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Abstract

In this Letter we obtain the dissipative length scale for the Navier–Stokes equations on a two-dimensional rotating spS2.
This system is a fundamental model of the large scale atmospheric dynamics. Using the equations of motion in their
form, we construct the ladder inequalities from which a set of time-averaged length scales is obtained.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The Navier–Stokes equations is a fundame
model which naturally arises in different aspects
meteorology. This system on a rotating sphere i
simple model of the large scale atmospheric dynam
and is often used in meteorological modelling in t
vorticity formulation. In particular, it has been us
to study the two-dimensional turbulence on a rotat
sphere in the context of atmospheric circulation
large planets [1].

In recent years there has been a growing intere
the study of the Navier–Stokes system on manifo
The best estimate of the attractor dimension for
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Navier–Stokes equations was obtained by Ilyin [
In [3] a simple proof of the explicit estimates of th
attractor dimension for the Navier–Stokes system
a rotating sphere in terms of the vorticity equati
has been performed. The problem of upper bou
for the Hausdorff and fractal dimensions of the glo
attractor for the Navier–Stokes equations on a tw
dimensional compact manifold was addressed in
In particular, in the case of the unit sphere the aut
gives the explicit values of the constants involv
Cao, Rammaha and Titi [4] have proved the Gev
regularity for the Navier–Stokes equation on the tw
dimensional sphereS2 and found an upper bound fo
the number of asymptotic degrees of freedom for
system. Global existence of strong solutions on
sphere has been studied in [5–7].

The aim of this Letter is to find dissipative leng
scales estimates for the solutions of the Navi
Stokes system on a rotating sphere using the vort
.
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equation and the best to date interpolation inequal
on the sphere. The length scales serve for be
understanding the spatio-temporal dynamics of
solutions of dissipative PDEs, providing informati
about the smallest features of the flow. In order
find the estimates for the length scales we use the
called ladder method which has been applied to
wide range of partial differential equations such
the complex Ginzburg–Landau equation [8] and
Navier–Stokes equations on flat domains with perio
boundary conditions [9].

Consider the Navier–Stokes equations of an inco
pressible fluid on a two-dimensional rotating sph
S2 in the following form [2,3]:

∂u

∂t
+ ν rot rotn u+ ∇

(
u2

2

)
(1)− u× rotn u+ ��n× u+ ∇p = f,

(2)divu= 0,

whereν > 0 is the viscosity constant,u is a velocity
vector in the tangent bundleT S2,p is a scalar function
for pressure,f is a baroclinic forcing term, “×”
denotes the standard vector product,R is the radius
of the sphere,� = 2ω sinφ is the Coriolis paramete
ω is an angular velocity,|φ| � π

2 is a latitude,θ is a
longitude (0� θ � 2π ), �n is the outward unit norma
vector toS2. By definition, the operator rotn u is [2]

rotn u= −�ndiv(�n× u)= (rotu · �n)�n,
and

roth= −�n× ∇h,
whereu is a vector field andh is a scalar function. I
is easy to see that

rotn roth= −�n(∆h).
The inner products for theL2-spaces of scalar func
tions denoted byL2(S2) and theL2-spaces of the tan
gent vector fields onS2 denoted byL2(T S2) are given
by [4]:

(u, v)L2(S2) =
∫
S2

uv dS, for u,v ∈ L2(S2),
(u, v)L2(T S2) =

∫
S2

u · v dS, for u,v ∈L2(T S2).
Whenever we integrate by parts we shall use
following formulas [4]

(3)(∇h,v)= (∇h,v)L2(T S2) = −(h,divv)L2(S2),

(rotu,v)= (rotu,v)L2(T S2)

(4)

= (u, rotn v)L2(T S2), for u,v ∈L2(T S2).
The ladder method involves replacing the origin
PDE by a hierarchy of ordinary differential inequa
ities. These inequalities are then used to control
norms of all spatial derivatives of the solution of t
equation, under the assumption that one can ob
an upper bound on the “bottom” rung of the ladd
For our purposes it will be more convenient to wo
with the scalar equation. Therefore, introducingψ as
a stream function foru: u = �n × ∇ψ , ψ = ∆−1(�n ·
rotn u), substituting this in Eq. (1), and applying th
operator rotn we obtain a vorticity equation [3]:

(5)∂t∆ψ + J (ψ,∆ψ + l)− ν∆2ψ = �n · rotn f,

where we followed the notations from [2,3]:J (a, b)=
�n × ∇a · ∇b, and in particularJ (ψ,∆ψ + l) = u ·
∇(∆ψ + l). The functionJ (a, b) has the property [2]

∫
S2

J (a, b) ds = 0,

and it can also be proved that

∫
S2

J (ψ,ϕ)ϕ ds = 0,

∫
S2

J (ψ, l)∆ψ ds = 0.

Finally, letϕ =∆ψ and introduce spacesH = L2(S
2)

∪ {ϕ:
∫
ϕ ds = 0} and H1 = H 1(S2) ∪ H . Hence,

Eq. (5) takes the form

∂tϕ + J
(
∆−1ϕ,ϕ + l

) − ν∆ϕ = �n · rotn f,

(6)ϕ(0)= ϕ0.

In order to calculate the length scales we define
following time-dependent functionalsHN :
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HN := ∥∥∇Nϕ
∥∥2

2

=




∫
S2

∣∣∆mϕ
∣∣2dS, for N = 2m,

∫
S2

∣∣∇∆mϕ
∣∣2dS, for N = 2m+ 1.

Also, we defineFN as follows

FN :=
∫
S2

∣∣∇N(�n · rotn f )
∣∣2dS,

and introduce a natural “time”τ = R2ν−1 which is
based on the radius of the sphereR and the viscosityν.
Then

(7)FN =HN + τ2FN .

We assume a forcing to be time-independent and s
that the forcing functionf (x) has a cut-off in its
spectrum such that it has the smallest length scale

(8)λf = sup
N

(FN+1

FN

)
.

Now we define an inverse squared length scale:

(9)λ−2
0 = λ−2

f +R−2.

In all the future calculations the domain of integrati
is assumed to beS2.

2. Ladder estimates

Let us start withH0. By definition,

H0 =
∫
ϕ2dS ⇒ 1

2
Ḣ0 =

∫
ϕtϕ dS.

After substitution ofϕt from Eq. (6) we obtain

1

2
Ḣ0 = ν

∫
ϕ∆ϕ dS −

∫
ϕJ

(
∆−1ϕ,ϕ + l

)
dS

(10)+
∫
(�n · rotn f )ϕ dS.

The last term in (10) can be estimated with the help
the Cauchy–Schwarz inequality as follows,
∫
(�n · rotn f )ϕ dS

�
(∫

(�n · rotn f )2dS

)1/2(∫
ϕ2dS

)1/2

=F1/2
0 H

1/2
0 .

Now applying equality (3) to the Laplacian term
(10) one obtains:

ν

∫
ϕ∆ϕ dS = ν

∫
ϕ div∇ϕ dS

= −ν
∫
(∇ϕ)2dS = −νH1.

The last term we need to estimate is the nonlinear t
in (10). Using the properties ofJ (a, b) and recalling
that∆−1ϕ =ψ gives us the following result:

−
∫
ϕJ

(
∆−1ϕ,ϕ + l

)
dS

= −
∫
ϕJ (ψ,ϕ) dS −

∫
J (ψ, l)ϕ dS = 0.

Adding all the above calculations we can write t
inequality for the “bottom” rung of the ladder as

(11)
1

2
Ḣ0 = −νH1 +F1/2

0 H
1/2
0 .

This form of ladder is inconvenient to leave becau
of the way the forcing term is expressed in here. La
on, we will want to divide through byH0 and the
square root of forcing will cause complications. F
this reason we introduceF0 and (11) can be rewritte
as:

(12)
1

2
Ḟ0 � −νF1 + νλ−2

0 F0.

As before, consider the next quantityH1. Substituting
ϕt from Eq. (6) one gets:

1

2
Ḣ1 =

∫
∇ϕ∇ϕt dS

= ν

∫
∇∆ϕ∇ϕ dS

−
∫

∇J (
∆−1ϕ,ϕ + l

)∇ϕ dS
(13)+

∫
∇(�n · rotn f )∇ϕ dS.
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The Laplacian term in (13) can be treated as follow

ν

∫
∇∆ϕ∇ϕ dS = −ν

∫
∆ϕ div∇ϕ dS

= −ν
∫
(∆ϕ)2dS = −νH2.

