
summarised below:

o We propose a partial network tomography based monitor-
ing approach to infer link-level metrics without the need
to access internal network elements using only end-to-end
measurements of existing traffic.

o Using the available end-to-end measurements, we further
estimate the network performance of unmeasured subset
using deep neural networks. The proposed approach can
estimate the performance with up to 99% accuracy.

¢ With OMNeT++ simulation and evaluation, we show
that it is possible to infer overall in-vehicle network
performance by only measuring a subset of the network.

The rest of the paper is organized as follows. Section II de-
scribes our network tomography model and problem statement.
Our partial network tomography approach is introduced in
Section III. Section IV describes our neural network based
delay estimation approach. Simulation results and conclusion
are discussed in Section V and Section VI respectively.

II. SYSTEM MODEL AND PROBLEM STATEMENT
A. Network Tomography Model

In this work, we assume that the in-vehicle network
topology is known. We map the topology into undirected
graph G = (V, £) containing a set of nodes V interconnected
through a set of links £. A link (u,v) € L connects two
adjacent nodes w,v € V. Let v := |L| denotes the total
number of links in G. For a network G shown in Fig. 1,
€ ={0,2,4,5} and R = {1, 3}, are edge nodes (e.g., radio
interface connected to external world) and intermediate nodes
(e.g., switches), respectively, where £, R C Vand EVR = V.
Definition 1: Given a network G, the edge nodes in £ are
nodes with d; = 1 and intermediate nodes in R are nodes
with d; > 1, where d; is the degree of node i € V.

Let P = {p1,p2,...,p.} represents a set of all end-to-end
paths (note that we use the terms "end-to-end path" and
"path" interchangeably) and let z := |P| denotes the total

number of paths in G. A path p; = {(u,a),...,(b,v)}
represents a pair of edge nodes (u,v) € £ communicating
with each other where (u,a),(b,v) € L and a,b € R. We
refer to (u,v) as path-segment if u,v € V are not adjacent
and uAv ¢ . An example of path-segment in Fig. 1 is (0, 3).
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Fig. 1: In-vehicle network represented as graph with six nodes.

We formulate our network tomography problem into the
following linear system:

y = Ax )

where y is a vector of end-to-end measurements for paths in
P, A is a k X~ routing matrix, and x is a vector of link-level
performance for links in £ that we are interested to infer.
We assume that the routing matrix is deterministic, therefore
each node pair (u,v) € £ uses a single path to communicate
and hence the routing matrix A includes entries a,; € {0,1},
where a;; = 1 if path ¢ passes through link j, and a;; = 0
otherwise. Let M C P be a set of measured paths and let
k := | M| and n = z — k denote the total number of measured
paths and unmeasured paths, respectively.

For the above network, there are five links £ =
{(0,1),(1,2),(1,3),(3,4),(3,5)}, and we assume throughout
the paper that the set of paths is P = {p1,p2,D3,04,D5}
with p1 = {(0,1),(1,2)}, p2 = {(0,1),(1,3),(3,4)}, p3 =
{(0,1),(1,3), (3,5)}, ps = {(2,1),(1,3), (3,4)}, and ps =
{(4,3),(3,5)}.

B. Problem Statement

In order to uniquely solve x in (1), the routing matrix A
used for the measurement should be invertible, and for A to
be invertible, it has to be full-rank square matrix. Specifically,
for our network tomography problem, in order to identify all
link-level metrics, two conditions should be satisfied: (i) the
number of end-to-end measurements should be equal to the
number of links in the network (k = +), and (ii) the available
end-to-end measurements should be linearly independent. The
first condition ensures that A will be square matrix, while
the second condition ensures that the square matrix A is full-
rank matrix (rank(A) = ). Because we focus on passive
tomography that is based on measuring the existing traffic, the
available measurements can form a routing matrix that can be
either:

1) full-rank matrix with rank(A) =~ and k = ~.

2) rank-deficient matrix with rank(A) < and k = 7.

