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Cross-protection, which refers to a process whereby artificially inoculating a plant with a mild strain
provides protection against a more aggressive isolate of the virus, is known to be an effective tool of
disease control in plants. In this paper we derive and analyse a new mathematical model of the inter-
actions between two competing viruses with particular account for RNA interference. Our results show
that co-infection of the host can either increase or decrease the potency of individual infections de-
pending on the levels of cross-protection or cross-enhancement between different viruses. Analytical and
numerical bifurcation analyses are employed to investigate the stability of all steady states of the model
in order to identify parameter regions where the system exhibits synergistic or antagonistic behaviour
between viral strains, as well as different types of host recovery. We show that not only viral attributes
but also the propagating component of RNA-interference in plants can play an important role in de-
termining the dynamics.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

With a projected number of 9.7 billion people by the year 2050,
the world population and its continuing growth is heavily de-
pendent on a steady agricultural output in order to provide a
sustainable food source. In light of the agricultural stagnation
experienced in the last decade, further fuelled by the public op-
position to controversial newer practices (Kuntz, 2014), securing
an adequate and reliable food source has never been more re-
levant. It is estimated that up to 40% of global crop production is
lost due to pathogens, animals and weeds (Savary et al., 2012). This
inevitably led to the development of different agricultural prac-
tices including the use of various pesticides and ultimately genetic
engineering. Although significant efforts are made to increase crop
yield and with a good degree of success, perhaps, a more effective
or environmentally safe way to address this problem hides in
).
better investigating and understanding methods that are currently
employed. In this respect, mathematical models can provide in-
valuable insights into the dynamics of plant infections and allow
better control over agricultural losses.

Similar to the studies of infectious disease in humans, mathe-
matical modelling allows one to investigate how an infection
propagates within a population of plants. As such, the interactions
between healthy and infected plants can usually be described by
empirically derived relationships between plants and an insect
population which acts as the disease vector and is comparable to
epidemic models of mosquito-borne diseases in humans (Purcell
and Almeida, 2005). Several mathematical models have also ana-
lysed the efficiency of simpler and more traditional methods of
fighting plant infection, such as roguing and replanting, in which
any plants afflicted by the disease are simply removed and re-
placed by other healthy plants (Chan and Jeger, 1994; van den
Bosch and de Roos, 1996; Zhang et al., 2012).

In the 1970s, the increase of computing power allowed the
development of models capable of simulating vector population
and weather conditions (Gutierrez et al., 1974; Frazer, 1977; Kirtani

www.sciencedirect.com/science/journal/00225193
www.elsevier.com/locate/yjtbi
http://dx.doi.org/10.1016/j.jtbi.2016.05.018
http://dx.doi.org/10.1016/j.jtbi.2016.05.018
http://dx.doi.org/10.1016/j.jtbi.2016.05.018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2016.05.018&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2016.05.018&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2016.05.018&domain=pdf
mailto:k.blyuss@sussex.ac.uk
http://dx.doi.org/10.1016/j.jtbi.2016.05.018


G. Neofytou et al. / Journal of Theoretical Biology 403 (2016) 129–142130
and Sasaba, 1978; Irwin et al., 2000). Despite their simple struc-
ture, these models enabled the integration of various disease
control options, thus creating a framework where such methods
could be analysed and evaluated. Madden et al. (2000) have per-
formed a detailed analysis of the transitional dynamics of plant
diseases taking into account the effects of vector emigration. De-
pending on the way they are transmitted, plant viruses are clas-
sified as non-persistent, semi-persistent and persistent, and
Madden et al. (2000) demonstrated which of these three classes
were more susceptible to changes in vector longevity and in-
oculation, acquisition rates and vector mobility. Subsequent
models have looked into the transmission dynamics of a pair of
“helper” and helper-dependent viruses. Zhang et al. (2000) pro-
vided insights into the commonly observed phenomenon where
infecting a host with only a helper virus would cause minimal or
no damage to the host, whereas, additionally introducing the
helper-dependent virus would produce far more devastating
symptoms.

In the last few decades it has been discovered that viruses
employ a wide antigenic diversity as an effective strategy to sur-
vive within the host population (Frank, 2002; Lipsitch and O'Ha-
gan, 2007). By employing a variety of antigenic ally distinct strains,
viruses are able to adapt sufficiently fast to evade the host's im-
mune system. Antigenic variation is known to be effective for a
large number of pathogens affecting humans, including malaria
(Gupta et al., 1994; Ferreira et al., 2004), meningitis (Gupta et al.,
1996; Gupta and Anderson, 1999), dengue fever (Gog and Grenfell,
2002) and influenza (Ferguson et al., 2003). The interactions be-
tween multiple strains are generally classified as either an ecolo-
gical interference, or an immunological interference. The first type
of interactions describes a simple case where individual hosts can
only be infected with a single strain, and subsequently the are
removed from the population susceptible to other strains (Levin
et al., 2004). Immunological interference corresponds to situations
where infection with one strain may cause partial or full immunity
to the remaining strains (Gupta and Anderson, 1999), or some-
times it can even augment the susceptibility of the host and the
transmissibility of other strains (Recker et al., 2009). To better
understand the dynamics of multi-strain diseases, a large number
of mathematical models have been developed that can be divided
into individual-based and equation-based models. In individual-
based models, all pathogen strains are treated as individuals in-
teracting according to a fixed set of rules (Ferguson et al., 2003;
Buckee et al., 2004; Buckee and Gupta, 2010; Cisternas et al.,
2004), whereas in equation-based models, hosts are categorised
either according to preceding exposure to individual strains (An-
dreasen et al., 1997; Gomes et al., 2002), or based on their im-
munity to specific strains (Gog and Grenfell, 2002; Kryazhimskiy
et al., 2007).