The second term in (13) is:

−
∫

∇J (
∆−1ϕ,ϕ + l

)∇ϕ dS
=

∫
J
(
∆−1ϕ,ϕ + l

)
div∇ϕ dS

=
∫

J
(
∆−1ϕ,ϕ + l

)
∆ϕ dS

=
∫

J
(
∆−1ϕ,ϕ

)
∆ϕ dS +

∫
J
(
∆−1ϕ, l

)
∆ϕ dS.

By definition,J (a, b)= �n× ∇a · ∇b. This gives,∫
J
(
∆−1ϕ,ϕ

)
∆ϕ dS

=
∫
(�n× ∇ψ · ∇ϕ)∆ϕ dS

�
∫

|∇ψ||∇ϕ||∆ϕ|dS

� ‖∇ψ‖∞
∫

|∇ϕ||∆ϕ|dS.

After application of the Cauchy–Schwartz and th
Young’s inequalities, we obtain∫

J
(
∆−1ϕ,ϕ

)
∆ϕ dS

� ν

2

∫
(∆ϕ)2dS + 1

2ν
‖∇ψ‖2∞

∫
(∇ϕ)2dS

(14)= ν

2
H2 + 1

2ν
‖∇ψ‖2∞H1.

With the help of the interpolation inequality [6]

‖∇f ‖∞ � 1

2
‖∇f ‖1/2

2 ‖∇∆f ‖1/2
2 ,

and then Poincaré inequality,‖∇ψ‖∞ in (14) becomes

‖∇ψ‖2∞ � 1

4
‖∇ψ‖2

∥∥∇3ψ
∥∥

2

� 1

4
√

2
‖∆ψ‖2

∥∥∇3ψ
∥∥

2.
Substituting the last estimate into (14) gives

ν

2
H2 + 1

8
√

2ν
‖∆ψ‖2

∥∥∇3ψ
∥∥

2H1

= ν

2
H2 + 1

8
√

2ν
H

1/2
0 H

1/2
1 H1

= ν

2
H2 + 1

8
√

2ν
H

1/2
0 H

3/2
1 .

Hence,∫
J
(
∆−1ϕ,ϕ

)
∆ϕ dS

� ν

2
H2 + 1

8
√

2ν
H

1/2
0 H

3/2
1 .

Moreover, it can be established that

(15)
∫
J (ψ, l)∆ϕ dS =

∫
J (ψ, l)∆2ψ dS = 0.

In fact we have

∆2∂θψ = ∂θ∆
2ψ and J (ψ, l)= 2ω∂θψ.

After integration by parts with respect toθ , we obtain(
∂θψ,∆

2ψ
) = −(

ψ,∂θ∆
2ψ

) = −(
ψ,∆2∂θψ

)
.

On the other hand, using the fact that the Laplacia
a self-adjoint operator, gives(
∂θψ,∆

2ψ
) = (

∆2∂θψ,ψ
) = (

ψ,∆2∂θψ
)
.

This proves the orthogonality relation (15) and co
cludes the computation of the second term in (13).
nally, consider the last term in (13)∫

∇(�n · rotn f )∇ϕ dS

�
(∫ (∇(�n · rotn f )

)2
dS

)1/2(∫
(∇ϕ)2

)1/2

=F1/2
1 H

1/2
1 .

