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Real-time dynamic substructuring is a new component testing method for simulating the
dynamics of complex engineering systems. The physical component is tested within a
computer-generated ‘virtual’ environment using real-time control techniques. Delays in
communication which occur between the component and the virtual environment can
potentially destabilize the simulation. In this paper, the mechanism for this instability is
examined using a beam-oscillator system as a case study.We will show how the stability and
the amplitude response of the system change with the time delay. Numerical simulations of
the reduced system as well as a full-delayed beam equation are performed. A series of
experimental tests is carried out on a beam-oscillator system. Comparison of the theoretical,
numerical and experimental results is presented and these agree remarkably well.
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1. Introduction

Themainmethods of testing the response of the structures under external loads and
excitations (e.g. earthquake testing techniques) are shaking tables, pseudo-
dynamic testing and real-time dynamic substructuring (Blakeborough et al. 2001;
Williams&Blakeborough 2001). Everymethod has its advantages and limitations.
In particular, shaking tables are usually expensive to build and operate, and the
structures have to be scaled down. This reduces the understanding of the structural
response as scaling down the structures leads to a non-commensurate change of
material properties of the original system. Pseudo-dynamic testing is not done in
real time and this leads to lengthy and costly experiments.

On the other hand, recent advances in analytical and numerical methods have
led to further development of real-time dynamic substructuring. The structure to
be tested or emulated is first divided into two parts. One part is placed in the
laboratory and another one is modelled numerically. The parts are usually
connected by electric or hydraulic actuators, which introduce the interface forces
between computational and experimental parts. The actuators act as a transfer
system and are designed to follow appropriate output displacements calculated
by the numerical model (Wallace et al. 2005; Kyrychko et al. 2006).
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Y. N. Kyrychko et al.1510
The main advantage of this technique is that experiments are not very
expensive to build, they run in real time, and are repeatable. This technique also
allows parametric variation of numerical model parameters and can be applied not
only to test the structural response under an earthquake, but also to test parts of
machinery, cars, etc. (Williams & Blakeborough 2001). Also in this way, the
numerical, analytical and experimental techniques are tied together, and this
helps to better understand the behaviour of the model under consideration.
Potentially, real-time dynamic substructuring can be performed online in different
places, even in different countries.

The main challenge is to ensure that the substructured system behaves in the
same way as the emulated system. The transfer systems typically introduce a
time lag or delay into the system, and this effect must be accounted for while
performing a real-time dynamic substructuring experiment. Recently, it was
suggested that the way to analytically model a dynamic substructuring
experiment is to use delay differential equations (DDEs; see, for instance,
Wallace et al. 2005; Kyrychko et al. 2006). Thus, the system is modelled more
realistically, and therefore should lead to more reliable results. Unfortunately,
time delay can lead to a complete destabilization of the system but artificial
variation of the delay time may help one to change from an unstable to a stable
regime. Owing to the infinite dimensionality of the DDEs, inclusion of time
delays into the equation of motion makes analysis more difficult and challenging.
The theory of the equations with time-delays is an active topic of research and
some recent developments can be found in, for example, Hu & Wang (2002),
Adimy et al. (2006) and Laurent et al. (2006).

In this paper, we introduce a system which consists of a clamped-free
cantilever beam, with a mass-spring-damper (MSD) attached to the free end of
the beam. There are many applications of such system, including vibrations of
elastic arms and their suppression, robotics, vibrations of vehicle on a
compressed rail, etc. An analytical and experimental investigation of beams
carrying elastically mounted masses was performed by Ercoli & Laura (1987).
Rossi et al. (1993) have found the exact solution of the free vibrations of
Timoshenko beams carrying elastically mounted masses. Gürgöze has derived
the frequency equation for the cantilever beam with attached tip mass and a
spring mass (Gürgöze 1996) and studied the sensitivity of the eigenvalues of a
viscously damped cantilever beam carrying a tip mass (Gürgöze 1998). The
question of controlling hybrid experiments in which only some of the state
variables are accessible for measurements, has been investigated by Sieber &
Krauskopf (in press). Our stability findings will provide a background for
implementing this control technique in a real experiment.