One very efficient way of protecting a plant against a disease
known as cross-protection, consists of the process by which prior
infection of the plant with a primary virus can prevent or interfere
with the subsequent infection with a secondary virus of the same
family (Zhou and Zhou, 2012). In such a case, deliberately infecting
the plant with a less virulent strain can offer protection against a
much more virulent isolate of the virus. Although this natural
phenomenon was first demonstrated more than 80 years ago, its
precise mechanisms are still not fully understood, and several
hypotheses have been put forward to explain how cross-protection
works (Pennazio et al., 2001). It has been suggested that the pri-
mary infection could trigger the formation of specific antibodies
which could prevent the subsequent infection by a similar virus.
Another possibility is the coat-protein mediated resistance that is
usually expressed by transgenic plants encoding viral coat-pro-
teins. However, in the case of competing viral strains, the coat
protein of the primary strain can also interfere with the
encapsidation process of the secondary strain, thus rendering it
ineffective for cell-to-cell transmission (Beachy, 1999; Bend-
ahmane et al., 1997). Additionally, if the two viruses are closely
related they could very well be competing for the same compo-
nents which are essential for viral replication, or that the occu-
pation of replication sites by the primary strain could cause a
spatial exclusion of the secondary strain (Lee et al., 2005; Take-
shita et al., 2004; Gal-On and Shiboleth, 2006).

A very promising explanation of cross-protection can be found
in the biological pathway known as a post-transcriptional gene si-
lencing, or RNA-interference (RNAi) (Ratcliff et al., 1999). This me-
chanism is characterised by the ability of cells to recognise and
degrade the messenger RNA of invading RNA viruses or cause the
methylation of target gene sequences and the genome of DNA
viruses (Waterhouse et al., 1999; Escobar and Dandekar, 2003;
Sijen and Kooter, 2000). This process is mediated by different
lengths of double stranded RNAs (dsRNA) that are generated by an
inverted-repeat transgene or an invading virus during its replica-
tion process. A very simple description of the core pathway is as
follows. The presence of transgenic or viral dsRNA triggers an
immune response within the host cell, whereby the foreign RNA is
targeted by specialised enzymes called dicers (DLC) which cleave it
into short 21–26 nucleotide long molecules. These molecules,
named short interfering RNAs (siRNA) or microRNA (miRNA) can
then be used to assemble a special protein complex called RNA-
induced silencing complex (RISC) which has the capacity to re-
cognise and degrade RNAs containing complementary sequences.
By doing so, viral replication is prohibited, and, therefore, it pre-
vents the spread of infection (Costa et al., 2013; Hammond et al.,
2000; Bernstein et al., 2001). It is very important to note that the
siRNA can also be transported into neighbouring cells, thus acting
as a mobile warning signal that can fortify and prepare cells by
allowing them to express the antiviral components even before
they become infected (Zhang et al., 2012; Wassenegger, 2000;
Zhang and Ruvkun, 2012).

The ability to induce a propagating warning signal can most
likely be attributed to the evolutionary race between the plant and
the viruses that afflict them, as it has been demonstrated that
viruses can suppress different stages of the RNA-interference
pathway (Costa et al., 2013; Pumplin and Voinnet, 2013; Raja et al.,
2008). In some cases the virus can prevent degradation of its
genome by either suppressing cellular innate immune response or
by simply managing to successfully spread before being detected.
The latter can be achieved by moving into another cell before a
specific threshold of viral dsRNA has accumulated, and one that is
necessary in order for the cell to initiate a response. In other cases,
the virus can only suppress the propagating warning signal,
therefore, depending on which component of the immune re-
sponse is targeted by viral suppressors, one can expect a different
phenotype of recovery.

It is important to note that in the studies of plant pathology,
single-host interactions between different viruses are highly im-
portant as they can often produce distinct types of host immune
response. Therefore while some viral pairs are able to facilitate
each other and engage in a synergistic relationship others will
compete with each other for dominance (Malapi-Nelson et al.,
2009; Wege and Siegmund, 2007; Pruss et al., 1997). Contrarily to
cross-protection, enhanced symptom display occurs when plants
co-infected with two or multiple viral strains experience symp-
toms that are more severe to the single-strain example and often
exhibit an elevated viral load for one or multiple viruses. There-
fore, depending on the level of competition between the viruses
and the corresponding immune response a different degree of
cross-protection or cross-enhancement can be observed.

It is most unlikely that any synergistic or antagonistic outcome
of a viral co-infection in a single host, associated with cross-



Fig. 1. A diagram of interactions between two competing viruses and the corre-
sponding plant immune response. Here S denotes the susceptible cells, I1,2 and W1,2
are the infected and the warned cells for each virus, respectively. Warned cells
subsequently infected by a primary or secondary virus are denoted by H1 and H2.
Finally, W12 denotes the super-protected cells immune to both viruses. The arrows
indicate the rates of transitions from one category of cells to another.
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protection or enhanced symptom display, can be fully explained by
one single mechanism. This is due to the wide variety of plants
with an immune system that is highly specific to the plant, and the
fact that different viruses can often produce unique patterns of
interactions (Gal-On and Shiboleth, 2006; Roossinck, 2005; Take-
shita, 2005; Bergua et al., 2014). However, if one takes different
hypotheses into consideration, depending on the sequence
homology of the two viruses and their specificity, one of them
could inadvertently trigger an immune response or establish a set
of host conditions that could either prevent the secondary infec-
tion from taking place or allow it to manifest more aggressively
(Malapi-Nelson et al., 2009; Chowda Reddy et al., 2012).