3) rank-deficient matrix with rank(A) <~ and k < 7.
The first case satisfies both conditions (i) and (ii), and therefore
a can be uniquely identified using (1). The second case only



satisfies condition (i), while the third case does not satisfy
either conditions. Thus, the last two cases cannot use (1) to
infer all link-level metrics in the network. In this paper we
assume that the in-vehicle network falls under either one of
the last two cases where the available measurements cannot
form a full rank-matrix. Consider the network shown in Fig. 1,
there are five links, v = 5, therefore, to uniquely solve x in
(1), five independent measurements should be available, i.e.,
k =5, and hence A should be full-rank with rank(A) = 5.
However, the matrix in in-vehicle network is unlikely to form
a full-rank matrix due to dependent or inadequate end-to-end
measurements. For instance, suppose that the measured paths
for network G in Fig. 1 are M = {p1,p2,p5}, hence (1) can
be written as

T
n 110 0 0\ |a
wl=11 011 0]]|as 2)
Ys 0 0 01 1) |24

x5

In (2), only limited number of measurements are available (y,
Y2, y5) for paths in M, while others are unknown (ys3, y4),
for paths in P\ M. Besides, k < « which makes the routing
matrix rank-deficient with rank(A) = 3.

In the following sections, we show that (1) can be used
to infer part of link-level and/or path-segment metrics using
partial network tomography. In addition, for unmeasured paths,
the available measurements (e.g., y1, ¥2, and ys in (2)) can
be used to estimate the unmeasured ones (e.g., y3 and y,).
Moreover, when a path involves more than one traffic type and
not all of them can be measured, we show that by measuring
one traffic type, we can estimate the other’s performance.

III. PARTIAL NETWORK TOMOGRAPHY

In this section, we define our partial network tomography
approach where some link-level (or path-segement) metrics are
inferred using the available end-to-end measurements. For the
network shown in Fig. 1, consider the case where the routing
matrix A is rank-deficient as in (2). In such case, it is not
possible to uniquely identify all link-level metrics  in G.
However, subset of link-level and/or path-segment metrics can
be identified using partial network tomography of a partial
network S.

Theorem 1. To perform partial network tomography on a
given network G, the selected partial network S should include
at least three edge nodes, |E |S > 3.

Proof. From Definition 1, we know that each edge node ¢
has at most one connected link (d; = 1). And if |£|% < 3,
e.g., || = 2 there are at least two links in S, i.e., v° > 2.
And because G is undirected network and the routing between
any pair is deterministic, the maximum number of end-to-
end measurements of partial network S with [E]S = 2 is
% =1, (5 = 1). Therefore, kS < "ys and hence
the routing matrix A is not full-rank with rcmk:(AS) =1,
so ° cannot have unique solution. [

Theorem 2. To perform partial network tomography on a
partial network S C G with |E|S > 3, the number of available
end-to-end measurements should be greater than two, i.e.,
kS > 2.

Proof. We know from Theorem 1 that partial network tomog-
raphy should be performed on partial network S with at least
|€]° = 3, hence there are at least v° > 3 (see Definition
I). Now suppose that k° = 2, then the routing matrix AS s
kS x ’ys with k5 < 73 . Thus, AS is not full-rank and cannot
be reduced to a full-rank matrix, consequently =S cannot be
uniquely solved. O

Therefore, partial network S should include at least three
edge nodes, i.e., |€|3 > 3 (see Theorem 1) and number of
end-to-end measurements of more than two, k° > 2 (see
Theorem 2). Equation (1) then can be rewritten as

yS _ ASCBS (3)

where ys, A'S, and xS are end-to-end measurements vector,
routing matrix, and link-level (or path-segment) measurements
vector, respectively, for partial network S.

The process of the partial network tomography is illustrated
in Algorithm 1. The algorithm starts by finding any partial
network S with |£|® > 3 and k° > 2 (line 5). For such
partial network S, it checks for the rank of its routing matrix
rank(A®). If it is full-rank, it directly solves xS using (3)
(line 15). Otherwise, if A° is dependent, it will be reduced

into A® by removing redundant columns (line 7-8). It then

solves xS using A% in (3). Otherwise, if the system (3) is in-

consistent, it should find another partial network (line 11-13).
To further illustrate Algorithm 1, consider a partial network
S from the network shown in Fig. 1 with £5 = {0,2,4}. In
such partial network, we have v = 4, therefore, in order to
identify all link-level metrics, we need k° = 4 independent
measurements. However, with |£|® = 3, the maximum number
of measurements is k5 = 3 (see proof of Theorem 1). As
a result not all link-level metrics can be uniquely identified,
instead path-segments can be identified. The matrix for such
partial network with M = {p1,p2,p4s} is

1100
AS=1[1 0 1 1 4)
01 1 1

It is clear that (4) is dependent with one redundant column.
The matrix then can be reduced to AS by removing the
redundant column and assign the two links (1,3),(3,4) € £
to a path-segment (1,4). Thus, with AS we can solve z° in
3.

IV. DELAY ESTIMATION WITH NEURAL NETWORKS

To further complement the partial network tomography and
infer full path-level performance of in-vehicle network, we
introduce in this section our deep neural network (DNN)
approach to estimate the performance of unmeasured paths
given the available measurements.



