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Abstract

In this Letter we obtain the dissipative length scale for the Navier—Stokes equations on a two-dimensional rotatirf sphere
This system is a fundamental model of the large scale atmospheric dynamics. Using the equations of motion in their vorticity
form, we construct the ladder inequalities from which a set of time-averaged length scales is obtained.
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1. Introduction Navier—Stokes equations was obtained by llyin [2].
In [3] a simple proof of the explicit estimates of the
attractor dimension for the Navier—Stokes system on
a rotating sphere in terms of the vorticity equation
has been performed. The problem of upper bounds
for the Hausdorff and fractal dimensions of the global
attractor for the Navier—Stokes equations on a two-
dimensional compact manifold was addressed in [2].
In particular, in the case of the unit sphere the author
gives the explicit values of the constants involved.
Cao, Rammaha and Titi [4] have proved the Gevrey
regularity for the Navier—Stokes equation on the two-
dimensional spher&? and found an upper bound for
the number of asymptotic degrees of freedom for this
system. Global existence of strong solutions on the
sphere has been studied in [5-7].
mspon ding author. The aim_ of this Letter is to fin_d dissipative Iength
E-mail address: y.kyrychko@eim.surrey.ac.uk scales estimates for the solutions of the Navier—
(Y.N. Kyrychko). Stokes system on a rotating sphere using the vorticity

The Navier-Stokes equations is a fundamental
model which naturally arises in different aspects of
meteorology. This system on a rotating sphere is a
simple model of the large scale atmospheric dynamics
and is often used in meteorological modelling in the
vorticity formulation. In particular, it has been used
to study the two-dimensional turbulence on a rotating
sphere in the context of atmospheric circulation on
large planets [1].

In recent years there has been a growing interest in
the study of the Navier—Stokes system on manifolds.
The best estimate of the attractor dimension for the
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equation and the best to date interpolation inequalities Whenever we integrate by parts we shall use the
on the sphere. The length scales serve for betterfollowing formulas [4]

understanding the spatio-temporal dynamics of the
solutions of dissipative PDEs, providing information
about the smallest features of the flow. In order to

find the estimates for the length scales we use the so-

called ladder method which has been applied to the
wide range of partial differential equations such as
the complex Ginzburg—Landau equation [8] and the
Navier—Stokes equations on flat domains with periodic
boundary conditions [9].

Consider the Navier—Stokes equations of an incom-
pressible fluid on a two-dimensional rotating sphere
52 in the following form [2,3]:

u2

?)
—uxrotu+4ixu+Vp=f,

divu =0,

ou
E+vrotrotnu+v

1)
2

wherev > 0 is the viscosity constant, is a velocity
vector in the tangent bundies?, p is a scalar function
for pressure,f is a baroclinic forcing term, x”
denotes the standard vector produktjs the radius
of the spheref = 2wsing is the Coriolis parameter,
w is an angular velocityl¢| < 7 is a latitude g is a
longitude (0< 0 < 2r), 7 is the outward unit normal
vector toS2. By definition, the operator rpt is [2]

rot, u = —ndiv(i x u) = (rotu - n)n,
and
roth = —n x Vh,

whereu is a vector field and is a scalar function. It
is easy to see that

rot, roth = —n(Ah).

The inner products for thé&2-spaces of scalar func-
tions denoted by.2(52) and theL2-spaces of the tan-
gent vector fields 052 denoted by.2(7 $2) are given

by [4]:
(u,v)Lz(Sz)zfuvdS, foru, v e L*(5?),
2
(M,U)LZ(T32):fM'vdS, fOrM,UELZ(TSZ)

S2

(Vh, U) = (Vh, U)Lz(TSZ) = _(h, le U)LZ(SZ), (3)

(rotu, v) = (rotu, v)  2(rs2
= (u, 104, v) 2752y, foru,ve L?(TS?).

(4)
The ladder method involves replacing the original
PDE by a hierarchy of ordinary differential inequal-
ities. These inequalities are then used to control the
norms of all spatial derivatives of the solution of the
equation, under the assumption that one can obtain
an upper bound on the “bottom” rung of the ladder.
For our purposes it will be more convenient to work
with the scalar equation. Therefore, introduciagas
a stream function for: u =7 x Vi, ¥ = A~ 1@ -
rot, u), substituting this in Eq. (1), and applying the
operator rgf we obtain a vorticity equation [3]:

QA + T (Y, AY +1) —vA%Y =17i - rot, f, (5)

where we followed the notations from [2,3](a, b) =
n x Va - Vb, and in particular/ (Y, Ay +1) = u -
V(Ay +1). The function/ (a, b) has the property [2]:

fJ(a,b)ds:O,
S2

and it can also be proved that

f J(W, p)pds =0,

S2

f J(Y, DAY ds =0.