Current mathematical models of plant virus epidemics with
cross-protection have focussed primarily on the transmission dy-
namics between populations of healthy plants and plants that are
infected with one or multiple viral strains (Zhang et al., 2000;
Zhang and Holt, 2001; Jeger et al., 2011). By studying the me-
chanisms of cross-protection on a cellular level, one might achieve
a better understanding of the interactions between two viral
strains and a single host. In this paper we derive and analyse a
model of a plant disease within a single host with particular ac-
count for RNAi-mediated cross-protection. We will show that the
model can provide a good qualitative description of the plant's
immune response to a viral co-infection, and that it provides a
framework in which RNAi can account for both viral synergism
and antagonism resulting in cross-protection. A potential appli-
cation of the model lies in better understanding the efficacy of
treating plants against viral diseases by means of the introduction
of specific viral strains or genetically modified viruses.

The outline of this paper is as follows. In the next section we
describe in detail the main biological assumptions and derive a
corresponding mathematical model of plant immune response. In
Section 3 we identify all steady states of the model together with
conditions for their biological feasibility and stability. Section 4 is
devoted to numerical stability analysis of these steady states, as
well as numerical simulations of the model to illustrate different
types of dynamical behaviour. The paper concludes with the dis-
cussion of results and open problems.
2. Model derivation

To investigate the dynamics of biological interactions taking
place during a co-infection of a plant with two viruses, we divide
the total population of plant cells into the following compart-
ments: healthy (or, susceptible) cells S(t), populations ( )I t1 and ( )I t2

of cells infectious with virus 1 or virus 2, cells ( )W t1 and ( )W t2 that
are immune to viruses 1 and 2, cells ( )H t1 and ( )H t2 that have
recovered from a primary infection with one of the virus and are
currently infectious with the other virus, and finally, the popula-
tion of super-protected cells ( )W t12 that are immune to both
viruses. Transitions between these different cell populations are
illustrated in Fig. 1.

For the sake of model simplicity, spatial components associated
with host-specific anatomy will be neglected, and the cell popu-
lations are assumed to uniformly distributed within the plant.
Despite potentially overlooking some aspects of the dynamics, the
assumption of spatial uniformity has been very effectively used to
understand viral dynamics (Perelson, 2002; Wodarz et al., 2002).
Non-spatial models can provide significant insights into the dy-
namics and become the basis upon which more detailed models
can be built on. Additionally, in the case of field plants, it is bio-
logically reasonable to assume that multiple infection sites could
be distributed all over the host. Targeted plants could be exposed
multiple times during vector movement or feeding, as vector-
borne pathogens have been found capable of even altering the
phenotypes of their hosts and vectors in such a way that the fre-
quency and the nature of interactions between them promotes the
transmission of the disease (Mauck et al., 2010; Moreno-Dela-
fuente et al., 2013). Furthermore, all plant cells are connected
through plasmodesmata, the phloem and the xylem vessels re-
sponsible for resource translocation (Lalonde et al., 2004), and
these pathways can also be used by viruses for systemic infections
of their host (Opalka et al., 1998; Wan et al., 2015).

Plant growth models can generally be divided into two classes:
the ones where cell populations are allowed to exhibit unbounded
growth, and the ones that assume a certain asymptotic final size
due to finite resources or ontogenetic changes, like flowering of
the plant. Asymptotic growth models are more favourable in the
studies which consider the entire lifespan of the plant (Paine et al.,
2012; Heinen, 1999). Hence, we will describe plant growth by the
logistic growth function with a linear growth factor r and a car-
rying capacity K, with all cell populations contributing to the
competition term, as has been effectively done in other models of
immune response to infections, such as influenza (Tridane and
Kuang, 2010), HIV (Perelson and Nelson, 1999) and HBV (Ciupe
et al., 2007).

Once a plant becomes infected, infected cell populations ( )I t1

and ( )I t2 produce new infections by infecting susceptible (healthy)
cells at rates λ1 and λ2, respectively. Due to various metabolic
changes and loss of functions that occur after a viral takeover, the
lifespan of infected cells is normally shorter than that of healthy
cells, as characterised by higher death rates ϵ1 and ϵ2. Another
possible explanation of a premature death of infected cells is given
by the hypersensitive response of the plant, where infected cells
would be programmed to a premature death in order to avoid the
spread of the infection and to isolate the infectious site (Zvereva
and Pooggin, 2012; Hinrichs et al., 1998; Fritig and Kauffmann,
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2007).
In this paper we will assume that a viral infection does not

always have a devastating effect on the cell, and hence it is pos-
sible for infected cells to recover before experiencing critical da-
mage. Such recovered cells, denoted by ( )W t1 and ( )W t2 , will be
considered immune to the corresponding viruses in a sense that
they are no longer infectious. The recovery rates s1 and s2 re-
present cumulative effects of the two events mentioned above and
represent the rates of transition from infected to warned com-
partments for each of the two viruses. As described in the In-
troduction, one of the core mechanisms of the plant immune
system is the ability to spread a warning signal that is initiated
from infectious sites to other parts of the plant and to protect
neighbouring cells against the imminent virus infection. For the
sake of simplicity, the cells that have acquired immunity via this
warning signal are also included in ( )W t1 and ( )W t2 populations.
We assume that infected cells initiate and spread the warning
signal to healthy cells at the rate δ1 and δ2, respectively. Cells that
have been the recipients of the propagating signal for both viruses
or have recovered from both a primary and a subsequent sec-
ondary infection will be represented by the super-protected po-
pulation of cells ( )W t12 taken to be immune to both viruses. Thus,
warned cells ( )W t1 and ( )W t2 will be recruited to the super-pro-
tected population ( )W t12 at modified warning rates γ δ2 2 and γ δ1 1,
respectively. It is important to note that the resistance to the
disease is almost always accompanied by a reduction of fitness
normally represented by a reduced reproduction capability of cells
(Burdon and Thrall, 2003; Tian et al., 2003). In this model we as-
sume no fitness cost in the traditional way, however, immune cells
might also experience a shorter lifespan compared to susceptible
cells, and, therefore, some fitness cost can be implemented by
choosing the appropriate death rate ϵ0 for super-protected cells

