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Dynamics of Neural Systems with Discrete and Distributed Time Delays∗
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Abstract. In real-world systems, interactions between elements do not happen instantaneously, due to the time
required for a signal to propagate, reaction times of individual elements, and so forth. Moreover,
time delays are normally nonconstant and may vary with time. This means that it is vital to in-
troduce time delays in any realistic model of neural networks. In order to analyze the fundamental
properties of neural networks with time-delayed connections, we consider a system of two coupled
two-dimensional nonlinear delay differential equations. This model represents a neural network,
where one subsystem receives a delayed input from another subsystem. An exciting feature of the
model under consideration is the combination of both discrete and distributed delays, where dis-
tributed time delays represent the neural feedback between the two subsystems, and the discrete
delays describe the neural interaction within each of the two subsystems. Stability properties are
investigated for different commonly used distribution kernels, and the results are compared to the
corresponding results on stability for networks with no distributed delays. It is shown how approxi-
mations of the boundary of the stability region of a trivial equilibrium can be obtained analytically
for the cases of delta, uniform, and weak gamma delay distributions. Numerical techniques are used
to investigate stability properties of the fully nonlinear system, and they fully confirm all analytical
findings.

Key words. neural network, stability, discrete and distributed time delays, uniform and weak gamma distri-
butions
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1. Introduction. The emergence of self-organized behavior in networks of coupled systems
is a very current and fascinating topic stemming from direct applications in various scientific
disciplines [1]. The fascination comes from the fact that, by themselves, uncoupled elements
may exhibit very simple and well-understood behavior, and yet, when coupled together, they
produce a wealth of new dynamical regimes, such as full and/or partial synchronization,
clustering, localized pattern formation, and chimera states. Collective emergence of self-
organized behavior is of fundamental importance, and it appears in a wide range of systems,
including circadian pacemaker cells within the brain, Josephson junction arrays, and metabolic
yeast cells [2, 3].

A neural network can be described as an information processing structure, which consists
of processing elements connected together through a particular network topology. Each pro-
cessing element has an input, which supplies the information required to produce a desired
output through the network via connections depending on the configuration. Applications of
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neural networks range from classification, associative memory, image processing, and pattern
recognition to parallel computation and optimization problems [4, 5]. Mathematically, neural
networks can be represented by systems of coupled neurons, and such modelling approaches
help reveal the networks’ stability and synchronization properties [6, 7, 8].

In recent years, a number of researchers have studied neural network models with time
delays to represent the time required for communication between neurons [9, 10, 11, 12, 13, 14].
Time delays are used to account for the fact that in the majority of real-world networks, some
processes do not happen instantaneously due to a finite speed of signal propagation, times
required for information processing, etc., and their inclusion leads to significant changes in
the dynamics of the system [15, 16, 17, 18, 19, 20].

It has long been established that introduction of time delays often leads to additional
instabilities in the system when compared with its nondelayed analogue, and there are numer-
ous studies devoted to the analysis of coupled systems with discrete or constant time delays
[18, 21, 22]. However, in many real situations the time delays are not constant; they may
change over time and/or depend on system parameters [23, 24]. In the context of neural
networks, the presence of many parallel pathways with different axon sizes and lengths results
in different distributions of transmission velocities, which can be studied using models with
distributed time delays [25, 26, 27].

Using the average time delay as a bifurcation parameter, Liao, Wong, and Wu [28] have
shown that a Hopf bifurcation occurs when this parameter passes through a critical value.
Furthermore, they have investigated the direction of Hopf bifurcation and the stability of the
bifurcating periodic orbits by applying the normal form approach and the center manifold
reduction theory. Ruan and Filfil [29] have studied the stability of steady-state solutions in
a two-neuron system with discrete and distributed delays. They have shown the existence
of periodic oscillations that arise through a Hopf bifurcation of the steady state. Kyrychko,
Blyuss, and Schöll [30, 31, 32] have analyzed a generic system of coupled oscillators with
distributed-delay coupling represented by identical and nonidentical Stuart–Landau oscillators
and have shown how different distribution kernels affect the shape of the amplitude death
islands, where periodic oscillations are quenched and the previously unstable trivial steady
state is stabilized. Li and Hu [33] have investigated the stability of the trivial equilibrium and
Hopf bifurcations in a neural network by using the time delay as the bifurcation parameter.

An often quoted general rule is that a system with distributed delays is inherently more
stable than the same system with a discrete delay. Despite the developments in the field of
differential equations with either discrete or distributed delays, there are just a few results with
regards to coupled networks which include both discrete and distributed time delays. Cooke
and Grossman [12] have compared the behavior of a scalar equation with one discrete delay
to that of the corresponding equation with a gamma distributed delay. They have shown that
increasing the discrete delay in the model destabilizes the trivial solution, and it can never
be restabilized. For the distributed delay, increasing the mean time delay can also destabilize
the trivial solution; however, it will always be restabilized for a large enough mean time delay.
Bernard, Bélair, and Mackey [10] analyzed the linear stability of a scalar system with one and
two delays characterized by the distribution kernel properties, such as mean, variance, and
skewness. For uniform and continuous distributions, they have shown that stability regions
are larger than those in the case of a discrete delay. Jirsa and Ding [13] have analyzed an
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n× n linear system with linear decay and arbitrary connections with a common delay. They
have shown that, under some mild assumptions, the stability region of the trivial solution for
any distribution of time delays is larger and contains the stability region for a discrete delay.

Atay [34] has studied a system consisting of two simple oscillators with gap junctional
coupling. He has shown that it is easier to quench oscillations in a system with distributed
delays than in a system with a discrete time delay, in the sense that there is a larger region of
coupling strengths for which the steady state can be stabilized. In particular, it was deduced
that as the variance of the distribution increases, the size of the stability region increases.
Meyer et al. [14] have found that distributed delays enhance the stability of the system, so
that with the increased width of distribution of delays, the system converges faster to a fixed
point and converges slower toward a limit cycle. Moreover, the introduction of distributed
delays leads to an increased range of the average values of time delays for which the equilibrium
point is stable. The dynamics of the system is then determined almost exclusively by the mean
and the variance of the delay distribution and shows very little dependence on the particular
type of the distribution.

The simplest time-delayed model which describes neural interaction can be written in the
form

(1.1)
u̇1(t) = −u1(t) + a12f(u2(t− τ)),

u̇2(t) = −u2(t) + a21f(u1(t− τ)),

where ui, i = 1, 2, describe the voltage input of the neuron i, a12 and a21 are synaptic weights
or connection strengths, τ is the synaptic time delay, and f : R → R is a nonlinear ac-
tivation/transfer function. This model can be used to describe a Hopfield network, where
individual neurons are connected to each other through an activation (or transfer) function
with certain weights [35]. The time delay τ is assumed to be positive, and the connection
strengths a12 and a21 can be positive or negative, describing excitatory or inhibitory con-
nections, respectively. The dynamical properties of the system (1.1), such as stability of the
steady states and existence of the Hopf bifurcation, have been extensively studied by several
authors (for example, [36, 37, 38] and references therein).

Despite a large number of results related to neural network models of the type shown
in (1.1), systems of coupled subnetworks have received less attention. In particular, in the
majority of models considered in the literature, the connection time delay is assumed to be
constant; see, for example, Song, Tade, and Zhang [5]. In this paper, we focus on the role
of the distribution of delay times between the two subnetworks, rather than the influence of
discrete time delays inside a single subnetwork. Furthermore, we analyze the dynamics of a
system where both discrete and distributed time delays are simultaneously present.