2

Finally, let¢ = Ay and introduce spacds = Ly(5?)

U{p: [@ds =0} and Hy = H(S?) U H. Hence,
Eq. (5) takes the form

dhp+J (A 0,0 +1) —vAp=ii-rot, f,

(6)

In order to calculate the length scales we define the
following time-dependent functionalgy:

¢(0) = ¢o.
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2
Hy = V"¢l

/|Am¢|2ds, for N = 2m,
/|VA"’¢yZdS, for N' = 2m + 1.
2

Also, we defineFy as follows

Fn :=/|VN(71~rOtn NIZas,
52

and introduce a natural “timet = R%Zv—1 which is
based on the radius of the sph&and the viscosity.
Then

FN=HN+f2fN. 7

We assume a forcing to be time-independent and such_/

that the forcing functionf(x) has a cut-off in its
spectrum such that it has the smallest length scale

~7:N+l>

o ®)

Af=su
N

Now we define an inverse squared length scale:
_2 _2 _
hl=27+R72 9)

In all the future calculations the domain of integration
is assumed to b&?.
2. Ladder estimates
Let us start withHp. By definition,
2 1 .
Ho= | ¢°dS = éHoz orpdS.

After substitution ofp; from Eq. (6) we obtain

1.
ZHo=v

5 /MgodS—/goJ(A*lgo,goJrl)ds

+/(ﬁ -rot, feds. (10)

The last term in (10) can be estimated with the help of
the Cauchy-Schwarz inequality as follows,

181

f(?z -rot, fedS

1/2 1/2
< (/(ﬁ-rotn f)2d5> (/wzdS)

_ R

Now applying equality (3) to the Laplacian term in
(10) one obtains:

vftpAgodS:vfgodiVthdS

=—v /(w)zds = —vH].

The last term we need to estimate is the nonlinear term
in (10). Using the properties of (a, b) and recalling
thatA—1p = ¢ gives us the following result:

pJ(AYp, o +1)dS

=—ffpf(l/mp)dS—/J(lﬂ,l)wdSzo.

Adding all the above calculations we can write the
inequality for the “bottom” rung of the ladder as

1.
ZHo=—vHy + Fol?H}%.

2
This form of ladder is inconvenient to leave because
of the way the forcing term is expressed in here. Later
on, we will want to divide through byHy and the
square root of forcing will cause complications. For
this reason we introducgy and (11) can be rewritten
as:

(11)

1.
EFO< —UFl—i-v)»azFo. (12)

As before, consider the next quantitlf. Substituting
¢, from Eq. (6) one gets:

1.
=v/VA<pV(pdS
—/VJ(A_1¢,¢+Z)V¢dS

+/V(fi«rotn Veds. (13)
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The Laplacian term in (13) can be treated as follows,
U/VAtpV(pdS = —vf ApdivVedS

=—v f(A(p)zdS = —vH.

The second term in (13) is:
—fVJ(A—1<p,<p+l)V<pds
sz(A‘lgo,goH)divV(pds
=/J(A*1¢,¢+1)A<pds
=/J(A’lw,w)AwdS—i—/J(A’lw,l)AgadS.
By definition, J(a, b)) =7 x Va - Vb. This gives,
/J(Ailga,ga)AgadS
= /(71 x Vi - Vo)ApdS
< [1vviveiaglas

< ||W||oo/|V<p||Ago|ds.

After application of the Cauchy—Schwartz and then
Young's inequalities, we obtain

/ J(Ailgo, <p)A<pdS

v 2 1 2 2
<z | (A)°dS+ —IIVYis | (Ve)°dS
2 2v
Lt Ly H
=5 Ha+ o Yllso H1.