( )W t12 .
The warned cells that have acquired immunity to a primary

infection but have successfully been infected by a secondary in-
fection will be denoted by Hi(t), where the index i¼1,2 signifies
the current infectious state of the cell. Because of their acquired
immunity to one of the viruses, these cells may be less or more
resistant to the other virus. If the degree of homology between the
two viruses is high, i.e the two viruses are closely immunologically
related, it would imply that a cell which is immune or highly re-
sistant to one of the viruses would express the same amount of
resistance to both of viruses. On the other hand, if the two viruses
are not related, it is reasonable to assume that expressing an an-
tiviral resistance to one of the viruses could induce a susceptibility
to a secondary non-related infection by reducing the efficacy of
the immune response.

From a biological perspective there could be a limited number
of components in the cell that can be used to mount an immune
response against a viral infection. For example, unless a cell is
warned by both propagating signals, it might be the case that all
components able to form antiviral complexes within the cell are
being used to prepare only for a single infection, or that there
might not be enough components in general to mount a sufficient
immune response to both infections simultaneously. Moreover,
chemical changes within the cell introduced during the primary
infection and the corresponding immune response could poten-
tially provide more favourable conditions in which the secondary
infection is established more easily. In light of these observations,
the infectious cells ( )H t1 and ( )H t2 will infect other cells at the
modified infection rates λa1 1 and λa2 2 to account for either en-
hanced ( > )a 11,2 or reduced ( < )a 11,2 viral transmissibility. Simi-
larly, we introduce the susceptibility modifiers β1 and β2 for the
warned cells ( )W t2 and ( )W t1 , respectively, which will be assumed
to be either susceptible β( > )11,2 or resistant β( < )11,2 to the virus
agains which they have not yet acquired immunity. To account for
a prior infection, the recovery rates of cells Hi are modified by the
factors pie, so these cells are recruited into the super-protected
population at rates σp1 1 and σp2 2, respectively. Therefore, in this
model the parameters that define viral cooperation will be the
modifiers i.e βa ,i i and pie which can be interpreted as either
functions of the antigenic distance or other specific relation be-
tween two viruses. For simplicity, we will ignore the possibility of
random mutations, so that these modifiers will remain constant.

Under the above assumptions, the model describing the dy-
namics of plant immune response to two viral infections can be
written as follows,

λ δ λ δ λ λ

λ σ λ

λ σ λ

σ δ β λ γ δ β λ

σ δ β λ γ δ β λ

β λ β λ σ
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where ( ) = ( ) + ( ) + ( ) + ( )S t S t W t W t W t1 2 12 , and ( ) =N t
( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( )S t I t I t W t W t H t H t W t1 2 1 2 1 2 12 is the

total population of plant cells. As a first step of the analysis, we
establish well-posedness of the system (1).

Theorem 2.1. The model (1) with initial conditions

( ) > ( ) ≥ ( ) ≥ ( ) ≥ ( ) ≥

( ) ≥ ( ) ≥ ( ) ≥

S I I W W

H H W

0 0, 0 0, 0 0, 0 0, 0 0,

0 0, 0 0, 0 0,
1 2 1 2

1 2 12

and ( ) = <N N K0 0 is well-posed, i.e. its solutions remain non-ne-
gative and bounded for all ≥t 0.

Proof. Let T2 be a period of time, such that ( ) <N t K for ∈ [ ]t T0, 2 ,
and suppose ≤T T1 2 is the first time such that ( ) =S T 01 . This im-
plies that

̇ ( ) = ( + + )[ − ( + + + + ) ] ≥S T r W W W W W W I I K1 / 0,1 1 2 12 1 2 12 1 2

hence, for any ≤ ≤t T0 2, we have that ( ) ≥S t 0. For the remaining
variables, considering any positive time t, if for any i¼1,2 we have
that ( ) =I t 0i , this implies that λ̇ ( ) = ≥I t a H 0i i i i , thus ( )I ti must be
non-negative for all times. Likewise, for both ( ) =W t 0i we obtain

σ δ̇ ( ) = ( + ) ≥W t I S 0i i i i which shows that ( ) ≥W t 0i . If ( ) =H t 0i , we
have β λ̇ ( ) = ≥H t W I 0i j i i i with ≤ ≠ ≤i j1 2. Finally, for ( ) =W t 012 ,
we have that ̇ ( ) ≥W t 012 . Thus, all variables remain non-negative
for ∈ [ ]t T0, 2 .