We expand the Hopfield-type model (1.1) and its modification considered in [5] by intro-
ducing a distribution of time delays in the feedback connection between the two subnetworks,
and within each subnetwork the neurons are coupled with a constant time delay. Explicitly
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incorporating the above assumptions leads to the following model:

(1.2)

u̇1(t) = −u1(t) + a12f(u2(t− τ)) + α

∫ ∞

0
g(s)f(u4(t− s))ds,

u̇2(t) = −u2(t) + a21f(u1(t− τ)),

u̇3(t) = −u3(t) + a12f(u4(t− τ)) + α

∫ ∞

0
g(s)f(u2(t− τ))ds,

u̇4(t) = −u4(t) + a21f(u3(t− τ)),

where ui are voltages of neurons i, i = 1, . . . , 4; a12 and a21 denote the strength of connections
between neurons within each subnetwork, where they can be positive or negative; and α
measures the strength of the long-range coupling between the two subnetworks. We assume
that locally a time delay τ arising due to a finite speed of signal propagation between individual
neurons inside each subnetwork is a nonnegative constant, while the long-range transmission
delays between the subnetworks are characterized by a distribution with the kernel g(·). In the
most general formulation, all neural interactions (both within and between the subnetworks)
could be represented by distributed time delays. However, due to the close proximity of
neurons inside each subnetwork, it is reasonable to assume that the variation of the time
delays in the connection between them is negligibly small compared to the variation of the
time delays in the long-range connections between subnetworks [39]. This justifies the choice
of a discrete time delay within the subnetworks and distributed time delays in the interactions
between them, and makes analytical investigations more tractable.

The synaptic transfer function f : R → R is assumed to be C1 and sigmoidal with a
maximum slope at zero [36, 40]. For the linear stability analysis, we require only f(0) = 0,
f ′(0) �= 0 and use a particular choice of f(·) = tanh(·) in the numerical simulations.

Without loss of generality, the distribution kernel g(·) is assumed to be positive-definite
and normalized to unity; i.e.,

g(s) ≥ 0,

∫ ∞

0
g(s)ds = 1.

A schematic sketch of system (1.2) is shown in Figure 1. If the distribution kernel is taken
in the form of the Dirac delta function, that is g(s) = δ(s), one recovers the instantaneous
coupling between the two subnetworks, where the two subnetworks interact without time
delays. If g(s) = δ(s − τ), the coupling takes the form of a discrete time delay αf(ui(t− τ)),
i = 2, 4. Song, Tade, and Zhang [5] have considered the case of discrete time delays in system
(1.2) and derived conditions for stability, Hopf bifurcation, and emergence of spatio-temporal
patterns from bifurcating periodic solutions.

The outline of the paper is as follows. In section 2 we derive general conditions for
stability of the trivial steady state of system (1.2) for any distribution kernel. Section 3 is
devoted to the analysis of model (1.2) with Dirac delta distributed kernel, and we show how
one can obtain explicit conditions on the system parameters that ensure the stability of the
trivial steady state. In sections 4 and 5 we consider the cases of uniform and weak gamma
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1

(α, g(s))

(α, g(s))

(a12, τ) (a21, τ) (a21, τ) (a12, τ)

2 3

4

Figure 1. Diagrammatic sketch of the Hopfield-type neural network described by system (1.2). The delays
τ inside each of the subnetworks are assumed to be constant and discrete, and long-range interactions between
the two subnetworks are represented by the distributed delay kernel g(s).

distribution kernels, find conditions on stability of the trivial steady state, and numerically
identify stability regions in the parameter space. Numerical simulations of the full nonlinear
system (1.2) are presented in section 6, and the paper concludes with the summary and
discussion of results in section 7.

2. Stability analysis. Equilibria of system (1.2) satisfy u̇i = 0, i = 1, 2, 3, 4. Under the
assumption f(0) = 0, system (1.2) always has a trivial or rest steady state (u1, u2, u3, u4) =
(0, 0, 0, 0). The importance of this trivial steady state lies in the fact that it represents a state
of background activity, which is fundamental for many neural processes [41, 42]. Depending
on the signs of the coupling weights/strengths aij, i, j = 1, 2, and the specific form of the
transfer function f , there may exist a number of other nontrivial steady states, but their
existence is not guaranteed in general [39, 40]. Therefore, we concentrate our analysis on
the stability of the trivial steady state, and similar considerations can be made for all other
steady states when they are permitted by the model. The linearization of system (1.2) near
the trivial steady state has the form

(2.1) u̇(t) = L0u(t) + L1u(t− τ) +M

∫ ∞

0
g(s)u(t− s)ds,

with u = (u1, u2, u3, u4), L0 = −I, where I is the 4× 4 identity matrix and L1 and M are
given by

L1 =

⎛⎜⎜⎝
0 a12β 0 0

a21β 0 0 0
0 0 0 a12β
0 0 a21β 0

⎞⎟⎟⎠ , M =

⎛⎜⎜⎝
0 0 0 αβ
0 0 0 0
0 αβ 0 0
0 0 0 0

⎞⎟⎟⎠ ,

where β = f ′(0) �= 0. The characteristic matrix can now be calculated as

Δ(τ, λ) = (λ+ 1)I − L1e
−λτ −MĜ(λ),

where

Ĝ(λ) =

∫ ∞

0
e−λsg(s)ds
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is the Laplace transform of the function g(·). The corresponding characteristic equation
factorizes as follows:

(2.2) det[Δ(τ, λ)] = Δ−(τ, λ) ·Δ+(τ, λ) = 0,

where Δ−(τ, λ) and Δ+(τ, λ) are given by

Δ−(τ, λ) = (λ+ 1)2 − a12a21β
2e−2λτ − Ĝ(λ)a21αβ

2e−λτ ,(2.3)

Δ+(τ, λ) = (λ+ 1)2 − a12a21β
2e−2λτ + Ĝ(λ)a21αβ

2e−λτ .(2.4)

It it easy to see that λ is a root of the characteristic equation (2.2) if and only if it is a
root of either Δ+ or Δ−.

Lemma 2.1. λ = 0 is a solution of (2.2) if and only if |a21αβ2| = |1− a12a21β
2|.

Proof. From the factorization of the characteristic equation det[Δ(τ, λ)] = Δ+(τ, λ) ·
Δ−(τ, λ) = 0 it follows that either Δ+(τ, λ) = 0 or Δ−(τ, λ) = 0. Computing Ĝ(λ) at λ = 0
yields

Ĝ(0) =

∫ ∞

0
g(s)ds = 1.

Substituting this into Δ+(τ, 0) = 0 and Δ−(τ, 0) = 0 given in (2.3) and (2.4), one finds that
either

Δ+(τ, 0) = 1− a12a21β
2 + a21αβ

2 = 0

or

Δ−(τ, 0) = 1− a12a21β
2 − a21αβ

2 = 0.

The last two expressions imply

|a21αβ2| = |1− a12a21β
2|,

which completes the proof.
Theorem 2.2. If either |a21αβ2| > |1 − a12a21β

2| or |a21αβ2| < a12a21β
2 − 1, then the

characteristic equation (2.2) has a root with positive real part for any τ ≥ 0.
Proof. Substituting λ = 0 into (2.3) and (2.4) gives

det[Δ(τ, 0)] = Δ+(τ, 0) ·Δ−(τ, 0) = (1− a12a21β
2 + a21αβ

2) · (1− a12a21β
2 − a21αβ

2).

Under the assumption |a21αβ2| > |1− a12a21β
2|, we have either

Δ+(τ, 0) > 0 and Δ−(τ, 0) < 0

or

Δ+(τ, 0) < 0 and Δ−(τ, 0) > 0,

which both imply that det[Δ(τ, 0)] < 0. On the other hand,

lim
λ→∞

det[Δ(τ, λ) = lim
λ→∞

[Δ+(τ, λ) ·Δ−(τ, λ)] = ∞.

D
ow

nl
oa

de
d 

10
/1

3/
16

 to
 1

39
.1

84
.1

30
.2

27
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DYNAMICS OF NEURAL SYSTEMS WITH TIME DELAYS 2075

Since det[Δ(τ, λ)] is a continuous function of λ, there exists λ∗ > 0 such that det[Δ(τ, λ∗)] = 0
for any τ ≥ 0 and |a21αβ2| > |1−a12a21β

2|. Thus, the characteristic equation (2.2) has a real
positive root.

