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In this paper we study experimentally the dynamics of a non linear system: a spring pendulum coupled to an oscillator. The
system was tested using a hybrid technique called Real Time Dynamic Substructuring (RTDS)[1, 2]. RTDS is a testing tech-
nique that involves splitting the system under study into two subsystems: one will be physically tested (physical substructure)
and the other will be simulated in the computer (numerical model). These substructures interact in real time through a set of
transfer systems. RTDS is a very powerful experimental methodology that not only allows full scale and real time testing but
also real-time bifurcation tracking in complex engineering systems [3, 4]. In our hybrid experiment the spring pendulum is
taken to be the physical substructure while oscillator is the simulated numerical model.

1 Description of the system

The complete system is shown schematically in figure 1. It consists of a spring pendulum with its pivot point connected to the
mass M, belonging to the mass-spring-damper, characterized by M, K and C. The pendulum mass, m, is assumed to act at a
single point and it is connected to the pivot point by a spring, k. Due to this spring connection the length of the pendulum is
variable.

The system has three degrees of freedom and its dynamics are characterized by four frequencies: the external exciting one

ω = αsin(2πft), and the natural frequencies of the linearized system in MSD, pendulum and spring modes ω1 =

√
K

M
,

ω2 =

√
g

L
and ω3 =

√
k

m
, respectively.

2 Experimental results

To implement the real-time tasks a dSpace DS1104 RD controller board was used. MATLAB/Simulink was used to build the
hybrid model. The transfer system consists of an electrically driven ball-screw actuator with an in line mounted synchronous
servo motor controlled by a servo drive which applies a displacement to the pendulum pivot point in the vertical direction.
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Fig. 1 Schematic representation
of spring pendulum oscillator.

Fig. 2 Schematic representation of the substructures.

Fig. 3 Picture of the
physical substructure.
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Figure 3 shows a photograph of the experimental apparatus. The instrumentation used consists of a load cell to measure the
force acting at the spring pendulum pivot, a LVDT displacement transducer connected to the platform to be able to track and
control the actuator movement, a digital incremental encoder used to record both angular displacement and angular velocity
of the pendulum and a computer vision system used to track the movement of the pendulum bob. Figure 4 shows experimental
results for three different external forces. y denotes vertical displacement of the oscillator, θ is the pendulum angle and l is the
pendulum length. From all this different solutions bifurcation diagrams can be made.

(a) α=12N, f=2.5Hz
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ẏ

−0.04 −0.02 0 0.02 0.04
−0.4

−0.2

0

0.2

0.4

y

−2 −1 0 1 2
−20

−10

0

10

20

θ

θ̇

−2 −1 0 1 2
−20

−10

0

10

20

θ

(b) α=15N, f=2.5Hz
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(c) α=15N, f=2.5Hz
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Fig. 4 Hybrid experiment results. Phase portraits and Poincaré sections.

3 Conclusions

This paper describes how real time dynamic substructuring is used to test nonlinear systems and how experimental bifurcations
diagrams can be built.
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