We propose to implement real-time dynamic substructuring in this system by
modelling a MSD connected via a transfer system to the beam placed in the
laboratory, with the force being generated by an electrically driven actuator.
Mathematically, the system will be modelled using partial delay differential
equations (PDDEs). We believe that this is the first ever attempt to use PDDEs
to represent a real-time dynamic substructuring experiment. It should be noted
that the theory of PDDEs with applications to engineering systems is at its early
stage in general, and neutral PDDEs in particular. The qualitative theory of
partial functional differential equations with emphasis on reaction–diffusion
equations with delay can be found in Wu (1996).
Proc. R. Soc. A (2007)



1511Beam mass-spring-damper system
After reducing the system to the finite mode truncation of the beam, we
analyse the dynamics of the model using the method of multiple scales, and
derive the amplitude equation for the resonant case. The numerical simulations
of the finite mode truncation of the delayed beam equation are performed and
subsequently compared with the experimental results. We present the
experimental response of the beam to the excitation with different time delays,
which show periodic and quasi-periodic behaviour. Also, experimental and
theoretical amplitude response diagrams are compared.

Section 2 introduces the equation of motion of the beam-MSD system. In §3 the
multiple scales method is used to derive the amplitude response relation. Section 4 is
devoted to the stability analysis of the neutral DDE, and stability regions in the
parameter plane are identified. The numerical simulations of the delayed system are
presented in §5. In §6 the experimental results are given and compared with the
analytical and numerical findings. The paper concludes with the summary in §7.
2. Analytical formulation of the problem

The system under investigation is a cantilever steel beam clamped at one end and
free at the other with a MSD attached to the free end of the beam. The equations
of motion of the coupled system can be written as

M
v2u

vt2
ðx; tÞCC

vu

vt
ðx; tÞCKuðx; tÞ

� �
dðxKLÞ

Cm
v2u

vt2
ðx; tÞCEI

v4u

vx4
ðx; tÞZA sinðutÞdðxKLÞ; ð2:1Þ

where x is the coordinate along the beam, t is the time, L denotes the undeformed
length of the beam and m is the mass. Furthermore, d is the Dirac delta function,
EI is constant, M, C and K are the mass, damping and stiffness coefficients of the
oscillator, respectively. A MSD is attached to the free end of the beam. An
external force is acting on the MSD with amplitude A and frequency u, which in
turn excites the beam.

The emulated, or real, system is divided and the MSD is taken to be the
numerical model while the beam is constructed in the laboratory. The two parts
are connected via an electrical actuator. This means that there is a delay between
the time a signal is sent and the moment the displacement of the beam is received
back. The schematic description of the model is presented in figure 1, and the
details of the corresponding experimental loop are shown in figure 2. Therefore,
the modified equation of motion has the form

M
v2u

vt2
ðx; tÞCC

vu

vt
ðx; tÞCKuðx; tÞ

� �
dðxKLÞ

Cm
v2u

vt2
ðx; tKtÞCEI

v4u

vx4
ðx; tKtÞZA sinðutÞdðxKLÞ; ð2:2Þ

where t is the time delay (assumed to be constant).
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Figure 1. Schematic description of the coupled beam-MSD system.
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To simplify equation (2.2), one can introduce the following non-dimensional
quantities:

~t Zu0t; ~x Z
x

L
; ~tZu0t; u2

0 Z
EI

mL4
:

Under this rescaling and omitting tildes, equation (2.2) can be rewritten in the
form

v2u

vt2
ðx; tÞC2z

vu

vt
ðx; tÞCk2uðx; tÞ

� �
dðxK1Þ

Cm
v2u

vt2
ðx; tKtÞCm

v4u

vx4
ðx; tKtÞZa sinðutÞdðxK1Þ; ð2:3Þ
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1513Beam mass-spring-damper system
where

zZ
C

2Mu0

; kZ

ffiffiffiffiffiffiffiffiffiffiffi
K

Mu2
0

s
; mZ

m

M
and aZ

A

Mu2
0

:

An approximate series solution of equation (2.3) can be taken to be in the form
(Gürgöze 1998)

uðx; tÞZ
Xn
mZ1

umðxÞqmðtÞ;

where um(x) are the orthogonal eigenfunctions of the clamped-free beam without
an MSD, normalized with respect to the mass density. Functions qm(t) represent
the unknown time-dependent generalized coordinates. Upon substituting the
expansion of the solution u(x, t) into equation (2.3), multiplying both sides by the
k th eigenfunction uk(x) and integrating over the rescaled beam length, we obtain
the set of DDEs

ukð1Þ
Xn
mZ1

umð1Þ€qmðtÞC2zukð1Þ
Xn
mZ1

umð1Þ _qmðtÞCk2ukð1Þ
Xn
mZ1

umð1ÞqmðtÞ

Cm€qkðtKtÞCmb4kqkðtKtÞZaukð1Þsin ut; k Z 1;.;n; ð2:4Þ
where the eigenvalues bi are solutions of the transcendental equation

cosh bicos bi C1Z 0; i Z 1; 2;.;

with b1z1.8751.
Assuming that the dynamics of the beam is well represented by that of its first

mode, we can reduce the system (2.4) to one second-order neutral DDE (as it
involves time-delayed highest derivative)

u2
1ð1Þ€q1ðtÞC2zu2

1ð1Þ _q1ðtÞCk2u2
1ð1Þq1ðtÞCm€q1ðtKtÞCmb41q1ðtKtÞZaukð1Þsinut;

ð2:5Þ
where

u1ðxÞZcoshb1xKcosb1xKg1ðsinhb1xKsinb1xÞ; g1Z
coshb1Ccosb1
sinhb1Csinb1

:

We can further recast equation (2.5) as

€q1ðtÞC2z _q1ðtÞCk2q1ðtÞCm�€q1ðtKtÞCyq1ðtKtÞZa�sinut; ð2:6Þ
where

m�Z
m

u2
1ð1Þ

; yZm�b41; and a�Z
a

u1ð1Þ
:

Equation (2.6) is the equation whose properties will be investigated in this paper.
3. Perturbation analysis

In order to analyse the primary resonance of the neutral delay equation (2.6)
using the method of multiple scales (Nayfeh & Pai 2004), we confine the study to
the case of small damping, weak feedback and soft excitation. This means that
Proc. R. Soc. A (2007)
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we assume the following:

zZOð3Þ; m� ZOð3Þ; a� ZOð3Þ; yZOð3Þ; uKkZ 3s and sZOð1Þ;

where 3 is small and s is a detuning parameter. We look for the solution as a two-
scale expansion

qðtÞZ n0ðT0;T1ÞC3n1ðT0;T1ÞCOð32Þ; ð3:1Þ

where T0Zt and T1Z3t. We use the following differential operators:

d

dt
Z

v

vT0

C3
v

vT1

hD0C3D1 COð32Þ; d2

dt2
ZD2

0 C23D0D1 COð32Þ: ð3:2Þ

Substituting expansion (3.1) into (2.6) and using the differential operators
(3.2) gives (by equating powers of 3) a set of linear partial DDEs. The zeroth and
first-order approximations are

D2
0n0ðT0;T1ÞCk2n0ðT0;T1ÞZ 0; ð3:3Þ

and

D2
0n1ðT0;T1ÞCk2n1ðT0;T1ÞZK2D0D1n0ðT0;T1ÞK2zD0n0ðT0;T1Þ

Km�D2
0n0ðT0Kt;T1ÞKyn0ðT0Kt;T1Þ

Ca�sinðkT0 CsT1Þ: ð3:4Þ
Solving equation (3.3), we have

n0ðT0;T1ÞZAðT1ÞeikT0 Cc:c:; ð3:5Þ
where c.c. stands for complex conjugate, and

AðT1ÞZ
1

2
aðT1ÞeikbðT1Þ: ð3:6Þ

Using n0 from equation (3.5) in (3.4) gives

D2
0n1ðT0;T1ÞCk2n1ðT0;T1ÞZK2ikD1Ae

ikT0K2zkiAeikT0KyAeikT0eKitk

Ck2m�AeKitkeikT0 C
a�

2
eisT1eikT0 Cc:c: ð3:7Þ

To eliminate the secular terms in equation (3.7), we set

K2ikðD1 CzÞACk2m�AðT1ÞeKitkKyAeKitk C
a�

2
eisT1 Z 0:

Substituting equation (3.6) into the last expression and separating into the
real and imaginary parts gives

D1aZK
1

2k
m�k2a sin ktKa�sinðsT1KbkÞKya sin ktC2zka
� �

;

aD1bZK
1

2k2
m�ak2cos ktKya cos ktCa�cosðsT1KbkÞ
� �

:

Proc. R. Soc. A (2007)



am
pl

itu
de

0.05

0.03

0.01

0.2
0.3

0.4

w
0.5

0.6
0.7 0

0.2
0.4

0.6
0.8

1.0

Figure 3. Amplitude response as a function of time delay and frequency of the perturbation.
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Moreover, if we introduce a phase 4 such that 4ZsT1Kb(T1)k, then the
equations governing the amplitude a(T1) and the phase 4(T1) take the form

D1aZ
1

2k
ðy sin ktKm�k2sin ktK2zkÞaCa�

2k
sin 4;

aD14Z
1

2k2
ðsk2 Cy cos ktKm�k2cos ktÞaK a�

2k2
cos 4: ð3:8Þ

Obviously, the presence of time delay t in the original equation modifies the
averaged equations by adding additional terms.