In the case when |a21αβ2| < a12a21β
2 − 1, we have

Δ+(τ, 0) < 0 and Δ−(τ, 0) < 0.

Since
lim
λ→∞

Δ+(τ, λ) = lim
λ→∞

Δ−(τ, λ) = ∞,

this implies that both Δ+(τ, λ) and Δ−(τ, λ) will cross zero at some positive λ∗, which com-
pletes the proof.

In order to make further analytical progress, we need to specify the kernel of the delay
distribution. There are three main distribution kernels used in the literature, namely, delta
function, uniform distribution, and gamma distribution [10, 11, 12, 34, 43]. We shall start
our analysis by considering the distribution kernel in system (1.2) in the form of the delta
function.

3. Delta function distribution. In the case of the delay distribution being given by the
Dirac delta function, we have to consider two different cases. In the case g(s) = δ(s − τ),
system (1.2) reduces to the case of a system with discrete time delay. Song, Tade, and Zhang
[5] have shown that if |a21αβ2| > 1 − a12a21β

2, the trivial steady state of system (1.2) with
g(s) = δ(s− τ) is unstable for all τ ≥ 0; if a12a21β

2 − 1 < |a21αβ2| ≤ a12a21β
2 +1, the trivial

steady state is asymptotically stable for all τ ≥ 0; and if 1+a12a21β
2 < |a21αβ2| < 1−a12a21β

2,
there exists τ0 > 0 such that the trivial steady state is asymptotically stable for all τ ∈ [0, τ0)
and unstable for τ > τ0.

Considering the distribution kernel of the form g(s) = δ(s), i.e.,

(3.1)

∫ ∞

0
δ(s)f(u(t− s))ds = f(u(t)),

system (2.1) reduces to a system with discrete time delay of the form

(3.2) u̇(t) = L0u(t) + L1u(t− τ),

where u = (u1, u2, u3, u4) and L0 and L1 are given by

L0 =

⎛⎜⎜⎝
−1 0 0 αβ
0 −1 0 0
0 αβ −1 0
0 0 0 −1

⎞⎟⎟⎠ , L1 =

⎛⎜⎜⎝
0 a12β 0 0

a21β 0 0 0
0 0 0 a12β
0 0 a21β 0

⎞⎟⎟⎠ .

The characteristic equation of system (3.2) can be factorized in a manner similar to (2.2):

(3.3) det[Δ(τ, λ)] = Δ−(τ, λ) ·Δ+(τ, λ) = 0,

where

(3.4) Δ−(τ, λ) = (λ+ 1)2 − a12a21β
2e−2λτ − a21αβ

2e−λτ

D
ow

nl
oa

de
d 

10
/1

3/
16

 to
 1

39
.1

84
.1

30
.2

27
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2076 B. RAHMAN, K. B. BLYUSS, AND Y. N. KYRYCHKO

and

(3.5) Δ+(τ, λ) = (λ+ 1)2 − a12a21β
2e−2λτ + a21αβ

2e−λτ .

Lemma 3.1. Let |1− a12a21β
2| = |a21αβ2|. If

(3.6) 1 + a12a21β
2 > 0 and a12a21β

2 �= 1

or

(3.7) 1 + a12a21β
2 < 0 and τ �= τd = − 2

1 + a12a21β2
,

then λ = 0 is a simple root of the characteristic equation (3.3). If

(3.8) a12a21β
2 = 1

or

(3.9) 1 + a12a21β
2 < 0 and τ = τd,

then λ = 0 is a double root of the characteristic equation (3.3).
Proof. It follows from Lemma 2.1 that whenever the condition |1 − a12a21β

2| = |a21αβ2|
holds, λ = 0 is a root of the characteristic equation (3.3). In order to determine the multiplicity
of this root, we compute

(3.10)
dΔ

dλ

∣∣∣
λ=0

= 2(1− a12a21β
2)[2 + τ(1 + a12a21β

2)].

If the condition (3.6) holds, then dΔ(τ, 0)/dλ �= 0 for any τ , implying that λ = 0 is a simple
root of the characteristic equation (3.3). Likewise, if the condition (3.7) holds, it follows from
(3.10) that

dΔ

dλ

∣∣∣
λ=0

> 0 for τ < τd,

dΔ

dλ

∣∣∣
λ=0

< 0 for τ > τd.

Hence, λ = 0 is a simple root. When the condition (3.8) is satisfied, we have

dΔ

dλ

∣∣∣
λ=0

= 0,
d2Δ

dλ2

∣∣∣
λ=0

= 8(τ + 1)2 > 0,

and, therefore, λ = 0 is a double root. Finally, if the condition (3.9) holds, one has

dΔ

dλ

∣∣∣
λ=0,τ=τd

= 0,
d2Δ

dλ2

∣∣∣
λ=0,τ=τd

=
4(1− a12a21)(a

2
12a

2
21 − 4a12a21 − 1)

(1 + a12a21)2
> 0,

which means that λ = 0 is a double root of (3.3). This completes the proof.
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Below we concentrate on analysis of the equation

(3.11) Δ−(τ, λ) = (λ+ 1)2 − a12a21β
2e−2λτ − a21αβ

2e−λτ = 0,

and the same analysis applies to the case of Δ+(τ, λ) = 0. In order to identify further stability
changes, we look for solutions in the form λ = iω, ω �= 0. When τ = 0, Δ−(τ, λ) = 0 turns
into

(3.12) Δ−(0, λ) = (λ+ 1)2 − a21αβ
2 − a12a21β

2 = 0.

The following lemma can be easily obtained using the Routh–Hurwitz criterion.
Lemma 3.2. Assume a21αβ

2 < 1 − a12a21β
2. Then all roots of (3.12) with τ = 0 always

have negative real parts.
When τ �= 0, an iterative procedure can be employed to find a new function F (ω), whose

roots ω give the Hopf frequency associated with purely imaginary roots of the characteristic
equation (3.11). The procedure for finding the function F (ω) works as follows. Consider a
general transcendental characteristic equation [21, 44, 45],

(3.13) Δ(τ, λ) =
n∑

k=0

pk(λ)e
−kλτ ,

where τ ≥ 0; pk(λ), k = 0, 1, 2, . . . , are polynomials in λ; and |pk(λ)/p0(λ)| < 1, k =
1, 2, . . . , n, for |λ| → ∞ and Re(λ) ≥ 0. Substituting λ = iω into (3.13) and conjugating
Δ(τ, iω) gives

Δ(τ, iω) =
n∑

k=0

pk(iω)e
−kiωτ , Δ(τ, iω) =

n∑
k=0

pk(iω)e
kiωτ .

Clearly, Δ(τ, iω) = 0 if and only if Δ(τ, iω) = 0. Define Δ(j)(τ, iω) recursively as

Δ(1)(τ, iω) = p0(iω)Δ(τ, iω) − pn(iω)e
−niωτΔ(τ, iω) =

n−1∑
k=0

p
(1)
k (iω)e−kiωτ ,

...

Δ(j)(τ, iω) = p
(j−1)
0 (iω)Δ(j−1)(τ, iω)− p

(j−1)
n−j+1(iω)e

−(n−j+1)iωτΔ(j−1)(τ, iω)

=

n−j∑
k=0

p
(j)
k (iω)e−kiωτ ,

...

Δ(n−1)(τ, iω) = p
(n−1)
0 (iω) + p

(n−1)
1 (iω)e−iωτ .

From p
(j+1)
0 (iω) we obtain

p
(j+1)
0 (iω) = |p(j)0 (iω)|2 − |p(j)n−j(iω)|2, j = 0, 1, 2, . . . , n− 2.
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Moreover, from Δn−1(τ, iω), let

F (ω) = |p(n−1)
0 (iω)|2 − |p(n−1)

1 (iω)|2.

