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Travelling waves of the Fisher equation with arbitrary power of nonlinearity are studied in the
presence of long-range diffusion. Using analogy between travelling waves and heteroclinic solutions of
corresponding ODEs, we employ the geometric singular perturbation theory to prove the persistence of
these waves when the influence of long-range effects is small. When the long-range diffusion coefficient
becomes larger, the behaviour of travelling waves can only be studied numerically. In this case we find
that starting with some values, solutions of the model lose monotonicity and become oscillatory.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

One of the cornerstones of modern mathematical biology is the Fisher equation. Being originally derived as a model for the propagation
of a favoured gene in a population [10,15], this equation has since served as a basic model for numerous physical and biological phenomena
characterized by local interactions, linear growth and competition [18]. In its simplest form, the Fisher equation for a scalar function u(x, t)
is given by

ut = uxx + u(1 − u). (1)

In order to account for more involved competition, this equation can be generalized by allowing a higher degree of nonlinearity:

ut = uxx + pu
(
1 − ur)(q + ur). (2)

Using a combination of nonlinear transformations and symbolic computations, an analytic solution of the latter equation has been recently
found [6]. This solution has the form

u(x, t) =
{
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, (3)

and represents a wave travelling with a speed

c = (1 + q + qr)

√
p

r + 1
, (4)

in the positive x direction. The solution (3) is shown in Fig. 1 for several values of the power of nonlinearity q. When p = q = 1 and
r = 1/2, Eq. (2) reduces to the Fisher equation (1), and the solution (3) becomes the classical closed form solution of the Fisher equation
with the wavespeed c = 5/

√
6, found by Ablowitz and Zeppetella [1].
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Fig. 1. Shape of solitary wave solution (3). Parameters are p = q = 1 and r = 1 (solid), r = 5 (dashed) and r = 10 (dotted).

In the context of population dynamics several other generalizations of the Fisher equation have been investigated. These include non-
locality, spatial averaging of nonlinearity, temporal delays and a long-range diffusion [4,7,11,12]. Recently, effects of transport memory for
Eq. (1) have been included to describe the coherent motion of individuals between collisions [2,17]. The influence of these effects leads
to a marked difference in the dynamics from that of the original equation, such as the possibility of “inverse fronts”, in which the state
u = 0 invades the state u = 1.

In this Letter we are interested in the travelling wave solutions of the generalized Fisher equation with fourth-order derivative

ut = −Duxxxx + uxx + pu
(
1 − ur)(q + ur), (5)

for a scalar function u = u(x, t), with p,q > 0 and r � 1. When D = 0, this equation describes the situation of a local diffusion and a
generalized competition. At the same time, when D > 0, this equation includes the effects of a long-range diffusion as introduced by
Cohen and Murray in their study of pattern formation in a single species population [7]. These authors demonstrated how fourth-order
and higher derivatives can appear in approximations of equations including “non-local” terms.

Several particular cases of Eq. (5) have been studied for different values of parameters. When p = q = r = 1, Eq. (5) becomes an ex-
tended Fisher–Kolmogorov equation, which has been used to model phase transitions and other bistable phenomena [8]. It has been shown
that this equation can exhibit a range of periodic and chaotic spatial patterns [19]. For a slightly different form of a cubic nonlinearity
travelling wave solutions have also been studied by Akveld and Hulshof [3].

The aim of this Letter is to investigate, within the context of our model, what happens to travelling wave solutions (3) of Eq. (2)
when the long-range effects are included. In order to address this problem we use dynamical systems methods. Namely, the equation for
travelling wave solutions can be written as a dynamical system, and for D small it can be analysed with the help of a geometric singular
perturbation theory [14]. Using this theory, we will show that the travelling waves (3) persist under small fourth-order perturbation in
Eq. (5). Similar techniques have been used to show the persistence of travelling waves in a delayed Fisher equation [4], a fourth-order
diffusion system with a slightly different nonlinearity [3], as well as an extended Burgers–Huxley model [16].

When the effects of a long-range diffusion become significant, analytical approach fails to provide the persistence of travelling waves.
Therefore, we will resort to numerical solution of an appropriate boundary value problem to establish the existence of such solutions.

2. Dynamical systems reformulation

We begin our analysis by looking for the travelling wave solutions of Eq. (5) of the form

u(x, t) = U (z), where z = x − ct.