With the help of the interpolation inequality [6]

(14)

1/2

1 1/2
IV lo < 51V /

IVAFIS™,

and then Poincaré inequalityy v || in (14) becomes
1
VY% < ZIVVIz| vy,

<i||Aw||z||v3x/f|| :
\4ﬁ 2
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Substituting the last estimate into (14) gives

Vv 1 3
_H2+j||Aw||zHV v, H

2 8v?2
1 12, 10
1% 1 2 302
=—H, —H"H'".
2 2+ Sﬁv 0 1
Hence,
/J(A_lga,ga)AgadS
1% 1 a2 302
< =-H —H"H'".
2 2+ Sﬁv 0 1

Moreover, it can be established that

/J(l//,l)A(pdS:/J(m/f,l)Azl//dSzo.

In fact we have

(15)

A28 = 0042y  and J (1) = 20d .
After integration by parts with respect &g we obtain

(30, A%Y) = —(v, 39 A%Y) = — (¥, A%00).

On the other hand, using the fact that the Laplacian is
a self-adjoint operator, gives

(3, A%9) = (A2 y, ¥) = (¥, A% ).

This proves the orthogonality relation (15) and con-
cludes the computation of the second term in (13). Fi-
nally, consider the last term in (13)

fV(ﬁ .o, f)VedsS

1/2 1/2
< (f(V(ﬁ.rotn f))zdS) (f(W)Z)

e
By virtue of all the above calculations one has

1. v 1 1/2,,3/2
~Hh<—-——-H+—H; H
2N T2 gy 0

(16)

or, in terms ofFy, this ladder inequality becomes

-

v

SA<—5R+ FPF? 4 agtvF. (1)

1
8v2v
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3. Length scales ladder, i.e., forFp. From (7) one recalls that
2 —2p4n 2
In [8] and [9] the length scales for the Navier— o= ll¢lz+v "R7[n ot f13.
Stokes equations on flat domains and for the complex Together with (18) this gives
Ginzburg—Landau equation were derived using the
. . D ; _ 4 )
Fourier expansion of the solution in order to obtainthe [im Fy < — |17 - rot, flI5
number of relevant modeas, ;. =00 v o4 )
+ V7 °R%|n -rot, fI5. (19)
Definition 1 [10]. Define the “wavenumbers” as the Returning now to the ladder estimate f&g in form

following ratio of (12), we may time average this ladder to obtdin)
F Y or divide by Fp and then time average to fir{dlz,c,).
k(1) = (%) , For both cases the results are the following
r
with N = 1,2, andr =0, 1. 0’

A
(F1) < =55l - roty fI3(4+ RY) (20)

If we divide the ladder inequality forFp (F1) and
through by Fo (F1), then the square of1o (k2.1) F
appears in the first term on the right-hand side of EI%E(K]?O)<<_1><)\’62' (21)
inequalities (12) and (17), respectively. ' ' Fo
It is worth noting that the estimate (20) includ)egs2

Definition 2 [10]. We will now define the length  gnq therefore, takes account of spectral information
scales as the time average of the inverse squaredyfihe forcing.

wavenumbers Using the same technique as before and employing
Fy et now (17) we again are able to find the time average

6o =k, ) = (E) , estimate forkZ ) as follows,

o _ F

with N =1,2, andr =0, 1, Zz’i — (K22,1) < <F2>
where the time averagg) is defined as 1 !
< 4+ RS - rot, £11%+ 2072,
Y 4ﬁv4( )2o Fllz+ 24

(g) = lim = | g(r)dr. (22)

t—o0 t
0

Recasting the estimate (11) in the following form 4 Conclusions
When applying the ladder method to dissipative
partial differential equations on a nonplanar domain,
in particular on the rotating sphere, one has to deal
i1 L with different boundary conditions than the periodic
afL 2 v 2, “ia 2 ones or no boundary conditions at all. This intro-
dt (2”@”2> S —glIVella+ Jlin - 1ok Flz: duces considerable difficulties. In this Letter we have
The application of Gronwall's lemma to the last @avoided these difficulties by replacing the original
expression gives Navier—Stokes equations on the 2D rotating sphere by
the vorticity equation. Using the vorticity equation we
im [lel3 < izllﬁ -rot, f|3. (18) applied the ladder method and found bounds for the
=00 v dissipative length scales in the solutions which arise
The expression (18) is only a part of what we need in naturally from the ladder structure. Besides, we have
order to obtain the estimates for the bottom rung of the also obtained the estimates for tiié-norm of Ho

d (1 .
E(gllﬁOll%) = —v[|[Vel5+ llgl2li - rot, fl2,

and using the Poincaré inequality we obtain
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and Hi, and it is worth noting that all estimates do References
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