We now prove, by contradiction, that, in fact, ( ) <N t K for all
≥t 0. Assume, for a contradiction, that there is a first time >T 02 at

which the inequality ( ) <N t K ceases to hold. Since T2 is the first
such time, ( ) =N T K2 and ̇ ( ) ≥N T 02 . As has been shown earlier, all
state variables are non-negative at =t T2. Adding up all equations of
the system (1) yields

= ^( − ) − ϵ − ϵ − ϵ ( + ) − ϵ − ϵ

− ϵ ( )

dN
dt

rS N K I I W W H H

W

1 /
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Since at =t T2 we have that ( ) =N T K2 , the last equation gives
̇ ( ) <N T 02 , which is a contradiction, unless
( ) = ( ) = ( ) = ( ) = ( ) = ( ) = ( ) =I T I T W T W T H T H T W T 01 2 2 2 1 2 2 2 1 2 2 2 12 2 . But

in this exceptional case, the initial value theorem for ODEs, applied
to the last 7 equations of system (1) with S considered as a pre-
scribed function, yields that ( ) = ( ) =I t I t1 2

( ) = ( ) = ( ) = ( ) = ( ) =W t W t H t H t W t 01 2 1 2 12 for all >t T2 and the
equation for S(t) (the first equation of the system) reduces to the
logistic equation ̇ = ( − )S rS S K1 / . Thus, for any ≥t T2, we have

< ( ) ≤S t K0 , which completes the proof.□

To simplify the model and reduce the number of free para-
meters, we non-dimensionalise the system (1) by introducing new
dimensionless variables
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where = + + +u u u u u1 1 4 5 8 and = + + + +N u u u u u1 2 3 6 7.
3. Steady states

It is straightforward to see that independently of the values of
parameters, the system (3) always admits a trivial steady state

= ( ) ( )E 0, 0, 0, 0, 0, 0, 0, 0 , 40

and a disease-free steady state given by

= ( ) ( )E 1, 0, 0, 0, 0, 0, 0, 0 . 5DF

Looking for steady states of the system (3) =u 02 and ≠u 01,3 ,
gives = = = =u u u u 04 6 7 8 . Substituting these values in other
equations of system (3) gives a one-virus endemic steady state

= ( * * * ) ( )E u u u, 0, , 0, , 0, 0 , 62 1 3 5
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The steady state E2 is biologically feasible, as long as the condition
+ <e s L2 2 2 holds.
Proceeding in a similar manner, one can find a one-virus en-

demic steady state E1 corresponding to the presence of virus
1 only. This steady state is explicitly given by

= ( * * * ) ( )∼E u u u, , 0, , 0, 0, 0 , 71 1 2 4

where now
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This steady state is biologically feasible whenever the condition
+ <e s L1 1 1 is satisfied.
Besides the disease-free and the two one-virus endemic steady

states, system (3) can support one or more syndemic steady states
characterised by the simultaneous presence of both viruses,

= ( * * * * * * * *) ( )S u u u u u u u u, , , , , , , . 81 2 3 4 5 6 7 8

To find this steady state, let us introduce auxiliary variables and
functions
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which allow us to express all steady state variables through *u1 in
the following way:

( )( )
( )

( )( )
( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

β β

Δ

Δ Δ

Δ

Δ Δ

γ γ

* =
* +

* +
* =

* +
* +

* =
* * * + *

* * − * * * *

* =
* * * + *

* * − * * * *

* = * ( *) * = * ( *)

* =
* * + * * + * + *

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

⎡⎣ ⎤⎦

u
F u p s e

L a F u
u

F u p s e

L a F u

u
e u u u G u

G u G u u u u u

u
e u u u G u

G u G u u u u u

u u F u u u F u

u
d u u d u u p s u p s u

e

1
,

1
,

,

,

, ,

.

4
2 1 2 2 2

2 2 2 2 1
5

1 1 1 1 1

1 1 1 1 1

2
0 4 2 1 5 2 1

1 1 2 1 1 1 2 1 4 5

3
0 5 1 1 4 1 1

1 1 2 1 1 1 2 1 4 5

6 2 1 1 7 3 2 1

8
1 1 2 5 2 2 3 4 1 1 6 2 2 7

0

Substituting these expressions into the equation

( ) ( )^*( − ^) − * + * + + * + * + * =⎡
⎣⎢

⎤
⎦⎥u N u L d u L d u a L u a L u1 0,1 1 1 1 2 2 2 3 1 1 6 2 2 7

yields a polynomial equation for *u1 , whose roots gives possible
candidates for the syndemic steady state. This state is biologically
feasible if

( ) ( ) ( ) ( )Δ Δ< * < * * − * * * * >u u G u G u u u u u0 , 0.1 0 1 1 2 1 1 1 2 1 4 5

Linearising system (3) near the trivial steady state E0 gives the
following characteristic equation for eigenvalues μ:
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∏μ μ μ μ( − )( + ) ( + + )( + + ) =
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e e s p s e1 0.
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i i i i i0
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2

Since one of the roots is μ = 1, this implies that the trivial steady
state is always unstable, and, therefore, it is impossible for all cell
populations to die out. Linearisation near the disease-free steady
state EDF has a characteristic equation

∏μ μ μ μ( + )( + ) ( + + )( − + + ) =
( )=

e p s e L e s1 0,
10i

i i i i i i0
3

1

2

implying that the disease-free steady state EDF is linearly asymp-
totically stable, provided >u 10 , with u0 defined in (9). In epide-
miology, one of the most common and efficient techniques for
establishing criteria for onset of epidemic outbreaks is analysis of
the basic reproduction number R0, defined as the average number of
secondary infections produced by a single infected individual in a
totally susceptible population (Hethcote, 2000; Dietz, 1993; van
den Driessche and Watmough, 2008; Heesterbeek and Dietz,
1996). This quantity can be derived in a number of ways, e.g. using
the next generation approach (van den Driessche and Watmough,
2008), we define the basic reproduction number for each of the
viruses as follows

=
+

=
+ ( )

R
L

e s
R

L
e s

,
1101

1

1 1
02

2

2 2

and denote { }= = −R R R umax ,0 01 02 0
1. Then, the disease-free

steady state EDF is linearly asymptotically stable if <R 10 . This
result means that a complete recovery from both viral infections
depends on the efficacy of RNA interference from local induction, i.
e the ability of the host cell to target and degrade viral RNA in
order to inhibit viral multiplication, and also on whether infected
cells reach their limited lifespan faster than they can spread the
disease for each virus, respectively. Furthermore, since the basic
reproduction number R0 does not depend on the transmissibility
( )a1,2 or susceptibility β( )1,2 modifiers, this implies that the inter-
actions between the two viruses during the host co-infection
cannot cause both viruses to become extinct. On the other hand,
the modifiers may determine whether both viruses, or only one of
them will survive.

