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Spectral properties and transition to instability in neutral delay differential
equations are investigated in the limit of large delay. An approximation of the
upper boundary of stability is found and compared to an analytically derived
exact stability boundary. The approximate and exact stability borders agree quite
well for the large time delay, and the inclusion of a time-delayed velocity feedback
improves this agreement for small delays. Theoretical results are complemented
by a numerically computed spectrum of the corresponding characteristic
equations.
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1. Introduction

An important area of research in physics and engineering is control theory, and a recent
monograph by Schöll and Schuster [1] gives a good overview of the developments in this
field. From a dynamical systems perspective, one could consider stabilization of unstable
fixed points or unstable periodic orbits [2–4]. In fact, even when these unstable periodic
orbits are embedded in a chaotic attractor, they can still be stabilized by weak external
forces, as it has been first proposed in a seminal paper by Ott et al. [5]. Since then, several
other methods of controlling unstable motion have been proposed. One of them is a time-
delayed feedback control proposed by Pygaras [6], which can be easily implemented in
a wide range of experiments and is non-invasive, i.e. it vanishes as soon as unstable motion
becomes stable [7–18]. This method utilizes a difference between a signal at the current
time and the same signal at some time ago. The scheme can be improved by introducing
multiple time delays into the control loop [19]. Further considerations of multiple delay
control, also referred to as extended time-delay autosynchronization can be found in
[20–24].

From a theoretical point of view, introduction of a time delay into the system leads to
an infinite-dimensional phase space and transcendental characteristic equations [25,26].
This adds a significant difficulty to the stability and bifurcation analyses of such systems.
Some analytical results on time-delayed feedback control can be found, for instance, in
[27–32]. In the case of linear time-delayed systems with a non-delayed highest derivative,
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one can use the Lambert function to find the solutions of the corresponding characteristic
equation [33,34]. However, for the neutral equations, i.e. equations which have time delays
in the highest derivative term, this approach fails, and other approaches should be used.
Furthermore, since neutral delay differential equations (NDDEs) often possess
discontinuities in their solution, the numerical treatment and bifurcation analyses of
such equations are much more involved than those of regular delay differential equations
(DDEs). For instance, the existing packages for bifurcation analysis of DDEs, such as
DDE-BIFTOOL [35] and PDDE-CONT [36] are currently unable to perform continuation
for neutral systems.

This article is devoted to the analytical and numerical analysis of a time-delayed system
of neutral type. Such models arise in a variety of contexts, such as biological and
population dynamics models, see, for example, [37–39]. Balanov et al. [40], for instance,
derived a neutral DDE as a model for torsional waves on a driven drill-string. Another
example studied by Blakely and Corron [41] is a model of a chaotic transmission line
oscillator, in which an NDDE was used to correctly reproduce experimental observations
of fast chaotic dynamics. The system to be studied in this article was first introduced by
Kyrychko et al. [42] in the context of hybrid testing, where it proved to be a good physical
model for the description of the effects of actuator delays. It is noteworthy that in hybrid
testing, quite often one encounters significant time delays due to actuator response time.
Furthermore, actuator delay strongly depends on the stiffness of the system, hence it can
vary considerably even in different runs of the same experiment. For this reason, the actual
values attained by the actuator time delay can be quite high [43–45].

It is important to note that NDDEs are different from DDEs in that they may possess
a continuous as well as a point spectrum, and their stability properties are far from being
completely understood. Here, we investigate two different kinds of time-delayed feedback,
both of which arise naturally in experimental settings. The first of these includes time delay
in the feedback force, while the second introduces a velocity feedback. To understand the
stability properties of the system, we will analyse asymptotic behaviour of the eigenvalue
spectrum and identify regions of (in)stability in terms of the system’s parameters.
The validity of these results will be compared to the numerical solution of the corres-
ponding characteristic equation. For the particular system under investigation it is possible
to find the stability spectrum analytically, and therefore it serves as a perfect test model for
which it is possible to compare exact and approximate stability boundaries. It will be
shown that although the approximation may deviate quite significantly from the exact
boundary for small time delays, it gives a good agreement for larger time delays.
Therefore, this approximation can be used for systems described by neutral DDEs with
large time delays, where it is impossible to find the stability boundary analytically.