Algorithm 1: Partial Network Tomography

Inputs : Network G, end-to-end measurement vector y with
y; for each path p; € M
Output: A set of inferred link-level and/or path-segment

del S
e aysszj

1 Infer Delay (x

2 M < all measured paths p; € P;

3 T ¢

4 while rank(A) < ~

5 find sub-network S s.t. [£]S > 3 and k% > 2;

6 if rank(A%) < ~° then

7 if system is dependent then

8 reduce AS to A° by removing redundant
column/s;

9 solve z° in (3) using AS;

10 | return ms;

11 else

12 system is inconsistent;

13 | gotoJ;

14 else

15 solve ° in (3);

16 N return :L'S;

17 for each z7 € x° do

18 if ¥ is a link-level metric for (u,v) € £ then

19 L ac‘f Ux

A. Neural Network Delay Estimation (NNDE)

As a benchmark solution, when there is only end-to-end
available measurements, the DNN takes these measurements
as input to estimate the performance of umeasured paths. The
DNN structure in this case is shown in Fig. 2a. Particularly,
we feed the neural network with the available end-to-end delay
measurements y for paths in M to estimate the performance
of unmeasured paths in P\ M. For example, for the network
in Fig. 1, suppose that M = {p;,p=2,ps} hence, the input to
the neural network will be a vector y = (y1,y2,ys5)'. The
neural network then outputs estimations for unmeasured paths
in P\ M, in this case the output will be §3 and 9.

B. Neural Network Delay Tomography (NNDT)

As we know from Section III, network tomography can help
infer proportional of link-level performance. Such inferred
metrics can be further combined with NNDE to improve the
estimation accuracy of unmeasured paths. Therefore, the input
layer of DNN in this case includes y for paths in M and =
as shown in Fig. 2b. As in NNDE, the network then estimates
the values for unmeasured paths in P\ M.

DNN operates in two basic processes: feed-forward and
backpropagation. In feed-forward, the network starts by taking
the input, multiplying it by a matrix of random weights and
the result is then passed to the first hidden layer in which an
activation function is applied. The output of the first hidden
layer is then passed to the next layer where the same operations
are repeated until the output layer that produces estimated
values ¢ for unmeasured paths in P\ M. The estimated values

Hidden layers

Hidden layers

Input layer
Output layer

Output layer

Input layer

(a) NNDE (b) NNDT

Fig. 2: Deep neural network structure for NNDE and NNDT.

are then compared against the actual values using a cost
function. In this work, we use Mean-Squared Error (MSE)
as our cost function. It is defined by

1 N
C= N ;(yi —4;)? ©)

where N is the total number of datapoints in a batch, y; and
y; are the actual and estimated end-to-end delays, respectively,
for paths in P\ M. The goal is to minimise (5) so that the esti-
mated value is close to the actual value. This is achieved with
backpropagation where the error is backpropagated throughout
the hidden layers using gradient descent and adjust the weights
accordingly to minimise (5) and hence, improve the estimation
accuracy.

V. PERFORMANCE EVALUATION

In this section, we first evaluate the accuracy of our NNDE
approach in estimating the delay of unmeasured paths in
P\M. Then, we show the results when using the partial net-
work tomography with neural network in NNDT. We evaluate
our approaches in an in-vehicle network with different traffic
types using TSN [11] standards as well as non-TSN traffic.

A. Experiment Setup
1) Network Simulation

To evaluate the performance of our approach, we conducted
simulations using OMNeT++ and CoRE4INET [12] in an in-
vehicle network topology with Ethernet backbone as shown
in Fig.3. We ran the simulation for 5000 times. Switches
processing delays are uniformly distributed between the range
of 10 ps and 80 us. The traffic we used are both Ethernet and

M switch
M Gateway
M CAN-bus
@ Ethernet node
@ CAN node

Fig. 3: Ethernet-backbone in-vehicle network topology.

CAN (Controller Area Network) traffics. For the Ethernet, we



used different traffics based on TSN standards [11] including
AVB, IEEE802.1Q, as well as best effort traffic. For non-
TSN, we used best effort traffic for all paths. In our network
shown in Fig. 3, we have |£| = 11 edge nodes, v = 23
links, and z = 10 paths with P = {p1,p2,...,p10} as
illustrated in TABLE 1, where node pairs (c1,c3), (ca,c4),
(e3,€2), (es,e2), (e2,e1), (e4,e7), (€s,e7), (€3,€5), (e3,e6)
and (es, eg) communicate respectively via paths py, ..., pig.
For TSN, the type and payload of traffic used in each path is
shown in TABLE I. Note that path p; has two different traffics,
to distinguish between the two types we denote the path with
IEEES02.1 traffic by 'p; while the path with best effort traffic
by 2p7. For each traffic, we recorded its end-to-end delay to
construct the dataset we use for training our model.