Substituting this into Eq. (5) gives

−DU ′′′′ + U ′′ + cU ′ + pU
(
1 − U r)(q + U r) = 0, (6)

where prime denotes differentiation with respect to z. After introducing the quantities U ′ = v , v ′ = y, y′ = w one can recast (6) as

Y z = F (Y ), F (Y ) =
⎛
⎜⎝

v
y
w

1
D [y + cv + pU (1 − U r)(q + U r)]

⎞
⎟⎠ , Y =

⎛
⎜⎝

U
v
y
w

⎞
⎟⎠ . (7)

The steady states for this system are

Y 0 = (0,0,0,0)T and Y 1 = (1,0,0,0)T ,
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and we have discarded the steady states with negative values of the variables as biologically irrelevant. Linearization matrix near the
steady state Y 0 has the form

A0 = D F
(
Y 0) =

⎛
⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1

pq/D c/D 1/D 0

⎞
⎟⎠ ,

with the corresponding characteristic equation

Dλ4 − λ2 − cλ − pq = 0. (8)

Similarly, the linearization near Y 1 has the form

A1 = D F
(
Y 1) =

⎛
⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1

−pr(q + 1)/D c/D 1/D 0

⎞
⎟⎠ ,

with the characteristic equation

Dλ4 − λ2 − cλ + pr(q + 1) = 0. (9)

We have the following result regarding the linearization of (7).

Proposition 1. Let c > 0. Then the stable manifold of the steady state Y 0 in system (7) has dimension three, and the unstable manifold at Y 1 has
dimension two.

Proof. Spectrum of linearization near the steady state Y 0 is determined by the roots of the characteristic equation (8), which can be
written as Δ(λ) = 0 with

Δ(λ) = Dλ4 − λ2 − cλ − pq.

We need to show that Δ(λ) has three roots in the left half of the complex plane. Since Δ is analytic, the number of roots in the left half
complex plane is

1

2π i
lim

R→∞

∫
γR

Δ′(λ)

Δ(λ)
dλ, (10)

where the contour γR is the boundary, traversed anticlockwise, of the semicircle of radius R , centred at the origin, contained in Reλ � 0.
This integral equals

2 + 1

π

[
arg Δ(iR)

]R=∞
R=0 .

The quantity in brackets denotes the total change in the argument of Δ(iR) as R goes from zero to infinity, and hence we have to compute
the number of times the image Δ(iR), R > 0, winds around the origin. Now, when R = 0, the image of Δ(iR) starts on the negative real
axis, and for R sufficiently large it ends up in the fourth quadrant with asymptotic behaviour

ReΔ(iR) ∼ D R4, ImΔ(iR) ∼ −cR as R → ∞.

Therefore,

[
arg Δ(iR)

]R=∞
R=0 = nπ

for some odd integer n. However, since ImΔ(iR) = −cR < 0 for all R > 0, thus n = 1, and consequently, the number of the roots of
characteristic roots in the left complex half plane is three.

Similarly, for Y 1 we have to find the winding number of the image of the function Δ(iR), R > 0 around the origin, where now

Δ(λ) = Dλ4 − λ2 − cλ + pr(q + 1).

The same argument as before shows that this number is equal to

2 − 1

π

[
arg Δ(iR)

]R=∞
R=0 .

It is easy to see that since the imaginary part Im Δ(iR) never crosses zero, therefore [argΔ(iR)]R=∞
R=0 = 0, and this concludes the proof. �

Proposition 1 yields that the sum of the dimensions of the stable manifold W s(Y 0) and the unstable manifold W u(Y 1) is five, while
the phase space has the dimension four. Hence, generically these two manifolds intersect in R

4 along one-dimensional curve, which is our
travelling wave solution. To prove rigourously the existence this intersection a further analysis is required.
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3. Persistence of travelling waves for small long-range diffusion

In this section we consider the case of D small. Let D = ε2 � 1. Introducing the coordinates v = U ′ , y = v ′ and a stretched variable
w = εy′ , the system (5) can be rewritten as

U z = v, vz = y, εyz = w, εwz = y + cv + pU
(
1 − U r)(q + U r). (11)

Now, with ζ = z/ε, the dual “fast system” associated with (11) has the form

Uζ = εv, vζ = εy, yζ = w, wζ = y + cv + pU
(
1 − U r)(q + U r). (12)

If in (11) ε is set to zero, then U and v are governed by

d2U

dz2
+ c

dU

dz
+ pU

(
1 − U r)(q + U r) = 0, v = dU

dz
,

while y and w must lie on the set

M0 := {
(U , v, y, w) ∈ R

4: w = 0 and y + cv + pU
(
1 − U r)(q + U r) = 0

}
,

which is a two-dimensional submanifold of R
4.