If Δ(τ, iω) = 0, then ω is a root of F (ω) = 0.
Returning to (3.11), we can use the same argument as above with n = 2 to find the

function F (ω):

(3.14) F (ω) = |p10(iω)|2 − |p11(iω)|2,

where

(3.15)
p10(iω) = (ω2 + 1)2 − a212a

2
21β

4,

p11(iω) = a21αβ
2[(ω2 − 1)− a12a21β

2 + 2iω].

The function F (ω) is explicitly given by

(3.16) F (ω) = ω8 + 4ω6 + a1ω
4 + a2ω

2 + a3,

where the coefficients ai, i = 1, 2, 3, are expressed through the parameters of system (1.2) in
the following way:

a1 = 6− 2a212a
2
21β

4 − a221α
2β4, a2 = 2(2 − 2a212a

2
21β

4 − a221α
2β4 + a321α

2a12β
6),

a3 = 1− 2a212a
2
21β

4 + a412a
4
21β

8 − a221α
2β4 − 2a321α

2a12β
6 − a421α

2a212β
8.

Lemma 3.3. If a3 < 0 in (3.16), then the function F (ω) given by (3.16) has at least one
positive root ω; i.e., F (ω) = 0.

Proof. Assumption a3 < 0 implies that F (0) = a3 < 0. Since F (ω) as defined by (3.16)
is a continuous function of ω, and also limω→∞ F (ω) = ∞, this means that there exists a
positive root ω > 0 of the equation F (ω) = 0.

Let us now consider the case when the assumption a3 < 0 does not hold. Introducing the
notation s = ω2, the equation F (ω) = 0 can be rewritten as

(3.17) h(s) = s4 + 4s3 + a1s
2 + a2s+ a3 = 0.

From (3.17), we have

(3.18) h′(s) = 4s3 + 12s2 + 2a1s+ a2.

Existence and the number of positive roots of (3.17) depend on the coefficients a1, a2, a3,
which themselves depend on system parameters.

Without loss of generality, suppose that (3.17) has four positive roots denoted by s1, s2, s3, s4.
Then the equation F (ω) = 0 will have four positive real roots,

ω1 =
√
s1, ω2 =

√
s2, ω3 =

√
s3, ω4 =

√
s4.
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On the other hand, substituting λ = iω into (3.11) gives

(3.19) (iω + 1)2 − a21αβ
2e−iωτ − a12a21β

2e−2iωτ = 0.

Separating this equation into real and imaginary parts yields

(3.20)
−ω2

k + 1 = a21αβ
2 cos(ωkτk) + a12a21β

2 cos(2ωkτk),

−2ωk = a21αβ
2 sin(ωkτk) + a12a21β

2 sin(2ωkτk),

where k = 1, 2, 3, 4. Using trigonometric formulas, the system (3.20) can be rewritten in the
form

(3.21)

cos(ωkτk) =
−a21αβ

2 ±
√

a221α
2β4 + 8a212a

2
21β

4 + 8a12a21 − 8a12a21ω2
k

a12a21β
,

sin(ωkτk) =
4ωk

β
(
−a21αβ2 ±

√
a221α

2β4 + 8a212a
2
21β

4 + 8a12a21 − 8a12a21ω2
k

) .
Dividing the second equation in (3.21) by the first equation there, we obtain

(3.22) τ jk =
1

ωk

[
arctan

( −2ωk

1− ω2
k + a12a21β2

)
+ jπ

]
,

where k = 1, 2, 3, 4, j = 0, 1, 2, . . . . Therefore, the solutions of (3.19) are pairs (τ jk , ωk), where

λ = ±iωk are pairs of purely imaginary roots of (3.11) with τ = τ jk . Define

τ0 = τ0k0 = min
1≤k≤4

{τ0k}, ω0 = ωk0 , k0 ∈ {1, 2, 3, 4}.

Then τ0 is the first value of the time delay τ for which the roots of the characteristic equation
(3.11) cross the imaginary axis. Let λ(τ) = α(τ) ± iω(τ) be the root of (3.4) near τ = τ0k
satisfying α(τ0k ) = 0, ω(τ0k ) = ω0. It can be easily shown that the following transversality
condition holds.

Lemma 3.4. Suppose h′(s0) �= 0 and p10(ω0) �= 0, where h(s) and p10(ω0) are defined in
(3.15) and (3.17), respectively, and s0 = ω2

0. Then the following transversality condition
holds:

sgn

{
dRe[λ(τ)]

dτ

∣∣∣∣∣
τ=τ0k

}
= sgn

[
p10(ω0)h

′(s0)
]
.

Proof. Substituting λ(τ) into the characteristic equation (3.11) and taking the derivative
with respect to τ gives{

dλ(τ)

dτ

}−1

= − 2λ+ 2

2a12a21β2λe−2λτ + a21αβ2λe−λτ
− τ

λ
.
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From this equation, one can find{
dRe{λ(τ)}

dτ

}−1

τ=τ0k

= Re

{
− 2λ+ 2

2a12a21β2λe−2λτ + a21αβ2λe−λτ

}
τ=τ0k

−Re
{ τ

λ

}
τ=τ0k

=
2ω0

[
2ω0a12a21β

2 cos(2ω0τ
0
k ) + 2a12a21β

2 sin(2ω0τ
0
k ) + ω0a21αβ

2 cos(ω0τ
0
k ) + a21αβ

2 sin(ω0τ
0
k )

][
2ω0a12a21β2 sin(2ω0τ

0
k ) + ω0a21αβ2 sin(ω0τ

0
k )

]2
+

[
2ω0a12a21β2 cos(2ω0τ

0
k ) + ω0a21αβ2 cos(ω0τ

0
k )

]2 .
Using (3.20) and (3.21), this expression can simplified into{

dRe{λ(τ)}
dτ

}−1

τ=τ0k

=
ω2
0

[
4ω6

0 + 12ω4
0 + 2(6 − 2a212a

2
21β

4 − a221α
2β4)ω2

0

]
Λ(ω4

0 + 2ω2
0 + 1− a212a

2
21β

4)

+
ω2
0

[
2(2− 2a212a

2
21β

4 − a221α
2β4 − a321α

2a12β
6)
]

Λ(ω4
0 + 2ω2

0 + 1− a212a
2
21β

4)
=

s0
[
4s30 + 12s20 + 2a1s0 + a2

]
Λp10(ω0)

,

where

Λ =
[
2ω0a12a21β

2 sin(2ω0τ
0
k ) + ω0a21αβ

2 sin(ω0τ
0
k )

]2
+

[
2ω0a12a21β

2 cos(2ω0τ
0
k ) + ω0a21αβ

2 cos(ω0τ
0
k )

]2
and p10(ω0) = (ω2

0 + 1)2 − a212a
2
21β

4. Since s0 = ω2
0 > 0 and Λ > 0, this implies

sgn

{
dRe[λ(τ)]

dτ

∣∣∣∣∣
τ=τ0k

}
= sgn

{
dRe[λ(τ)]

dτ

∣∣∣∣∣
τ=τ0k

}−1

= sgn

{
1

Λp10(ω0)
h′(s0)

}
= sgn[p10(ω0)h

′(s0)],

which completes the proof.
By Lemmas 3.2 and 3.4, we have the following result regarding the stability of the trivial

steady state of the system (1.2) and the existence of the Hopf bifurcation.
Theorem 3.5. Suppose |a21αβ2| < |1 − a12a21β

2|. If (3.17) has at least one positive root,
p10(ω0) �= 0, and h′(s0) �= 0, then the trivial steady state of system (1.2) is stable for 0 ≤ τ < τ0
and undergoes a Hopf bifurcation at a critical value of the time delay τ = τ0.

In order to illustrate the effects of varying the coupling strength α and the time delay τ
on the stability of the trivial steady state, we numerically compute stability boundaries of this
steady state in the α− τ plane using a pseudospectral algorithm developed by Breda, Maset,
and Vermiglio in [46].