Characteristic equation of linearisation near the endemic stea-
dy state E2 can be factorised into

μ μ μ( ) ( ) ( ) = ( )X X X 0, 121 2 3
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Since all system parameters are strictly positive, the roots of μ( )X1

are all real and negative. By the Routh-Hurwitz criterion we have
that all roots of μ( )X2 lie in the left complex half-plane if the
coefficients x21 and x20 are positive, which translates into the re-
quirements
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implying <u uB A. Hence, the roots of μ( )X2 have a negative real
part, provided
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This also implies that a necessary condition for the stability of the
endemic steady state E2 is the intuitively natural result that the
two basic reproduction numbers defined in (11) must satisfy

>R R02 01.
Applying the Routh-Hurwitz criterion to the cubic polynomial
μ( )X3 gives that all roots of this polynomial have negative real

parts, as long as x x,32 31 and x30 are positive and satisfy the con-
dition >x x x32 31 30. It is important to note that stability of the en-
demic steady state E2 does not depend on the susceptibility and
transmissibility modifiers a2 and β2. From a biological perspective,
this suggests that the capability of the second virus to survive as a
single infection is irrelevant from the point of view of its ability to
infect cells that are chemically altered and are immune to the first
virus. On the other hand, the ability of viruses di to trigger a
warning signal appears to control whether they can exclude each
other or co-exist in a stable equilibrium. Hence, we have proved
the following result.

Theorem 3.1. For the endemic steady state = ( * * * )E u u u, 0, , 0, , 0, 02 1 3 5

with * = ( + )u e s L/1 2 2 2, *u3 and *u5 given in (6), let x30, x31, x32 and uB be
defined by (13) and (15), respectively. Then the steady state E2 is
linearly asymptotically stable if and only if the following conditions
hold.

(1) < * <u u0 ,B5
(2) >x 030 , >x 031 , >x 0,32

(3) >x x x .32 31 30

Remark. The result of this Theorem can be applied to the analysis
of stability of the endemic steady state E1 by swapping parameter
indices 1 with 2, and replacing variables *u3 and *u5 with *u2 and *u4 ,
respectively, as a consequence of the model symmetry.Unlike
some other models of multi-strain/multi-virus infections (Gupta
and Anderson, 1999; Allen et al., 2003; Castillo-Chavez et al., 1996),
the complexity of the model (3) prevents one from expressing the
conditions for stability of single-virus or co-existence equilibria in
a closed form depending only on two basic reproduction numbers.

Since the syndemic steady state S cannot be found in a closed
form, it does not prove possible to derive analytical conditions for
stability of this steady state. Hence, to understand how stability
changes with parameters, one has to resort to numerically com-
pute eigenvalues of the Jacobian of the linearisation of system (3)
near the steady state .
4. Numerical stability analysis and simulations

Due to RNAi being a very complicated multi-component
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process, obtaining accurate parameters values to be used in a
mathematical model is extremely difficult and often impractical,
as some parameters cannot currently be measured, or even when
they do, there is a very wide variability in the reported values
(Melnyk et al., 2011; Liang et al., 2012; Himber and Dunoyer, 2015).
Parameter values that define viral properties and modifiers in the
context of this study are equally problematic to obtain, as one
would require virus-specific information about both the cell-to-
cell and long-distance transmission of the virus. For example, in
the case of the Tobacco mosaic virus, the infection can on average
spread from one cell to another every 3–4 h depending on the
strain of the virus and the temperature (Kawakami et al., 2004),
and although this information can provide some intuition about
parameter values, it is not sufficient for estimating the actual in-
fection rate.

To better understand the effects of different parameters on
feasibility and stability of different steady states of the system (3),
we use Theorem 3.1 and numerical computation of eigenvalues to
identify parameter regions associated with existence and stability
of all steady states. To this end, we start with baseline parameter
values given in Table 1 and allow some of the parameters to vary.
Since model (3) has quite a large number of different parameters,
below we present the results for only some parameter combina-
tions that illustrate the diversity of possible scenarios, and quali-
tatively similar results can be obtained when other parameters are
varied. Plotting the percentages of infected cells for each steady
state in the same parameter space allows us to investigate possible
changes in the magnitude of the infected cell population between
different steady states.

Figs. 2, 3 and 4 illustrate earlier analytical conclusions that the
two endemic steady states E1 and E2 are only feasible and stable if
the recovery/death rates of infected cells are sufficiently low. On
the other hand, one expects that a virus can only survive if its
infection rate is adequately high, as observed in Fig. 2(d) and Fig. 4
(a). If either one of the recovery/infection rates is below or above a
certain threshold, it is easy to see that the syndemic steady state
disappears, and only one of the two viruses survives. However,
Fig. 2(a), (c) and 3(c), together with additional computations not
shown here, suggest that by increasing parameters a1,2, i.e the
transmissibility modifiers, or the susceptibility modifiers b1,2, the
system can generally move from one of the endemic steady states
to a stable syndemic equilibrium. This suggests that the most
competitive viral strain, which under different circumstances
would be capable of excluding a secondary infection, might in-
stead facilitate the survival of a secondary strain. Cells that have
been chemically altered by the immune response to the more
aggressive strain can now serve as ideal targets in which the
second strain could proliferate. Since for the fixed values of other
Table 1
Table of baseline values of parameters in system (3).