By definition [9], the manifold M0 is said to be normally hyperbolic if the linearization of the fast system, restricted to M0, has exactly
dim M0 eigenvalues on the imaginary axis, with the remainder of the system hyperbolic. The linearization of the fast system (12), restricted
to M0 (i.e. ε = 0), has the matrix

A =
⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 0 1
s c 1 0

⎞
⎟⎠ , (13)

with

s = pq + p(r + 1)(1 − q)U r − p(2r + 1)U 2r .

This matrix A has the eigenvalues 0,0,−1,1, and thus we conclude that M0 is normally hyperbolic. Therefore, by Fenichel’s invariant
manifold theory [9], for ε sufficiently small there exists a two-dimensional sub-manifold Mε of R

4 which is within the distance ε of M0
and which is invariant for the flow (11).

Next, we shall determine the dynamics on Mε . One can write

Mε = {
(U , v, y, w) ∈ R

4: w = g(U , v, ε), y = h(U , v, ε) − cv − pU
(
1 − U r)(q + U r)}, (14)

where the functions g and h yet to be determined satisfy

g(U , v,0) = h(U , v,0) = 0.

Substituting the representation of Mε from (14) into (11), one obtains that g(U , v, ε) and h(U , v, ε) satisfy the coupled system of equations

g = ε

[
v

∂h

∂U
+ ∂h

∂v

(
h − cv − pU

(
1 − U r)(q + U r)) − ch + c2 v + cpU

(
1 − U r)(q + U r) − pqv − p(1 − q)(r + 1)U r v + p(2r + 1)U 2r v

]
,

h = ε

[
v

∂ g

∂U
+ ∂ g

∂v

(
h − cv − pU

(
1 − U r)(q + U r))].

Now, we expand g and h in Taylor series in ε

g(U , v, ε) = g(U , v,0) + εgε(U , v,0) + 1

2
ε2 gεε(U , v,0) + · · · ,

h(U , v, ε) = h(U , v,0) + εhε(U , v,0) + 1

2
ε2hεε(U , v,0) + · · ·

and equate same orders in ε. At zeroth order, we have

g(U , v,0) = h(U , v,0) = 0,

as expected. Powers of ε give

gε(U , v,0) = c2 v + cpU
(
1 − U r)(q + U r) − pv

[
q + (1 − q)(r + 1)U r − (2r + 1)U 2r],

hε(U , v,0) = 0,

and at the second order in ε one has

1

2
gεε(U , v,0) = 0,

1

2
hεε(U , v,0) = v

{
c
[

pq + p(r + 1)(1 − q)U r − p(2r + 1)U 2r] − pv
[
r(1 − q)(r + 1)U r−1 − 2r(2r + 1)U 2r−1]}

+ [
h − cv − pU

(
1 − U r)(q + U r)][c2 − p

(
q + (1 − q)(r + 1)U r − (2r + 1)U 2r)].



672 Y.N. Kyrychko, K.B. Blyuss / Physics Letters A 373 (2009) 668–674
Thus,

h(U , v, ε) = ε2h1(U , v, ε),

where

h1(U , v, ε) = 1

2
hεε(U , v,0) + O(ε).

This allows one to write the system (11) as a following system

U z = v, vz = −cv − pU
(
1 − U r)(q + U r) + ε2h1(U , v, ε), (15)

which determines the dynamics on the “slow” manifold Mε .

4. The flow on the manifold Mε

When ε = 0, system (15) reduces to a system of coupled first-order ODEs. Let (U0, v0) be the solution of (15) when ε = 0. This can
be any travelling wave solution of the original system (2), including a particular closed form solution (3). In the (U , v) phase plane this
solution is a connection between (1,0) and (0,0). We shall use Fredholm theory to show that for ε > 0 sufficiently small there exists
a heteroclinic connection between the critical points (1,0) and (0,0) of (15). This connection corresponds to a travelling wave solution
of (5).