Figure 2(a) shows a closed stability region in the α-τ plane for the case when a12 = 2,
a21 = −0.55, and β = 1. We can observe that the steady state is stable inside the colored
region, where color corresponds to [−max{Re(λ)}]. For small values of the time delay τ ,
there is a large interval of the coupling strength values where the steady state is stable. As
τ gets larger, the stability region become narrower, and eventually, for large enough values of
the time delay τ , the trivial steady state becomes unstable independently of the value of the
coupling strength α. The situation for any values of the parameters a12, a21, and β satisfying
a12a21β

2 < −1 is qualitatively the same as that shown in Figure 2(a).
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Figure 2. Stability regions of the trivial steady state of system (1.2) with delta distribution g(s) = δ(s) and
a12 = 2, β = 1. (a) a21 = −0.55. (b) a21 = −0.45. (c) a21 = 0.45. Color code denotes [−max{Re(λ)}].

In the case when the parameters of system (1.2) satisfy the condition −1 ≤ a12a21β
2 < 0,

the stability region is as illustrated in Figure 2(b). One can see that compared to the case
a12a21β

2 < −1, the stability region is larger, and for all values of the time delay τ there is
always a range of values of the coupling strength α for which the trivial steady state of system
(1.2) is stable. It is noteworthy that whenever a12 and a21 have opposite signs, the boundary
of the stability region consists of two parts. The trivial steady state can lose its stability via
a Hopf bifurcation, in accordance with Theorem 3.5, or undergo a steady-state bifurcation, as
described in Lemma 3.1. In Figures 2(a) and (b), the horizontal part of the stability boundary
corresponds to |1− a12a21β

2| = |a21αβ2|.
If 0 ≤ a12a21β

2 ≤ 1, the trivial steady state can lose its stability only via a steady-state
bifurcation, as shown in Figure 2 (c). Once again, the horizontal boundaries are defined by
|1−a12a21β

2| = |a21αβ2|. Finally, for a12a21β2 > 1, the trivial steady state is always unstable
independently of the time delay τ , following the results of Theorem 2.2.

4. Uniformly distributed delay. In this section we consider system (1.2) in the case of the
uniformly distributed kernel of the form

(4.1) g(s) =

⎧⎪⎪⎨⎪⎪⎩
1

2ρ
for τ − ρ ≤ s ≤ τ + ρ,

0 elsewhere.

Taking the Laplace transform of the uniform distribution g(u) given in (4.1), we obtain

(4.2) Ĝ(λ) =
1

2ρλ
e−λτ (eλρ − e−λρ) = e−λτ sinh(λρ)

λρ
.

Lemma 4.1. Let |1− a12a21β
2| = |a21αβ2|. If a12a21β

2 �= 1, then λ = 0 is a simple root of
the characteristic equation (2.2) with the delay kernel (4.1); otherwise, it is a double root.

The proof of Lemma 4.1 is analogous to the proof of Lemma 3.1.
Substituting the Laplace transform (4.2) into the characteristic equation (2.3) and looking

for solutions in the form λ = iω yields

(4.3) (iω + 1)2 − [a12a21β
2 + a21αβ

2γ(ω, ρ)]e−2iωτ = 0,
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where

γ(ω, ρ) =
sin(ωρ)

ωρ
.

Separating (4.3) into real and imaginary parts gives

(4.4)
−ω2 + 1 = [a12a21β

2 + a21αβ
2γ(ω, ρ)] cos(2ωτ),

−2ω = [a12a21β
2 + a21αβ

2γ(ω, ρ)] sin(2ωτ).

Squaring and adding the last two equations gives a transcendental equation for the Hopf
frequency ω:

(4.5) ω2 + 1 = ±[a12a21β
2 + a21αβ

2γ(ω, ρ)].

In a similar way, dividing the second equation in (4.4) by the first equation, we obtain

(4.6) tan(2ωτ) =
2ω

ω2 − 1
.

To illustrate the effects of changing the coupling between the two subnetworks α and the time
delay τ on stability of the trivial steady state, we numerically find the stability boundary in
the α-τ plane parameterized by the Hopf frequency ω. We rewrite the linearized system with
the uniformly distributed kernel as follows:

(4.7) u̇(t) = L0u(t) + L1u(t− τ) +
α

2ρ

∫ −(τ−ρ)

−(τ+ρ)
Mu(t+ s)ds,

where u = (u1, u2, u3, u4), L0 = −I, I is the 4 × 4 identity matrix, and L1 and M are given
by

L1 =

⎛⎜⎜⎝
0 a12β 0 0

a21β 0 0 0
0 0 0 a12β
0 0 a21β 0

⎞⎟⎟⎠ , M =

⎛⎜⎜⎝
0 0 0 β
0 0 0 0
0 β 0 0
0 0 0 0

⎞⎟⎟⎠ .

The system (4.7) is now in the form suitable for computing the maximum real part of the char-
acteristic eigenvalues using the algorithm described in [46] and implemented in the traceDDE
suite in MATLAB.

If ρ = 0, the last term in (4.7) becomes αMu(t − τ), and system (1.2) reduces to the
system with a single discrete time delay τ , which was analyzed in [5]. When ρ �= 0, we have
to consider separately different values of a12a21β

2 and compute the stability of the trivial
steady state of the system (1.2) as the distribution width ρ is varied. Figure 3 shows the
stability boundary when the condition a12a21β

2 < −1 is satisfied. In this case, when ρ = 0,
the stability region is the same as in the case of a single discrete time delay and coincides
with Figure 2(a), where for τ = 0 there is an interval of α values for which the trivial steady
state of system (1.2) is stable. As ρ is increased, the stability region detaches from the α-axis,
and for τ = 0 it is not possible to stabilize the trivial steady state, as shown in Figure 3(b).
In Figures 3(c) and (d), increasing ρ further still leads to shrinking of the stability region in
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Figure 3. Stability region of the trivial steady state of system (1.2) with the uniform distribution (4.1) for
a12 = 2, a21 = −0.55, and β = 1. Color code denotes [−max{Re(λ)}]. (a) ρ = 0, (b) ρ = 0.5, (c) ρ = 1, and
(d) ρ = 1.5.

the α-τ plane, thus reducing the range of α values for which the trivial steady state of system
(1.2) is stable.

In the case when parameter values of system (1.2) satisfy the condition −1 ≤ a12a21β
2 < 0

with ρ = 0, we again recover the case of a single discrete time delay, and the stability region
shown in Figure 4(a) is the same as that in Figure 2(b). As the distribution width is increased,
as shown in Figures 4(b)–(d), it is no longer possible to stabilize the trivial steady state with
τ = 0 for any values of the coupling strength α. Moreover, the larger the distribution width,
the smaller is the interval of α values where the stability is observed. However, unlike the
situation when a12a21β

2 < −1, in this case, the stability region does not become an isolated
island but rather becomes a narrow stretch in the α-τ plane. For 0 ≤ a12a21β

2 ≤ 1 the
stability region does not depend on the time delay τ and is identical to the one shown in
Figure 2(c), and for a12a21β

2 > 1 the trivial steady state is unstable for any τ ≥ 0 and any ρ.
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Figure 4. Stability region of the trivial steady state of system (1.2) with the uniform distribution (4.1) for
a12 = 2, a21 = −0.45, and β = 1. Color code denotes [−max{Re(λ)}]. (a) ρ = 0, (b) ρ = 0.5, (c) ρ = 1, and
(d) ρ = 1.5.