Steady-state solutions of equation (2.6) for the primary resonance correspond
to the fixed points of equations (3.8) and these can be obtained by setting D1aZ0
and D14Z0. This leads to a set of algebraic equations (assuming as0)

ðy sin ktKm�k2sin ktK2zkÞaCa�sin 4Z 0;

ðsk2Cy cos ktKm�k2cos ktÞaKa�cos 4Z 0:

From the last system of equations, we can derive the frequency response
relations between the amplitude a and s and the phase 4 and s,

aZ
a�

½ðy sin ktKm�k2sin ktK2zkÞ2 Cðsk2Cy cos ktKm�k2cos ktÞ2�1=2

tan 4ZK
ðy sin ktKm�k2sin ktK2zkÞ
ðsk2Cy cos ktKm�k2cos ktÞ : ð3:9Þ

These expressions will be used later when comparing analytical and experimental
amplitude responses.

The extreme values of the amplitude are

aextr Z
a�

yKm�k2Gk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2k2 C4z2

p ; ð3:10Þ

and they are attained at

textrm Z arctan K
2z

sk

� �
Cmp; mZ 1; 2;.:
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Figure 3 illustrates the amplitude response as given by the expression (3.9) for
different delay times. One can observe that there are two nearby perturbation
frequencies that exert the largest response of the system. In the vicinity of those
two frequencies, which correspond to the absolute maxima of the response, the
system also has peaks in the amplitude response whose position depends on the
perturbation frequency and time delay as given by expression (3.10).
4. Stability analysis

Returning to equation (2.6), the characteristic equation for the trivial solution
has the form

l2C2zlCk2 Cm�l2eKltCyeKlt Z 0:

Purely imaginary eigenvalues occur when lZGij, js0 with

Kj2 C2izjCk2Km�j2eKijtCyeKijt Z 0:

Separating the last equation into the real and imaginary parts gives

jGZ
1

1Km�2 ð2z2KkCm�yÞG
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2z2KkCm�yÞ2Kðk4Ky2Þð1Km�2Þ

q� �
; ð4:1Þ

and

tZ
1

jG
arccos

j2
GKk2

yKm�j2
G

G2pn

" #
; n Z 1; 2;.:

Figure 4 shows the stability boundary in the parameter plane of the time delay
t and the mass ratio m� for different values of k and z. The values of m� (i.e. the
mass ratio of mass of the beam to the mass of the MSD) do not exceed 1 as for
jm�jO1 the trivial steady state is unstable for any delay time (Kyrychko et al.
2006). One can note that the increase of the spring stiffness leads to the shift of
the stability boundary to the left, and also to a slight decrease in the critical
value of m�. The stable region becomes smaller and narrower. On the other hand,
when the damping coefficient increases, the horizontal position of the stability
boundary remains unchanged, while both the peaks and the bottoms on the curve
grow. These changes in the stability boundary provide important information
needed for the design of a stable experiment. Moreover, they indicate how
varying the values of parameters of the numerical model can stabilize the system.

For a detailed description of the stability switches and an extensive stability
study of neutral DDEs, the reader is referred to Kyrychko et al. (2006).
5. Numerical simulations

This section is devoted to the numerical simulations of the neutral delay equation
(2.6) and then the system (2.4). Equation (2.6) was discretized with an explicit
finite difference scheme; to improve numerical stability of the scheme, the
damping term was approximated by central differences. In all simulations, the
values of the damping coefficient z, rescaled stiffness of the oscillator k and
Proc. R. Soc. A (2007)



(a)

1.0

0.5

0 2.5 5.0

m*

0

(b)

2.5 5.0 0

(c)

2.5 5.0

Figure 4. Stability boundary: (a) kZ5.4, zZ0.003; (b) kZ8, zZ0.003; (c) kZ5.4, zZ0.153. Black
region is a stable region and area above it is an unstable region.