When ε 
= 0, we set

U = U0 + ε2Ũ , v = v0 + ε2 ṽ,

and substitute this into (15). To the lowest order in ε the system governing Ũ , ṽ is

d

dz

(
Ũ
ṽ

)
−

(
0 1

−pq − p(r + 1)(1 − q)U r
0 + p(2r + 1)U 2r

0 −c

)(
Ũ
ṽ

)
=

(
0

h1(U0, v0,0)

)
, (16)

which can be written as

L
(

Ũ
ṽ

)
=

(
0

h1(U0, v0,0)

)
, (17)

with L being a linear differential operator defined by the left-hand side of Eq. (16). We want to prove that this system has a solution
satisfying

Ũ , ṽ → 0 as z → ±∞.

Working in the space L2 of square integrable functions, we introduce the inner product as
∫ ∞
−∞〈x(z),y(z)〉dz, with 〈·,·〉 being the inner

product on R
2. Note that the operator L is not self-adjoint. Taking an inner product between a function x(z) in the kernel of the adjoint

operator L∗ and the right-hand side of (17) gives

∞∫
−∞

〈
x(z),

(
0

h1(U0(z), v0(z),0)

)〉
dz =

∞∫
−∞

〈
x(z), L

(
Ũ
ṽ

)〉
dz =

∞∫
−∞

〈
L∗x(z),

(
Ũ
ṽ

)〉
dz = 0.

This implies the Fredholm alternative, which states that the system (17) has a solution if and only if

∞∫
−∞

〈
x(z),

(
0

h1(U0(z), v0(z),0)

)〉
dz = 0, (18)

for all functions x(z) in the kernel of the adjoint operator L∗ , see [20].
In order to find the kernel of the adjoint problem, we consider the adjoint equation which has the form

dx

dt
=

(
0 pq + p(r + 1)(1 − q)U r

0 − p(2r + 1)U 2r
0−1 c

)
x. (19)

Letting z → ∞, one has U0 → 0 and the matrix in (19) is then a constant matrix with eigenvalues λ satisfying

λ2 − cλ + pq = 0. (20)

From (20) it follows that both eigenvalues are positive or have a positive real part (since q > 0, p > 0), and as z → ∞ any solutions of
(19), other then the zero solution, must grow exponentially. The only solution in L2 is therefore a zero solution x(z) = 0, and consequently
the Fredholm orthogonality condition (18) trivially holds. Thus, we have proved the existence of the desired connection in manifold Mε .

Theorem 2. For every c > 0 defined in (4), there exists ε0 such that, for every ε ∈ (0, ε0], Eq. (5) admits a monotone travelling front solution
u(x, t) = U (z) satisfying U (−∞) = 1 and U (∞) = 0, where z = x − ct.
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Fig. 2. Heteroclinic connections of (6) with p = q = 1, r = 2, and D = 1 (left) and D = 10 (right). The wavespeed c given by (4) is c = 4/
√

3.

Fig. 3. Boundary of asymptotic behaviour of the leading edge of the travelling wave solution of Eq. (6) with p = 1 and different values of q. For any parameter values above
each boundary, there is a monotone decay, while below each boundary the decay is oscillatory.

5. Persistence of travelling waves for large long-range diffusion

So far, we have established that the travelling waves of the generalized Fisher equation persist under the influence of a long-range
diffusion, when it is small. For larger values of D , this problem does not lend itself to the analytical treatment, and therefore one has
to use numerical methods. Our presentation here follows Ashwin et al. [4], where a similar problem was considered for the KPP–Fisher
equation with a delay in the form of a convolution term.

We look for solutions U (z) of Eq. (6) subject to boundary conditions

U (−∞) = 1, U (+∞) = 0. (21)

To this end, we consider the system (6), (21) on a long finite interval z = [−L, L] with the approximation converging to a correct solution
in the limit L → ∞ [5,13]. Using argument similar to the one in [4], we require the solution to have no projection on the stable manifold
of Y 1 at z = −L and no projection on the unstable manifold of Y 0 at z = L. Due to translational symmetry of Eq. (6), one can fix the value
of U (0) as a fourth boundary condition, and we take this to be U (0) = 0.5. Numerical solution of the above problem was performed using
a finite difference method realized in a NAG boundary value solver D02RAF. This routine was run successively until the required absolute
tolerance of 10−6 was achieved, with the collocation points being distributed unevenly along the interval [−60,60].