Dimensionless
parameters

Biological meaning Baseline value

L1,2 Infection rate 1.5
s1,2 Recovery rate 0.5

d1,2 Propagation rate 0.05

a1,2 Transmissibility modifier (after
secondary infection)

1

β1,2 Susceptibility modifier (after pri-
mary infection)

1

γ1,2 Acquired secondary immunity
modifier

0.5

e0 Natural death rate 0.3
e1,2 Infected cell death rate 0.6
p1,2 Recovery modifier 0.2
parameters, infection rates L1 and L2 are proportional to the two
basic reproduction numbers, R01 and R02, respectively, Fig. 4
(a) effectively is equivalent to figures demonstrating the depen-
dence of steady states on basic reproduction numbers in two-
strain models of infectious diseases (Gupta et al., 1996; Andreasen
et al., 1997).

Fig. 2(d) and 3(a) show that when one of the recovery modi-
fiers p1,2 is increased, the system can move from the syndemic to
one of the endemic equilibria E1,2, thus behaving in a qualitatively
opposite way to an increase of the corresponding parameter pair
{ }βa ,i i . This occurs when cells with acquired immunity to one of
the viruses are subsequently infected with another virus but have
a faster recovery. As this reduces the overall spread of the sec-
ondary infection, it will inevitably allow the primary virus to
dominate and eventually be the sole survivor in the host. In Fig. 2
(b) one observes that by increasing the dimensionless warning
rate d2 we can move from a parameter region where only the
endemic steady state E2 is feasible and stable (a grey region) to a
region, where the syndemic equilibrium is also stable (an orange
region). This suggests that the plant immune response to the
second virus can establish conditions that are more favourable to
the first virus. Thus, in the case of a double infection, it is possible
for a viral infection to persevere in the presence of the host's
immune response despite being unable to do so as a single in-
fection. This means that the propagating component of the im-
mune response plays a significant role in the interactions between
two viruses and can dictate whether both of them can survive in a
single host.

Recall that in model (3), the two viruses are considered to co-
operate with each other when β >a , 1i i , have a neutral relation-
ship when β =a , 1i i , and “antagonise” each other when β <a , 1i i ,
i¼1,2. One should also note the existence of other more compli-
cated scenarios as each of a1, a2, β1 and β2 can be less than, greater
than or equal to one. For example, if β >a , 11 1 and β< <a0 , 12 2
then, cooperation of the two viruses will be considered to benefit
mostly the first virus, thus being unequal. On the other hand, for

β >a , 12 2 and β =a , 01 1 , the relationship is completely one-sided in
favour of the second virus. Fig. 5(a) and (b) suggest that the bio-
logical interactions between different viruses may sometimes
disproportionately favour one of the viruses and decrease the
potency of the second infection, that is to say that one of the
viruses experiences less spread during a co-infection when com-
pared to its single-virus infected steady state. This is clearly evi-
dent in Fig. 5(b): for β ≤ 0.872 only the first virus is present,
whereas for β > 0.872 the system moves into the syndemic steady
state where now both viruses are able to survive, but the first virus
is not as widely spread as before. One should note that this result
comes at the cost of increasing the total number of infected cells,
suggesting that it might not always be the preferable outcome for
the plant. Similarly, Fig. 5(a) shows that for small values of the
transmissibility modifier a1 combined with a higher infection rate

>L L2 1 (which also implies >R R02 01), only the second virus is able
to survive in the host. As the value of a1 increases, the picture
changes, and the system moves to a syndemic steady state, where
not only both of the viruses are able to survive, but given suffi-
ciently high value of a1, the first virus can become dominant. This
also suggests that increasing ai is qualitatively interchangeable
increasing βj for ≠j i. Fig. 5(c) and (d) show how depending on the
level of cooperation between the two viruses, i.e for sufficiently
high values of a1 and a2, it can be beneficial for the viruses to co-
exist, as they can both infect a bigger biomass of the host com-
pared to their respective one-virus steady states, possibly resulting
in a chronic condition that is more severe. These results show that
sufficient levels of mutual cooperation between two viruses pro-
mote their virulence and ensure that neither of them becomes
eradicated, which eventually leads to a persistent double infection
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Fig. 2. Stability of steady states of the system (3) with parameters from Table 1. Green and blue indicate regions where both endemic steady states E1 and E2 are feasible, but
only E1 or E2 is stable, respectively. Magenta shows the region where all three infected steady states are feasible, but only the syndemic steady state S is stable. Yellow is the
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with parameter values determining the magnitude of each
infection.

If the cooperation between the two viruses is unequal or one-
sided, it is possible that the least benefited virus will experience
less spread compared to its single-virus infected steady state. To
investigate scenarios where both viruses “antagonise” each other
we solved the system at β =a , 0.5i i , i¼1,2. One result is given
in Fig. 6(a), and it shows that increasing β2 decreases the presence
of the first virus, but similarly to our previous results it increases
the overall level of infection. The most interesting case is shown
in Fig. 6(b), where adequately increasing the warning rate d2, not
only the percentage of cells infected with the second virus goes
down, but also the total number of infected cells is reduced. One
also observes in this Figure that although the number of cells in-
fected with the first virus is slowly increasing, it is still at a much
lower level than what it was in the absence of the second virus, i.e
compared to the steady state E1 which is now unstable. This si-
tuation represents an ideal scenario, where inoculating the target
plant with a less harmful virus or viral strain can offer partial
protection against another specific virus or strain, thus potentially
minimising damage to the host.