Traffic Payload
Path type B)
p1 = {(c1,b1), (b1,91), (91, 51), (S0, 51), CAN/ Best 3
(s0,53), (s3,93), (g3, b3), (b3, c3)} effort
p2 = {(c2, b2), (b2, 92), (g2, 52), (s0, s2), CAN/ Best g
(50, 54), (54,94), (94, b4), (ba, ca)} effort
p3 = {(e3, 1), (s0,51), (50, €2)} AVB-A 393
P4 = {(es,52), (s0,52), (s0,e2) } AVB-A 393
= {(e2, 50); (50, €1) AVB-B 736
= {( ) ( )

e4,s1), (S0,51), (s0,84), (s4,e7)} | IEEE802.1Q[ 100

IEEE802.1Q 100
Best effort 46

Best effort 46
Best effort 46
Best effort 46

= {(es, 53), (50, 53), (50, 84), (54, €7) }

ps = {(e3,s1), (s0,51), (s0, s2), (s2,e5)}
P9 = {(es, 51), (s0, 51), (50, 53), (53, €6) }
P10 = {(es, s2), (s0, 52), (50, 53), (53, €6) }

TABLE I: Paths and traffic types used in simulation with TSN
traffics.

2) Neural Network Model and Data Processing

We used DNN as shown in Fig. 2. The structure of our DNN
consists of two hidden layers. The number of hidden neurons
in each layer is 2k — 1 in case of NNDE and 2(k + |z|%) — 1
in NNDT. The model is trained over 1000 epochs with early
stopping [13] to avoid overfitting. We used the dataset of
5000 samples generated by our simulation, then split it into
60%, 25% and 15% as training, validation and testing sets,
respectively. Moreover, MinMaxScalar is applied to scale all
the data values between O and 1. We used the training data
to train the model and the validation data with early stopping
for cross-validation. The test set is used to test the model
performance on new data. Moreover, we used ReLU (Rectified
Linear Unit) activation function for all hidden layers and linear
function for the output layer. For backpropagation, we used
Adam optimisation function [14] to minimise the cost function
(5). Our model is trained using mini batches of size 40.

B. Partial Network Tomography

To perform partial network tomography for the network
shown in Fig. 3, we used partial network S with £5 =
{es, es5,eq,e7} and MS = {2p7, ps, po, P10} which satisfies
the conditions in Algorithm 1, line 5. Using (3), the path-
segments” metrics xS for (es,sg), (es,50), (€6, 50), (€7, 50)

are inferred. The inferred metrics are then added to the input
of neural network in NNDT case as shown in Fig. 2b.

C. Results
1) Training

We first evaluate our model’s learning performance to
ensure that it is not overfitting, this is shown in Fig. 4 where
we used cross-validation. The results show that in both NNDE
and NNDT, training and validation are almost aligned and the
model stops training before it starts to overfit with maximum
number of epochs equal to 448 in case of NNDE for non-
TSN when k£ = 5 (Fig. 4b) and 300 in case of NNDE for
TSN when k& = 4 (Fig. 4a). We can see that when the number
of measured paths i.e., k increases, the model with TSN learns
faster as shown in Fig. 4a. In addition, in all different values
of k, the number of epochs in NNDE is larger than in NNDT.
This means that the more information added from the partial
network tomography in NNDT allowed the model to learn
quicker than when the only available information is the path-
level measurements as in NNDE.

NNDE T, k=4 NNDE T, k=6
NNDE V, k=6
— NNDT T, k=6
NNDT V, k=6
—— NNDET k=7
NNDEV, k=7
NNDT T, k=7
NNDT V, k=7

NNDE T, k =4 NNDE T, k =6

MSE Value _

NNDE V, k =4 NNDE V, k =6 NNDE V, & 1
NNDE T, k=5 NNDE T, k=7 —— NNDET, k=5
01011 e NNDT V, & NNDT V,

- | NNDT T, & I NNDT T, k=6 —— NNDT T, k=4
o015 NNDE V, k =5 NNDE V, k=7 015 NNDEV, k=5
k4 k=3 ket — NNDTT, k=5

5 7 0007 e NNDT V, k=5
0.05 0.05
| .
0.00 = = S
] )

020 NNDT V, = 4 NNDTV, k= 6 NNDT V, & =4
—— NNDT T, k NNDT T, &

250 300 ] 100 200 300 100

100 150 200 2
Number of Epochs Number of Epochs

(a) TSN (b) non-TSN

Fig. 4: Training performance with cross-validation. T: training,
V: validation. The y-axis represents the MSE (used as cost
function for training).