5. Weak gamma distributed delay. The gamma distribution kernel, as commonly used
in the literature [10, 11, 12, 43], can be written as follows:

(5.1) g(s) =
sp−1γpe−γs

(p− 1)!
,

where γ, p ≥ 0 and p is integer. For p = 1, this is an exponential distribution, also called a
weak delay kernel. The delay distribution (5.1) has the mean delay

(5.2) τm =

∫ ∞

0
sg(s)ds =

p

γ

and the variance

(5.3) σ2 =

∫ ∞

0
(s− τm)2g(s)ds =

p

γ2
.
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The stability analysis of the trivial steady state of system (1.2) with the gamma distributed
delay kernel (5.1) can be performed either by taking the Laplace transform of the distribution
kernel, which gives

(5.4) Ĝ(λ) =

(
γ

λ+ γ

)p

,

or by using the linear chain trick described in [47]. The linear chain trick allows one to replace
the original system with discrete and distributed delays by the system of delay differential
equations with discrete time delay only. In this section we will concentrate on the case of the
weak gamma distributed kernel. Introducing the new variables

u5(t) =

∫ ∞

0
γe−γsu2(t− s)ds,

u6(t) =

∫ ∞

0
γe−γsu4(t− s)ds

allows one to rewrite the system (1.2) as follows:

(5.5)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u̇1(t) = −u1(t) + a12βu2(t− τ) + αβu6(t),

u̇2(t) = −u2(t) + a21βu1(t− τ),

u̇3(t) = −u3(t) + a12βu4(t− τ) + αβu5(t),

u̇4(t) = −u4(t) + a21βu3(t− τ),

u̇5(t) = γu2(t)− γu5(t),

u̇6(t) = γu4(t)− γu6(t).

The characteristic equation (2.2) for the system (5.5) with weak distribution kernel has
the form

(5.6) det[Δ(τ, λ)] = Δ−(τ, λ) ·Δ+(τ, λ) = 0,

where

(5.7) Δ−(τ, λ) = (λ+ γ)(λ+ 1)2 − (λ+ γ)a12a21β
2e−2λτ − γa21αβ

2e−λτ

and

(5.8) Δ+(τ, λ) = (λ+ γ)(λ+ 1)2 − (λ+ γ)a12a21β
2e−2λτ + γa21αβ

2e−λτ .

Lemma 5.1. Let |1− a12a21β
2| = |a21αβ2|. If

−1 ≤ a12a21β
2 ≤ 1 + 2γ and a12a21β

2 �= 1,
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or

a12a21β
2 > 1 + 2γ or a12a21β

2 < −1 and τ �= τγ =
a12a21β

2 − 2γ − 1

γ(1 + a12a21β2)
,

then λ = 0 is a simple root of the characteristic equation (5.6). If

a12a21β
2 = 1

or
a12a21β

2 > 1 + 2γ or a12a21β
2 < −1 and τ = τγ ,

then λ = 0 is a double root of the characteristic equation (5.6).
The proof of Lemma 5.1 is similar to the proof of Lemma 3.1.
We will analyze the case of Δ−(τ, λ) given by (5.7), and the analysis is the same for

Δ+(τ, λ) in (5.8). The transcendental equation for eigenvalues λ for Δ−(τ, λ) has the form

(5.9) Δ−(τ, λ) = (λ+ γ)(λ+ 1)2 − (λ+ γ)a12a21β
2e−2λτ − γa21αβ

2e−λτ = 0.

Note that when τ = 0, this equation reduces to

(5.10) λ3 + (γ + 2)λ2 +
(
2 γ + 1− a12a21β

2
)
λ+ γ(1− a12a21β

2 − a21αβ2) = 0.

In view of the Routh–Hurwitz criterion, we have the following result.
Lemma 5.2. Assume that condition

(5.11) a21a12β
2 < min{2γ + 1, 1− a21αβ

2}
holds. Then all roots of (5.10) have negative real part.

When τ > 0, we can use the same technique as in the case of the delta distributed kernel
in order to calculate F (ω) as follows:

(5.12)

p10(iω) =
[
γ − (γ + 2)ω2

]2
+

[
ω3 − (2 γ + 1)ω

]2 − (
γ2 + ω2

)
a21

2β4a12
2,

p11(iω) = −a21αβ2γ2 + a21αβ2γ2ω2 + 2 a21αβ2γ ω2 − a21
2αβ4a12γ

2

+
(−a21αβ2γ ω3 + 2 a21αβ2γ2ω + a21αβ2γ ω − a21

2αβ4a12γ ω
)
i,

and hence

(5.13) F (ω) = ω12 + b1ω
10 + b2ω

8 + b3ω
6 + b4ω

4 + b5ω
2 + b6,

where

b1 = 2γ2 + 4, b2 = −2 a12
2a21

2β4 + 8 γ2 + γ4 + 6,

b3 = −4 a12
2a21

2β4 + 4 + 12 γ2 + 4 γ4 − a21
2α2β4γ2 − 4 a12

2a21
2β4γ2,

b4 = 1 + 6 γ4 − 8 a12
2a21

2β4γ2 − 2 γ4a12
2a21

2β4 − 2 a12
2a21

2β4 + a12
4a21

4β8

− 2 a21
2α2β4γ2 + 8 γ2 − a21

2α2β4γ4 − 2 a21
3α2β6γ2a12,

b5 = 4 γ4 + 2 γ2 − 4 γ4a12
2a21

2β4 + 8 a21
3α2β6γ3a12 + 2 a12

4a21
4β8γ2 − a21

2α2β4γ2

+2 a21
3α2β6γ4a12 − a21

4α2β8a12
2γ22 a21

2α2β4γ4 − 4 a12
2a21

2β4γ2 + 2 a21
3α2β6γ2a12,

b6 = −a21
2α2β4γ4 − 2 a21

3α2β6γ4a12 − 2 γ4a12
2a21

2β4 − a21
4α2β8a12

2γ4 + a12
4a21

4β8γ4 + γ4.
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Lemma 5.3. Assume that b6 < 0. Then the equation F (ω) = 0 has at least one positive
root.

Proof. Assumption b6 < 0 implies that F (0) = b6 < 0. Since F (ω) as defined by (5.13) is a
continuous function of ω, and also limω→∞ F (ω) = ∞, this means that there exists a positive
root ω > 0 of the equation F (ω) = 0.

Let s = ω2; then the equation F (ω) = 0 becomes

(5.14) h(s) = s6 + b1s
5 + b2s

4 + b3s
3 + b4s

2 + b5s+ b6 = 0.

Without loss of generality, suppose that (5.14) has six positive roots, denoted by s1, s2,
s3, s4, s5, s6. This implies thatF (ω) = 0 also has six positive real roots given by

ω1 =
√
s1, ω2 =

√
s2, ω3 =

√
s3, ω4 =

√
s4, ω5 =

√
s5, ω6 =

√
s6.

At the same time, substituting λ = iω, ω > 0 into (5.9), we obtain

(5.15) (iω + γ)(iω + 1)2eiωτ − γa21αβ
2 − (iω + γ)a12a21β

2e−iωτ = 0.

Separating this equation into the real and imaginary parts gives

(5.16)
γ(−ω2 + 1)− 2ω2 − γa21αβ

2 cos(ωτ) = γa12a21β
2 cos(2ωτ) + ωa12a21β

2 sin(2ωτ),

ω(−ω2 + 1) + 2γω + γa21αβ
2 sin(ωτ) = ωa12a21β

2 cos(2ωτ)− γa12a21β
2 sin(2ωτ).

Using trigonometric formulas, system (5.16) can be simplified as follows:

(1− ω2 + a12a21β
2)γ − 2ω2

=
[
γa21αβ

2 + 2γa12a21β
2 cos(ωτ) + 2ωa12a21β

2 sin(ωτ)
]
cos(ωτ),

ω(1− ω2 + 2γ − a12a21β
2)

= − [
γa21αβ

2 + 2γa12a21β
2 cos(ωτ) + 2ωa12a21β

2 sin(ωτ)
]
sin(ωτ).

Dividing the second of these equations by the first gives

(5.17) tan(ωτ) = − ω(1− ω2 + 2γ − a12a21β
2)

(1− ω2 + a12a21β2)γ − 2ω2
.