By virtue of all the above calculations one has

(16)

1

2
Ḣ1 � −ν

2
H2 + 1

8
√

2ν
H

1/2
0 H

3/2
1 +F1/2

1 H
1/2
1 ,

or, in terms ofFN , this ladder inequality becomes

(17)
1

2
Ḟ1 � −ν

2
F2 + 1

8
√

2ν
F

1/2
0 F

3/2
1 + λ−2

0 νF1.
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3. Length scales

In [8] and [9] the length scales for the Navie
Stokes equations on flat domains and for the comp
Ginzburg–Landau equation were derived using
Fourier expansion of the solution in order to obtain
number of relevant modesκN,r .

Definition 1 [10]. Define the “wavenumbers” as th
following ratio

κN,r (t)=
(
FN

Fr

) 1
2(N−r)

,

with N = 1,2, andr = 0,1.

If we divide the ladder inequality forF0 (F1)
through byF0 (F1), then the square ofκ1,0 (κ2,1)
appears in the first term on the right-hand side
inequalities (12) and (17), respectively.

Definition 2 [10]. We will now define the length
scales as the time average of the inverse squ
wavenumbers

�−2
N,r ≡ 〈

κ2
N,r

〉 =
〈(

FN

Fr

) 1
(N−r)

〉
,

with N = 1,2, andr = 0,1,

where the time average〈g〉 is defined as

〈g〉 = lim
t→∞

1

t

t∫
0

g(τ) dτ.

Recasting the estimate (11) in the following form

d

dt

(
1

2
‖ϕ‖2

2

)
= −ν‖∇ϕ‖2

2 + ‖ϕ‖2‖�n · rotn f ‖2,

and using the Poincaré inequality we obtain

d

dt

(
1

2
‖ϕ‖2

2

)
� −ν

4
‖∇ϕ‖2

2 + 1

ν
‖�n · rotn f ‖2

2.

The application of Gronwall’s lemma to the la
expression gives

(18)lim
t→∞‖ϕ‖2

2 � 4

ν2‖�n · rotn f ‖2
2.

The expression (18) is only a part of what we need
order to obtain the estimates for the bottom rung of
ladder, i.e., forF0. From (7) one recalls that

F0 = ‖ϕ‖2
2 + ν−2R4‖�n · rotn f ‖2

2.

Together with (18) this gives

lim
t→∞F0 � 4

ν2
‖�n · rotn f ‖2

2

(19)+ ν−2R4‖�n · rotn f ‖2
2.

Returning now to the ladder estimate forF0 in form
of (12), we may time average this ladder to obtain〈F1〉
or divide byF0 and then time average to find〈κ2

1,0〉.
For both cases the results are the following

(20)〈F1〉 �
λ−2

0

ν2 ‖�n · rotn f ‖2
2

(
4+R4)

and

(21)�−2
1,0 ≡ 〈

κ2
1,0

〉
�

〈
F1

F0

〉
� λ−2

0 .

It is worth noting that the estimate (20) includesλ−2
0

and, therefore, takes account of spectral informa
of the forcing.

Using the same technique as before and emplo
now (17) we again are able to find the time avera
estimate for〈κ2

2,1〉 as follows,

�−2
2,1 ≡ 〈

κ2
2,1

〉
�

〈
F2

F1

〉

(22)

� 1

4
√

2ν4

(
4+R4)λ−1

0 ‖�n · rotn f ‖2
2 + 2λ−2

0 .

4. Conclusions

When applying the ladder method to dissipat
partial differential equations on a nonplanar doma
in particular on the rotating sphere, one has to d
with different boundary conditions than the period
ones or no boundary conditions at all. This int
duces considerable difficulties. In this Letter we ha
avoided these difficulties by replacing the origin
Navier–Stokes equations on the 2D rotating spher
the vorticity equation. Using the vorticity equation w
applied the ladder method and found bounds for
dissipative length scales in the solutions which a
naturally from the ladder structure. Besides, we h
also obtained the estimates for theL2-norm of H0
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andH1, and it is worth noting that all estimates d
not contain any unknown constants. Due to the
stricted applicability of interpolation inequalities o
the sphere, the analysis for theL2-norm of higher
derivatives of the solutions is much more involve
This is currently work in progress.
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