Results of numerical simulations are shown in Fig. 2 for some particular values of parameters. This figure suggests that as the long-
range diffusion coefficient D increases from zero, perturbed heteroclinic orbits remain close in shape to the unperturbed solutions.
However, starting with some critical D , two of the negative eigenvalues of matrix A0 (linearization matrix near the steady state Y 0)
form a leading complex conjugate pair, and this results in oscillations of the solution at z → ∞. Biologically, this situation is not plausible
since it allows population density to become negative for some values of z thus invalidating the model. Fig. 3 shows the boundaries in
the parameter space of wavespeed c and long-range diffusion coefficient D , which separate the regions of monotone (above the boundary)
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and oscillatory (below the boundary) decay of the leading edge of the travelling wave for different values of q. One can observe that the
higher q, the larger is the minimal wavespeed for which the travelling waves have a monotone decay as z → ∞.

6. Conclusions

Travelling wave solutions of the generalized Fisher equation have been considered in the presence of the long-range diffusion. Using
analytical and numerical tools we have shown that the travelling fronts (3) are robust and persist when the strength of long-range
diffusion is sufficiently small. In this case, the geometric singular perturbation theory and invariant manifold theory have allowed us to
prove rigourously the existence of perturbed heteroclinic connections in the system. This result is quite powerful since it is simultaneously
valid for various types of competition modelled by Eq. (5) with different values of parameters.

For larger values of the long-range diffusion coefficient, heteroclinic fronts have been obtained numerically as a solution of a boundary-
value problem for a reduced dynamical system. Numerical simulations suggest that starting with some value of D , solutions acquire
oscillatory behaviour at the right end, where they approach zero. This implies that at this moment the model loses its validity in repre-
senting biological quantities (such as population dynamics), and consequently another description should be used to capture the dynamics
of competition in the presence of long-range diffusion.

Acknowledgements

The authors would like to thank anonymous referees for their helpful remarks. Y.K. acknowledges partial support from the EPSRC (Grant
EP/E045073/1).

References

[1] M.J. Ablowitz, A. Zeppetella, J. Math. Biol. 41 (1979) 835.
[2] G. Abramson, A.R. Bishop, V.M. Kenkre, Phys. Rev. E 64 (2001) 066615.
[3] M.E. Akveld, J. Hulshof, Appl. Math. Lett. 11 (1998) 115.
[4] P. Ashwin, M. Bartuccelli, T.J. Bridges, S.A. Gourley, ZAMP 53 (2002) 103.
[5] W.-J. Beyn, IMA J. Numer. Anal. 9 (1990) 379.
[6] E.G. Fan, Comput. Math. Appl. 43 (2002) 671.
[7] D.S. Cohen, J.D. Murray, J. Math. Biol. 12 (1981) 237.
[8] G.T. Dee, W. van Saarlos, Phys. Rev. Lett. 60 (1988) 2641.
[9] N. Fenichel, J. Diff. Eqns. 31 (1979) 53.

[10] R.A. Fisher, Ann. Eugenics 7 (1937) 355.
[11] S.A. Gourley, N.F. Britton, IMA J. Appl. Math. 51 (1993) 299.
[12] S.A. Gourley, N.F. Britton, J. Math. Biol. 34 (1996) 297.
[13] F.R. de Hoog, R. Weiss, Computing 24 (1980) 227.
[14] C.K.R.T. Jones, Geometric singular perturbation theory, in: L. Arnold, R. Johnson (Eds.), CIME Lectures on Dynamical Systems, Lecture Notes in Mathematics, vol. 1609,

Springer-Verlag, New York, 1995.
[15] A.N. Kolmogorov, I.G. Petrovsky, N.S. Piscounov, Moscow Univ. Bull. Math. 1 (1937) 1.
[16] Y.N. Kyrychko, M.V. Bartuccelli, K.B. Blyuss, J. Comput. Appl. Math. 176 (2005) 433.
[17] K.K. Manne, A.J. Hurd, V.M. Kenkre, Phys. Rev. E 61 (2000) 4177.
[18] J.D. Murray, Mathematical Biology, Springer-Verlag, New York, 1993.
[19] L.A. Peletier, W.C. Troy, J. Diff. Eqns. 129 (1996) 458.
[20] E. Zeidler, Applied Functional Analysis, Springer-Verlag, New York, 1995.


	Persistence of travelling waves in a generalized Fisher equation
	Introduction
	Dynamical systems reformulation
	Persistence of travelling waves for small long-range diffusion
	The flow on the manifold Mepsilon
	Persistence of travelling waves for large long-range diffusion
	Conclusions
	Acknowledgements
	References