We can now define

(5.18) τ jk =
1

ωk

[
arctan

(
−ωk(1 − ω2

k − a12a21β
2 + 2γ)

(1− ω2
k + a12a21β2)γ − 2ω2

k

)
+ jπ

]
,

where k = 1, . . . , 6, j = 0, 1, 2, . . . . The pairs (τ jk , ωk) are the solutions of the characteristic
equation (5.15), and λ = ±iωk are pairs of purely imaginary roots of the characteristic equation
(5.9) for τ = τ jk . Let

(5.19) τ0 = τ0k0 = min
1≤k≤6

{τ0k}, ω0 = ωk0 ,

D
ow

nl
oa

de
d 

10
/1

3/
16

 to
 1

39
.1

84
.1

30
.2

27
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2088 B. RAHMAN, K. B. BLYUSS, AND Y. N. KYRYCHKO

where k0 ∈ {1, . . . , 6}. Then τ = τ0 is the first value of the time delay such that (5.9) has purely
imaginary roots. Using the time delay τ as the bifurcation parameter, let λ(τ) = α(τ)± iω(τ)
be the root of (5.9) near τ = τ0 such that α(τ0) = 0, ω(τ0) = ω0. In order to show that we
have a Hopf bifurcation at τ = τ0, we have to show that dRe[λ(τ0)]/dτ > 0.

Theorem 5.4. Suppose that the conditions of Lemma 5.2 hold, and h′(s0)p10(iω0) > 0, where
h(s) and p10(iω) are defined in (5.12) and (5.14), respectively, and s0 = ω2

0. Then the trivial
steady state of system (5.5) is linearly asymptotically stable for τ ∈ [0, τ0) and undergoes a
Hopf bifurcation at τ = τ0.

Proof. Lemma 5.2 ensures that at τ = 0 all eigenvalues of the characteristic equation have
negative real part. From the definition of τ0 in (5.19) it follows that τ0 is the first positive value
of τ for which the characteristic equation (5.9) has a pair of complex conjugate eigenvalues
λ = ±iω0. In this case, however, it does not prove possible to use the direct computation
as in the proof of Lemma 3.4 to show that λ = iω0 is a simple root of the characteristic
equation (5.9). Following the methodology of Li, Zhang, and Wang [44] instead, we introduce
a function

S1(ω) = sgn[ωF ′(ω)p10(iω)],

which determines possible changes in the number of roots with positive real part of (5.9).
From the definition of the function h(s), we have

F (ω) = h(ω2) =⇒ F ′(ω) = 2ωh′(ω2) = 2ωh′(s),

which under the assumptions of the theorem implies

S1(ω0) = sgn[ω0F
′(ω0)p

1
0(iω0)] = sgn[2ω2

0h
′(s0)p10(ω0)] = sgn[h′(s0)p10(iω0)] > 0.

From Theorem 2 in [44] it then follows that

sgn

{
dRe[λ(τ)]

dτ

∣∣∣∣∣
τ=τ0

}
> 0,

which suggests that the trivial steady state of system (5.5) undergoes a Hopf bifurcation at
τ = τ0.

In order to illustrate how the stability of the trivial steady state of system (5.5) changes
in the case of the weak gamma distribution kernel, we illustrate in Figure 5 the stability
boundary for different values of a12a21β

2. In the case when a12a21β
2 < −1, the trivial steady

state is stable inside the region bounded by the surface shown in Figure 5(a) and unstable
outside this region. For −1 ≤ a12a21β

2 ≤ 1, there are two nonoverlapping surfaces, and the
trivial steady state is stable for any parameter values lying inside the region bounded by
these surfaces, as shown in Figures 5(b) and (c). For a12a21β

2 > 1, the trivial steady state is
unstable for any τ ≥ 0, γ, and α.

To get a better understanding of how eigenvalues are changing inside the stability region,
we show in Figure 6 numerically computed eigenvalues of the characteristic equation for the
cases shown in Figure 5 and one particular value of γ = 1. Figure 6(a) shows that in the case
when a12a21β

2 < −1, as the value of the discrete time delay increases, the stability region
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Figure 5. Stability boundary of the trivial steady state of system (1.2) with weak delay distribution kernel
(5.1) (p = 1) and a12 = 2, β = 1. (a) a12a21β

2 < −1 with a21 = −0.55. (b) −1 ≤ a12a21β
2 < 0 with

a21 = −0.45. (c) 0 ≤ a12a21β
2 ≤ 1 with a21 = 0.45. The trivial steady state is stable inside the region restricted

by the boundaries and unstable outside this region.

Figure 6. Stability region of the trivial steady state of system (1.2) with weak delay distribution kernel
(5.1) (p = 1) with γ = 1, a12 = 2, β = 1. (a) a12a21β

2 < −1 with a21 = −0.55. (b) −1 ≤ a12a21β
2 < 0 with

a21 = −0.45. (c) 0 ≤ a12a21β
2 ≤ 1 with a21 = 0.45. Color code denotes [−max{Re(λ)}].

shrinks, and for sufficiently large values of the discrete time delay τ , the trivial steady state
of system (5.5) is unstable for any value of the coupling strength α. In the parameter region
where −1 ≤ a12a21β

2 < 0, as the discrete time delay increases, the region of stability of the
trivial steady state of system (5.5) becomes smaller, but there is always a range of coupling
strength values α at which the steady state is stable, as shown in Figure 6(b). In the case
0 ≤ a12a21β

2 ≤ 1, the region of stability is bounded by |1 − a12a21β
2| = |a21αβ2| and is

independent of τ and γ.
Figure 7 shows that as the coupling strength α between the two subnetworks is increased,

in the case of the weak distribution kernel, the stability region of the trivial steady state
becomes smaller in the γ-τ plane.

6. Numerical simulations. In order to illustrate and confirm the results of our analytical
findings, we perform direct numerical simulations of system (1.2) for different cases of delay
distribution. Let f(·) = tanh(·), which implies that β = f ′(0) = 1 and g(s) = δ(s). Then
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Figure 7. Boundary of stability in the τ -γ plane for the weak delay distribution kernel (5.1) (p = 1), for
different values of α, a12 = 2, a21 = −0.5. The trivial steady state is stable to the left of the boundary and
unstable to the right of it.

system (1.2) takes the form

(6.1)

u̇1(t) = −u1(t) + a12 tanh(u2(t− τ)) + α tanh(u4(t)),

u̇2(t) = −u2(t) + a21 tanh(u1(t− τ)),

u̇3(t) = −u3(t) + a12 tanh(u4(t− τ)) + α tanh(u2(t)),

u̇4(t) = −u4(t) + a21 tanh(u3(t− τ)).

First, we consider the case when a12a21β
2 < −1 holds, for example, a12 = 2, a21 = −0.55,

and α = ±2; then the expression (3.17) has the form

h(s) = s4 + 4 s3 + 2.3700 s2 − 5.922 s + 0.032.

In this case, h(s) = 0 has only one positive real root s0 = 0.882, and ω0 = 0.939, τ0 = 1.159,
h′(s0) = 10.331 > 0, p10(iω0) = 2.331 > 0. Therefore, from Theorem 3.5 it follows that the
trivial solution of system (6.1) is stable when 0 ≤ τ < τ0, and undergoes a Hopf bifurcation
when τ crosses through the critical value of the time delay τ0 = 1.159, giving rise to a stable
periodic solution, as illustrated in Figures 8(a)–(b). In a similar manner, when the parameter
values of system (1.2) satisfy −1 ≤ a12a21β

2 < 0, e.g., a12 = 2, a21 = −0.45, and α = ±2, the
expression (3.17) becomes

h(s) = s4 + 4 s3 + 3.57 s2 − 2.318 s + 0.028.