2) Testing

After training our model, we evaluate its performance on
new datapoints that the model has never seen before using the
test set. In TABLE II, we show the MAPE (Mean Absolute
Percentage Error) values for model estimations on the test
set. In our scenario, partial network tomography is performed
when 40% or more of the network is measured with M =
{2p7,ps, P9, P10} As seen, for both TSN and non-TSN, the
error rates of both models, NNDE and NNDT, decrease when
the number of available measurements increase reaching up
to 99% accuracy when 50% or more is measured. Moreover,
both NNDE and NNDT almost have similar performance
in estimating the unmeasured paths, sometimes with slight
improvement when using NNDT.

Furthermore, in Fig. 5, we show the distribution of the
estimated paths’ delays in NNDT when 40% of the network
is measured (Fig. 5a) and when 70% is measured (Fig. 5b)
with TSN. We can see in Fig. 5a that the estimated and
actual delays are very closed to each other except for ys
and 5 where there is marginal difference. This is because
the available measurements are for paths in M that do not
share any common link with path ps € P\ M, as compared



% | Measured paths (M) NI\VIVIl)tIEII Tlil;DT NNDE TSNT\IDT
10 Tp7 10.000| N/A | 10.244| N/A
20 P8, >p7 8225 | N/A | 8.881 | N/A
30 'p7,p8, P10 4854 | N/A | 5292 | N/A
40 | Zpr,ps,p9, P10 2522 | 2.395 | 2.806 | 1.8%6
50 | ps,2p7,ps,po,Plo 1176 | 1.162 | 0.934 | 0492
60 | ps, D6, 2p7, D8, P9, P10 0.780 | 0.819 | 0.389 | 0.562
70 D3, D5, D6, 2P7, P8, P9, Plo| 0.665 | 0.606 | 0.143 | 0.155

TABLE II: MAPE values on test set. The first column indicates
the measured subset in percentage.

with other paths where they share one or more links with at
least one path in M. On the other hand, when more paths
are measured, as shown in Fig. 5b the distribution of actual
and estimated values are nearly overlapped. Note that in both
cases, 97 is accurately estimated for 'p; due to the available
measurement of the same path but different traffic type (i.e.,
2p, for best effort traffic).
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Fig. 5: Probability density function (PDF) for the distribution
of actual and estimated paths’ delays for in-vehicle network
with TSN.

To further evaluate the contribution of each path’s measure-
ment in estimating the overall network delay performance, we
show in Fig 6 the MAPE value for each measured path in M
when only 10% of the network is measured, i.e., &k = 1. As
shown, when M = {p;}, the MAPE is at its lowest value
for both TSN and non-TSN. In contrast, the highest MAPE
value for TSN and non-TSN achieved when M = {p5} and
M = {p4}, respectively. This is because, e.g, p5 has only one
link that is shared with two paths only in the network (i.e.,
link (sg, e2) is shared with ps and p,). While p7 has two path-
segments ((so,es) and (so, er)) shared with pg, pg and pig,
in addition to two more links ((so, s3) and (s, s4)) that are
shared with p; and ps.

134 . . - TSN
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Fig. 6: MAPE values on test set for NNDE when only 10%
of the network is measured (i.e., k = 1).

VI. CONCLUSION

In this paper, we have proposed a partial network tomogra-
phy approach to infer link-level and/or path-segment metrics of
partial network using only the available end-to-end measure-
ments. Moreover, we have proposed a deep neural network
delay estimation approach to estimate the unmeasured end-to-
end delay of in-vehicle network. In our approach, we have
used a subset of measured paths as input to train the model
and estimate the delay of remaining paths in the network.
Moreover, we have used the inferred metrics from the partial
tomography to estimate the performance of unmeasured paths.
The results shows that with only measuring end-to-end subset
of the network, the overall performance can be accurately
estimated with up to 99% accuracy. We believe that our
approach is suitable for networks with variable traffics such as
in-vehicle networks where direct monitoring of full network
is not desirable as such monitoring traffic may overwhelm
the network. In our future work, we will further extend our
approach to detect anomalies in such deterministic Ethernet-
based in-vehicle networks.
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