0 10 20

– 0.04

0

0.04

t

q1

(a)

– 0.05 0  0.05

– 0.05

0

0.05

q1(t)

q 1(
t–

  
)

(b)

Figure 5. Solution q1(t) of equation (2.6) with delay time tZ0.8. (a) Temporal dynamics. (b) Phase
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the rescaled ratio of mass of the beam to the mass of the MSD m� were taken to be
constant. The values used in figures 5–7 are zZ0.003, kZ5.4 and m�Z0.6. In
principle, these values can vary, since the parameters of the MSD can easily be
changed as they are represented by a numerical model in the experiment. We
have tried different combinations of parameters in our numerical simulations and
the results are robust and qualitatively similar to those presented in this paper.
The equation was forced with an amplitude a�Z1 and frequency uZ5. The time
delay was varied, starting with a value of tZ0.8. As the trivial steady state of
the unforced equation (2.6) is linearly asymptotically stable, external forcing
transforms it into a stable periodic orbit. The result of this simulation is shown in
figure 5 together with a corresponding phase plane.

For a larger value of the time delay tZ0.9, the stability of the steady state is
lost and the solution develops into a quasi-periodic orbit shown in figure 6.
Figure 7 illustrates the solution of equation (2.6) when the time delay is increased
further. The solution is unstable and is characterized by a fast growth of the
amplitude of oscillations.
Proc. R. Soc. A (2007)



– 0.1 0 0.1
– 0.1

0

0.1

q1(t)

q 1(
t–

  
)

(b)

0 10 20

– 0.05

0

0.05

t

q1

(a)

Figure 6. Solution q1(t) of equation (2.6) with delay time tZ0.9. (a) Temporal dynamics. (b) Phase
portrait in the plane (q1(t), q1(tKt)).

0 10 20
–1

0

1

t

q1

(a)

–0.5 0 0.5

–0.5

0

0.5

q1(t)

q 1(
t–

  
)

(b)

Figure 7. Solution q1(t) of equation (2.6) with delay time tZ1.2. (a) Temporal dynamics. (b) Phase
portrait in the plane (q1(t), q1(tKt)).

Y. N. Kyrychko et al.1518
To demonstrate the full spatio-temporal dynamics of the beam-MSD system
under external excitation, we solve the system (2.4) numerically. For illustration
purposes, the number of modes in the expansion is taken to be three. One end of
the beam is fixed, while the MSD is attached to the other one. The applied
external forcing makes the free end of the beam vibrate. In figure 8a, the value of
the delay time is tZ0.8. One can observe the influence of the higher beam modes
which lead to a non-monotonicity of the profile. For tZ0.9, the beam profile
remains qualitatively similar but the quasi-periodic nature of the temporal
component induces a complex dynamics as shown in figure 8b.
6. Experimental set-up

In order to confirm our analytical investigations, real-time dynamic substructuring
tests are carried out. As discussed earlier, the steel beam is taken to be the physical
substructure part, and theMSD ismodelled numerically. The numericalmodel will
be used to calculate the displacement at the interface due to external forcing. This
displacement is then applied to the beam in real time using an electro-mechanical
Proc. R. Soc. A (2007)
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actuator. The beam is mounted on the heavy frame to reduce noise and other
unwanted effects. One end of the beam is screwed to the frame and an actuator is
mounted on the free end of the beam. The force acting on the beam is measured
using a load cell, a linear variable differential transformer (LVDT) displacement
transducer is used to track and control the movements of the actuator and a digital
incremental encoder records the vertical displacement of the beam. In order to
implement a real-time testing, we use a dSpace DS1104 RD Controller board and
MATLAB/Simulink are used to program a numerical model.

The beam has a fixed length of 1 m with width 5 cm and thickness 5 mm.
The mass, stiffness and damping of the numerical model will be varied during the
experiment. First, we take MZ5 kg, CZ1 kg sK1 and KZ3500 N mK1. The
amplitude of the external excitation is AZ6 N and frequency is set to be 2 Hz. In
figure 9, the amplitude response of the system is shown. The solid line represents
an analytical amplitude and the stars are experimental points. Figure 9a,b is
plotted for two different time delays, namely, tZ0.017 and 0.095 s. The original
time delay in the system is 0.017 s. We can see from figure 9b that increasing the
Proc. R. Soc. A (2007)
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time delay decreases the peak amplitude by approximately 30%. The
experimental points closely follow the theoretical curve which shows a very
good accuracy of the analytical predictions.

