Bifurcations on a spring-pendulum oscillator

A. Gonzalez-Buelga^{*1}, Y. Kyrychko¹, and D.J. Wagg¹

¹ University of Bristol, Faculty of Engineering, Queen's Building, University Walk, Bristol BS8 1TR, UK.

In this paper we study experimentally the dynamics of a non linear system: a spring pendulum coupled to an oscillator. The system was tested using a hybrid technique called Real Time Dynamic Substructuring (RTDS)[1, 2]. RTDS is a testing technique that involves splitting the system under study into two subsystems: one will be physically tested (physical substructure) and the other will be simulated in the computer (numerical model). These substructures interact in real time through a set of transfer systems. RTDS is a very powerful experimental methodology that not only allows full scale and real time testing but also real-time bifurcation tracking in complex engineering systems [3, 4]. In our hybrid experiment the spring pendulum is taken to be the physical substructure while oscillator is the simulated numerical model.

© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Description of the system

The complete system is shown schematically in figure 1. It consists of a spring pendulum with its pivot point connected to the mass M, belonging to the mass-spring-damper, characterized by M, K and C. The pendulum mass, m, is assumed to act at a single point and it is connected to the pivot point by a spring, k. Due to this spring connection the length of the pendulum is variable.

The system has three degrees of freedom and its dynamics are characterized by four frequencies: the external exciting one $\omega = \alpha sin(2\pi ft)$, and the natural frequencies of the linearized system in MSD, pendulum and spring modes $\omega_1 = \sqrt{\frac{K}{M}}$, $\omega_2 = \sqrt{\frac{g}{L}}$ and $\omega_3 = \sqrt{\frac{k}{m}}$, respectively.

2 Experimental results

To implement the real-time tasks a dSpace DS1104 RD controller board was used. MATLAB/Simulink was used to build the hybrid model. The transfer system consists of an electrically driven ball-screw actuator with an in line mounted synchronous servo motor controlled by a servo drive which applies a displacement to the pendulum pivot point in the vertical direction.

* Corresponding author: e-mail: a.gonzalez-buelga@bristol.ac.uk, Phone: +44 117 331 7061 Fax: +44 117 929 4423

Fig. 1 Schematic representation of spring pendulum oscillator.

Fig. 3 Picture of the physical substructure.

1030304

Figure 3 shows a photograph of the experimental apparatus. The instrumentation used consists of a load cell to measure the force acting at the spring pendulum pivot, a LVDT displacement transducer connected to the platform to be able to track and control the actuator movement, a digital incremental encoder used to record both angular displacement and angular velocity of the pendulum and a computer vision system used to track the movement of the pendulum bob. Figure 4 shows experimental results for three different external forces. *y* denotes vertical displacement of the oscillator, θ is the pendulum angle and *l* is the pendulum length. From all this different solutions bifurcation diagrams can be made.

Fig. 4 Hybrid experiment results. Phase portraits and Poincaré sections.

3 Conclusions

This paper describes how real time dynamic substructuring is used to test nonlinear systems and how experimental bifurcations diagrams can be built.

Acknowledgements The authors would like to acknowledge the support of the EPSRC: AGB and YK are supported by grant (GR/S49780) and by grant GR/72020/01) respectively. and D.J.W. via and Advanced Research Fellowship.

References

- A. Blakeborough, M. S. Williams, A. P. Darby, and D. M. Williams. The development of real-time substructure testing. *Philosopical Transactions of the Royal Society of London A*, 359:1869–1891, 2001.
- [2] M.I. Wallace, D.J. Wagg, and S.A. Neild. An adaptive polynomial based forward prediction algorithm for multi-actuator real-time dynamic substructuring. *Proceedings of the Royal Society of London A.*, 461:3807–3826, 2005.
- [3] Y.N. Kyrychko, K.B. Blyuss, A. Gonzalez-Buelga, S.J. Hogan, and D.J. Wagg. Real-time dynamic substructuring in a coupled oscillatorpendulum system. *Proceedings of the Royal Society of London A.*, 462:1271–1294, 2006.
- [4] A. Gonzalez-Buelga, D.J. Wagg, and S.A. Neild. Parametric variation of a coupled pendulum-oscillator system using real time dynamic substructuring. *Structural Control and Health Monitoring*, 14:991–1012, 2007.