Hence, h(s) = 0 has one positive real root s0 = 0.416, and ω0 = 0.645, τ0 = 2.062, h′(s0) =
3.02 > 0, p10(iω0) = 1.196 > 0. Theorem 3.5 implies that the trivial solution of system (6.1) is
stable when 0 < τ < τ0 and undergoes a Hopf bifurcation at τ0 = 2.062, once again resulting
in a stable periodic solution, as shown in Figures 8(c)–(d).

In the case 0 ≤ a12a21β
2 ≤ 1, system (6.1) approaches the stable trivial steady state

provided that |a21αβ2| < |1 − a12a21β
2|, as illustrated in Figure 8(e). If |α| > |αc|, whereD
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Figure 8. (a)–(b) Solution of system (6.1) in the case when a12a21β
2 < −1. Parameter values are a12 = 2,

a21 = −0.55, α = ±2, and τ0 = 1.159. (a) 0 < τ = 1.1 < τ0. (b) τ = 1.2 > τ0. (c)–(d) Solution of system (6.1)
in the case when −1 ≤ a12a21β

2 < 0. Parameter values are a12 = 2, a21 = −0.45, α = ±2, and τ0 = 2.062.
(c) 0 < τ = 2 < τ0. (d) τ = 2.3 > τ0. (e)–(f) Solution of system (6.1) in the case when 0 ≤ a12a21β

2 ≤ 1.
Parameter values are a12 = 2, a21 = 0.45, and τ = 1. (e) α = 0.15. (f) α = 0.25.

αc satisfies |a21αcβ
2| = |1 − a12a21β

2|, the trivial steady state is unstable via a steady-state
bifurcation, and system (6.1) tends to one of its stable nontrivial steady states, as shown
in Figure 8(f). One should note that it is possible for this system to simultaneously have
multiple stable steady states for the same parameter values, and the solutions will approach
one of them depending on the initial conditions. For a12a21β

2 > 1, the behavior of system
(6.1) is similar to the case shown in Figure 8(f).

In order to illustrate the dynamics in the case of the weak gamma distribution kernel, we
again take f(·) = tanh(·), β = f ′(0) = 1 and rewrite the system (1.2) as

(6.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u̇1(t) = −u1(t) + a12 tanh(u2(t− τ)) + α tanh(u6(t)),

u̇2(t) = −u2(t) + a21 tanh(u1(t− τ)),

u̇3(t) = −u3(t) + a12 tanh(u4(t− τ)) + α tanh(u5(t)),

u̇4(t) = −u4(t) + a21 tanh(u3(t− τ)),

u̇5(t) = γu2(t)− γu5(t),

u̇6(t) = γu4(t)− γu6(t).
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Figure 9. (a)–(b) Solution of system (6.2) in the case when a12a21β
2 < −1. Parameter values are a12 = 2,

a21 = −0.55, α = ±2, and τ0 = 0.873. (a) 0 < τ = 0.8 < τ0. (b) τ = 1 > τ0. (c)–(d) Solution of system (6.2)
in the case when −1 ≤ a12a21β

2 < 0. Parameter values are a12 = 2, a21 = −0.45, α = ±2, and τ0 = 1.286.
(c) 0 < τ = 1.2 < τ0. (d) τ = 2 > τ0. (e)–(f) Solution of system (6.2) in the case when 0 ≤ a12a21β

2 ≤ 1.
Parameter values are a12 = 2, a21 = 0.45, and τ = 1. (e) α = 0.15. (f) α = 0.25.

In the case when a12a21β
2 < −1 (for example, a12 = 2, a21 = −0.55, and α = ±2) we find

ω0 = 0.947, τ0 = 0.873, h′(s0)p10(iω0) = 277.94 > 0. Using Theorem 5.4, one can conclude
that the trivial steady state is stable when 0 < τ < τ0 (see Figure 9(a)), and at τ = τ0 it loses
stability via a Hopf bifurcation, which results in a stable periodic solution (Figure 9(b)). In
the same way, when parameters of the system (6.2) satisfy −1 ≤ a12a21β

2 < 0—for example,
a12 = 2, a21 = −0.45, and α = ±2—we have ω0 = 0.769, τ0 = 1.286, h′(s0)p10(iω0) = 9.337 >
0. It is possible to use Theorem 5.4 to conclude a Hopf bifurcation of the trivial steady
state and a transition to a stable periodic solution at τ = τ0, as illustrated in Figures 9(c)–
(d). Figures 9(e) and (f) depict the case when 0 ≤ a12a21β

2 ≤ 1, and we observe the loss
of stability of the trivial steady state through a steady-state bifurcation, which results in a
stable nontrivial equilibrium.
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7. Discussion. In this paper we have analyzed a generalized model of coupled neural
networks with discrete and distributed time delays for a general distribution kernel. We have
analytically obtained a characteristic equation determining the stability of the trivial steady
state for any general distribution kernel. In order to further understand the dynamics of the
system, we have studied in detail the cases of the three commonly used distribution kernels,
i.e., delta, uniform, and weak gamma distributions. For each of these distributions, we have
obtained analytical conditions for stability of the null solution in terms of system parameters
and the time delays. The results suggest that stability of the zero steady state depends on the
synaptic weights, strength of the connection between the two subnetworks, and time delays in
the connection. In the case of the Dirac delta distribution kernel, the stability region of the
trivial steady state becomes larger with increasing product of the synaptic weights.

In the case of the uniformly distributed kernel, the stability properties of the trivial steady
state strongly depend on the width of the distribution. In particular, as the width of the
distribution becomes larger, the stability region shrinks and becomes an isolated bubble in
the τ -α plane. As one of the synaptic weights is increased, enlarging the distribution width
leads to a smaller region of stability, but it never becomes an isolated island.

In the case of the weak gamma distribution kernel, we have obtained analytical and nu-
merical results on the stability properties of the system and have shown that the strength of
the connection between the two subnetworks plays an important role. Increasing the coupling
reduces the size of the stability region, in which the trivial steady state is stable and no os-
cillations are possible. We have also performed direct numerical simulations that confirm our
analytical findings and illustrate the dynamics of the system inside and outside the stability
regions for all distribution kernels presented in the paper. Notably, for some parameter val-
ues, when the trivial steady state becomes unstable, the system can support stable nontrivial
steady states.

It is worth noting that while the cases of delta and weak gamma distribution exhibit
similar types of stability, in the case of the uniform distribution it is not sufficient to consider
only the mean time delay, as the width of the distribution also plays a profound role in defining
the region of stability. The combination of discrete and distributed time delays considered in
this paper shows that stability regions for wider uniform distributions are characterized by
smaller ranges of coupling strengths, which is in contrast to the results obtained in [30, 31, 34],
where the authors observed an increase in the stability region for wider uniform distributions.

Neural networks are often used to model associative memories or pattern recognition,
where information is represented by stable equilibria of the system. In order to retrieve a
memory, the system should start with an initial condition lying within a basin of attraction
of a stable steady state. If the steady state is unstable, this renders the retrieval of the
memory impossible [35]. In light of this observation, the results obtained in this paper provide
important insights into the circumstances where neural networks with discrete and distributed
time delays can support successful memory retrieval.

There are several directions in which current work can be extended to yield a better
understanding of neural systems. One possibility would be to consider a large system of
coupled neurons consisting of several subgroups with different types of delayed connections
within and between subgroups. Such systems are known to be able to support rich dynamics
including chimera states, where some nodes of the network have coherent dynamics while
others remain chaotic. The question of how such dynamics can be affected by the combinationD
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of discrete and distributed delays remains an open problem. Another practically important
issue is that of dynamic synchronization in systems with time-delayed connections. We have
recently developed a formalism for analysis of synchronization in systems with distributed
delay coupling [32], and it would be insightful to generalize this approach to systems that
include both discrete and distributed time delays between nodes.

Efficient pattern recognition relies on the presence of multistability in the system [48]
and, hence, requires a careful analysis of the basins of attraction of different steady states.
Understanding the structure of these coexisting attractors in systems with discrete and dis-
tributed delays would explain how such neural networks perform the complex task of pattern
recognition.
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