To demonstrate different kinds of dynamics that can be ex-
hibited by the model, we have solved the system (3) numerically
for different combinations of parameters, and the results are
shown in Fig. 7. Fig. 7(a) shows the solution of the model that
approaches the stable syndemic steady state, with all compart-
ments having positive values. As we discussed earlier, from a
biological perspective this represents the cases where interactions
between the two viruses facilitate the survival of both viral species
within the same host. Fig. 7(b) and (c) illustrate situations where
one of the viruses survives, while the other one is eradicated by
the plant immune system, and Fig. 7(d) demonstrates the case
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where the plant makes a full recovery.
5. Discussion

In this paper we have derived and analysed a mathematical
model of biological interactions between two viruses and a single
plant host, with particular account for RNA interference.

Our results have shows that RNA interference can provide a
mechanism for cross-protection, and a co-infection can either in-
crease or decrease the overall potency of individual infections, il-
lustrating how cross-protection or cross-enhancement can occur
between the two viruses. The framework developed in this paper
can be directly applicable to analysis of RNAi-mediated interac-
tions for many combinations of plant viruses, with examples in-
cluding co-infections with Soybean mosaic virus and Alfalfa mo-
saic virus (Malapi-Nelson et al., 2009), as well as Abutilon mosaic
virus and Cucumber mosaic virus (Wege and Siegmund, 2007).
The model can also be used to obtain insights into how one could
control viral diseases through cross-protection and, by extension,
through gene and antiviral therapy, where genetically modified
viruses are introduced to the host. Unlike the wild type strains,
these modified viruses can be engineered to deliver specific
therapeutic siRNA, which through the process of RNA interference
would trigger immune response, thus acting as a powerful vacci-
nation strategy (Silva et al., 2002; Caplen, 2004; Soifer et al., 2007).

To achieve greater biological realism, we have assumed that the
new plant growth depends on the availability of healthy cells
which can be impeded once the plant becomes infected. Stability
analysis of the steady states has demonstrated the significance of
different parameters of the model and showed how they dictate
the dynamical behaviour exhibited by the system.

One should note that in the current model it is impossible for
all cell populations to die, as there will always be some new
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growth taking place to replace the parts of the plant that are lost
either naturally or due to infections. This is true despite the
growth penalty introduced by allocating some of the resources to
infected parts of the plant. Even if a plant were to experience a
severe case of stunting, it would be highly unlikely that every
healthy cell would become infected, and, therefore, lead to the
death of the plant. Although our model cannot capture this sce-
nario, realistically, such events do occur quite rarely in nature.

Stability of the disease-free equilibrium and the feasibility of
the two single-virus endemic steady states depends on the two
basic reproduction numbers R01 and R02. In our model these
quantities are represented as functions of only the infection, re-
covery and death rates of infected cells for each strain, but they are
not affected by the propagating component of the immune re-
sponse. This suggests that a faster mobile signal can at most help
the plant to recover faster (as determined by the above-mentioned
factors) but, by itself it is not sufficient for a recovery. However,
this picture changes when the stability of the syndemic steady
state is considered. Our results show that the warning signal plays
a significant role in determining whether both viruses can persist
simultaneously, and as such, it controls situations where the plant
is able to support some constant level of both infections. If the two
viruses are sufficiently immunologically related, so that the im-
mune response trigged by a primary infection with a less virulent
strain could induce a sufficient response against a secondary
strain, then the least harmful of the two viruses becomes domi-
nant, and the plant experiences a degree of cross-protection which
may sometimes result in the increased total population of infected
cells.

Analysis of the model has demonstrated that the total popu-
lation of infected cells during a co-infection can sometimes, but
not always, be higher than during a single infection, for which
there are two possible explanations. One possibility is that the two
different infections simply increase the overall rate of infection.
Another aspect is that the two viruses only have to compete for
susceptible cells, as there is a source of cells that might be
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exclusively available to each of the viruses, i.e cells that have ac-
quired immunity to one virus may be less or more susceptible to
the other virus. Our results have shown that when two viruses
“antagonise” each other, i.e β <a , 1i i , for sufficiently high warning
rates, not only can one minimise the spread of a specific virus, but
the overall infection can also reduce. Hence, depending on the
virulence of the two strains, one might choose to either avoid the
introduction of a secondary viruses, or instead use it in order to
produce the more favourable outcome.

If the two viruses are immunologically unrelated and co-in-
fecting the same plant, they can indirectly promote each other by
inadvertently making cells they can no longer infect more sus-
ceptible to the other virus. Hence, despite the fact that both
viruses are effectively competing for the same resource, there is
always some exclusive source of potential cells in which the in-
fection could survive, with the potency of individual infections
strongly dependent on the interaction between the two viruses.
Another important result is that the syndemic steady state can
potentially be stable in parameter regions where only one of the
endemic steady states is feasible, implying that a secondary virus
can only survive when another infection is present.

One possible extension of the work presented in this paper is to
explicitly include in the model time delays associated with plant
maturation time, and with delayed propagation of the RNAi signal,
as has been recently done in a simpler model of immune response
to a single viral infection (Neofytou et al., 2016). Another inter-
esting phenomenon to consider is the possibility of cells being
occupied by two viruses simultaneously, which would allow for a
wider spectrum of interactions between the viruses and their host.
This could include super-infection of individual cells, viral inter-
ference or recombination events that can give rise to additional
strains.
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