For the experimental results shown in figures 10–12, we fix all parameters of the
system and increase the time delay. The external force is applied to the numerical
model and then the excitation is sent to the free end of the beam. Figure 10 shows
periodic oscillations of the beam displacement at the free end for a small time
delay. As the time delay is increased, the system undergoes a transition into quasi-
periodic motion due to the loss of stability of the trivial steady state as shown in
figure 11a. These oscillations are robust against external perturbation, i.e. they do
not change to periodic motion if an additional disturbance is applied at the free
end of the beam. In this case, the dynamics is characterized by large excursions in
the phase space (figure 11b). As the time delay is increased further, the quasi-
periodic oscillations persist but their amplitude grows. This results in very large
transversal displacements of the beam and eventually the system becomes
unstable. This regime is illustrated in figure 12. Comparing the numerical
simulations presented in figures 5–7 with the experimental results of this section, it
Proc. R. Soc. A (2007)



u(
L

, t
– 

  )
 (

m
)

u(L, t) (m)

(b)

–0.02 0 0.02

– 0.02

0

0.02

0 2 4 6

–0.02

0

0.02

t (s)

u(
L

, t
) 

(m
)

(a)

Figure 12. Experimental displacement of the free end of the beam for tZ0.112 s. (a) Temporal
dynamics. (b) Phase portrait in the plane (u(L, t), u(L, tKt)).
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Figure 13. Snapshots of the Fourier spectrum of the experimental displacement of the free end of
the beam for different delays. (a) tZ0.067 s and (b) tZ0.072 s.
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is worth noting that even the first-mode approximation of the full model captures
the essential dynamics of the system. Periodic, quasi-periodic and unstable
regimes occur in numerical simulations at the values of time delay (in original non-
rescaled time units) tz0.07, 0.0787 and 0.105 s when compared with experimental
values of tz0.067, 0.072 and 0.112 s, respectively.

In figure 13, we have plotted the Fourier transform of the experimental signals
given in figures 10 and 11. In figure 13a, when tz0.067 s, we observe one main
frequency in the Fourier spectrum that corresponds to the frequency of external
excitation of 2 Hz. For a larger time delay tz0.072 s, there are two frequencies
present in the spectrum as shown in figure 13b. One of them at 2 Hz is a forcing
frequency, and the other at uz4.59 Hz (analytical value uz4.65 Hz) is the Hopf
frequency that appears when a trivial steady state loses its stability for larger
time delay. The Fourier transform of the signal presented in figure 12 is
qualitatively similar to the one plotted in figure 13b.
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7. Conclusions

This paper deals with modelling of the real-time dynamic experiment of a spatially
extended system. The system consists of a steel beam clamped at one end and a
MSD attached to the free end. This system has been substructured by taking the
beam to be the physical structure and a MSD replaced by its numerical
counterpart. The transfer system used to connect real and ‘virtual’ parts is an
actuator which introduces delays into the experiment. The model equations of
motion are given by a partial differential equation with time delay. It is well known
that time delays induce instability, and analytical treatment of the system allows
one to find the regions of system stability and their variation depending on the
parameters of the MSD. The significant advantage of this experimental technique
is that these parameters can easily be varied as they are defined in the numerical
part of the experiment. Time delay is an unwanted effect in hybrid testing
experiments. However, the fact that it can be varied during the experiment allows
one to switch between different stability regions. The stability areas can be very
small and narrow making them harder to find when running an experiment, but
the use of the theoretical stability predictions gives insights into their location.

Using the method of multiple scales, we find an amplitude response relation of
the system depending on the time delay. This is then verified experimentally giving
excellent agreement. We observe that changing the time delay helps to reduce the
amplitude response peaks. Numerical simulations of an externally forced system
demonstrate periodic and quasi-periodic behaviour in different parameter regions.
This again gives good correspondence to the experimental observations.

The analytical, numerical and experimental results for the beam-MSD system
considered in this paper provide important information on the behavioural changes
in system dynamics with respect to time delays that are always present in the real-
time dynamic experiments. These findings provide much needed insights into the
problems and their solutions in the case of large-scale experiments.
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