2. Stability analysis

2.1. Delayed force

Consider the following NDDE [42]:

€zðtÞ þ 2� _zðtÞ þ zðtÞ þ p €zðt� �Þ ¼ 0; ð1Þ

where dot means differentiation with respect to time t, and � is the time delay. In the
context of hybrid testing experiments on a pendulum-mass-spring-damper system, � stands
for a rescaled damping rate, and p is the mass ratio. Introducing vðtÞ ¼ _zðtÞ and
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uðtÞ ¼ vðtÞ þ pvðtÞ, this equation can be rewritten as a system of differential equations with
a shift

_zðtÞ ¼ uðtÞ � pvðt� �Þ;

_uðtÞ ¼ �2�½uðtÞ � pvðt� �Þ� � zðtÞ;

vðtÞ ¼ uðtÞ � pvðt� �Þ:

ð2Þ

With the initial data ðzð0Þ; uð0ÞÞ ¼ ðz0; u0Þ 2 R�R and vðsÞ ¼ �ðsÞ 2 C½��; 0�, this system
can first be solved on 0 � t � � interval, then on � � t � 2� and so on, provided the
following sewing condition is satisfied: �ð0Þ ¼ u0 � p�ð��Þ. This condition ensures that

there are no discontinuities in the solutions at t ¼ k�; k 2 Zþ. For arbitrary initial
conditions the sewing condition does not hold, and leads to jumps in the derivative of the
solution [46].

The Equation (1) has a single steady state z� ¼ 0. The stability of this steady state is

determined by the real part of the complex roots � 2 C of the corresponding characteristic
equation

�2 þ 2��þ 1þ p�2e��� ¼ 0: ð3Þ

As was already mentioned in the introduction, the existing bifurcation packages for

the analysis of delay equations, such as DDE-BIFTOOL [35] and PDDE-CONT [36],
currently do not provide capabilities of calculating eigenvalues for NDDEs. One of the
reasons for this lies in the so-called behavioural discontinuity, a feature unique to NDDEs

as compared to standard DDEs. This refers to the fact that even when all characteristic
roots are stable for �¼ 0, for � being small and positive infinitely many of these roots may
have unbounded real parts. In other words, a small variation of the time delay leads to an

infinitely large root variation [47,48].
Several methods based on the linear multi-step approach and pseudospectral differ-

entiation have recently been put forward which provide an efficient tool for computing the
characteristic spectrum of NDDEs [49–51]. We have used this method to compute the

spectrum of Equation (3), which is shown in Figure 1. It can be observed that for small
time delays (Figure 1(a)) the steady state is stable, as all the eigenvalues are in the left half-
plane. As time delay increases, a pair of complex conjugate eigenvalues crosses the

imaginary axis, as demonstrated in Figure 1(b) and (c), leading to an instability. As time
delay increases still further, the unstable eigenvalues return to the left half-plane, thus
restoring the stability.

In the case when the mass ratio p in Equation (1) exceeds unity, the steady state is

unstable for any positive time delay �. It is worth noting that for jpj5 1, the steady state
may undergo stability changes/switches as the time delay is varied. To understand the
dynamics of the system in the neighbourhood of these stability changes, one can use the

framework of pseudocontinuous spectrum used by Yanchuk et al. [31,52] for the analysis
of scaling behaviour of eigenvalues for large time delays, who followed an earlier work
of Lepri et al. [53] on scaling of the spectra. Following this approach, one can express

the asymptotic approximation of the eigenvalues for large � as

� ¼
1

�
� þ i �þ

1

�
�

� �
þO

1

�2

� �
; ð4Þ

where �, � and � are real-valued quantities, which are associated with the real and

imaginary part of the eigenvalue �, respectively. Substituting this representation into
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the characteristic Equation (3), gives to the leading order in Oð1=�Þ:

1��2 þ 2i��� p�2e��e�i�e�i�� ¼ 0: ð5Þ

By choosing � ¼ �ðnÞ ¼ 2�n=�, n ¼ �1,�2,�3, . . . in Equation (5), we can simplify this

equation to

1��2 þ 2i��� p�2e��e�i� ¼ 0: ð6Þ

From (4) it follows that Reð�Þ � �ð�Þ=� and Imð�Þ � � up to the leading order,

and therefore the eigenvalues � accumulate in the complex plane along curves ð�ð�Þ;�Þ,
with the real axis scaling as �Reð�Þ. Solving Equation (6) gives an expression for the

real part � of the eigenvalue as a function of the Hopf frequency �

�ð�Þ ¼ �
1

2
ln

1

p2
1þ

4�2 � 2

�2
þ

1

�4

� �
: ð7Þ

A steady state can lose its stability via a Hopf bifurcation, at which point the tip

of curve �ð�Þ will cross the imaginary axis. If this happens, there will be an interval of

frequencies �1 5�5�2, for which �ð�Þ4 0 and �ð�1Þ ¼ �ð�2Þ ¼ 0. This instability can

be prevented, provided the interval of unstable frequencies �1 5�5�2 lies inside the

interval �n0 ;�n0þ1
� �

for some n0 [31]. Here, �1;2 are two positive roots of the equation

�ð�Þ ¼ 0, which can be found from Equation (7) as

�2
1;2 ¼

1

1� p2
1� 2�2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 2�2Þ2 � 1þ p2

q� �
: ð8Þ
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Figure 1. (Colour online) Spectrum of the characteristic Equation (3) for different time delays:
(a) �¼ 2.5, (b) �¼ 3.32, (c) �¼ 5 and (d) �¼ 7. Parameter values are: �¼ 0.1, p¼ 0.3. The solid lines
show the asymptotic pseudocontinuous spectrum given by Equation (7).
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For further analytical progress, we expand this expression for small values of �, which
gives

�� ¼ �1 ��2 ¼
1ffiffiffiffiffiffiffiffiffiffiffi
1� p
p �

1ffiffiffiffiffiffiffiffiffiffiffi
1þ p
p �

�2

p

1ffiffiffiffiffiffiffiffiffiffiffi
1þ p
p þ

1ffiffiffiffiffiffiffiffiffiffiffi
1� p
p

� �
: ð9Þ

Since the actual values of the frequencies are �ðnÞ ¼ 2�n=� for any integer n, the distance

between any two successive frequencies is 2�=�, and hence the necessary condition for

stability ��5 2�=� can be written as

1ffiffiffiffiffiffiffiffiffiffiffi
1� p
p �

1ffiffiffiffiffiffiffiffiffiffiffi
1þ p
p �

�2

p

1ffiffiffiffiffiffiffiffiffiffiffi
1þ p
p þ

1ffiffiffiffiffiffiffiffiffiffiffi
1� p
p

� �
5 2�=�: ð10Þ

For large enough time delay �, p asymptotically approaches a lower bound of stability

which corresponds to �� ¼ 0. It can be obtained from Equation (8) by using

0 ¼ ð�1 ��2Þð�1 þ�2Þ ¼ �2
1 ��2

2

¼
2

1� p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 2�2Þ2 � 1þ p2

q
;

which yields

p ¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
� 2�: ð11Þ

Figure 2 shows the plot of the approximate stability boundary (10) as a function of

time delay � for a given small value of the damping �. The grayscale (colour code) in this

figure indicates the value of the largest real part of the eigenvalues in the spectrum of the

characteristic Equation (3) for each value of p and �. As it follows from Figure 2,

the analytically derived formula (10) for the maxima on the stability boundary

deviates from the exact stability peaks (which correspond to codimension-two Hopf

bifurcation) for small delays, but it provides a good approximation for large time delay �.

0 10 20 30

0.2

0.4

0.6

0.8

1

t

p

–0.5

–0.4

–0.3

–0.2

–0.1

0

Figure 2. (Colour online) Comparison of the approximate upper bound of stability according
to Equation (10) (dotted line) with an exact stability boundary for �¼ 0.1 in the ð�; pÞ plane.
The grayscale (colour code) encodes the value of the largest real part of the complex eigenvalues �.

Dynamical Systems 5

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
B
r
i
s
t
o
l
 
L
i
b
r
a
r
y
]
 
A
t
:
 
1
2
:
5
3
 
2
2
 
A
p
r
i
l
 
2
0
0
9



The Appendix contains an exact analytic expression for the stability boundary in terms of

system’s parameters.

2.2. Delayed viscous damping

In order to analyse the influence of velocity feedback on the stability of NDDE, we modify

Equation (1) as

€zðtÞ þ 2�1 _zðtÞ þ zðtÞ þ p €zðt� �Þ þ 2�2 _zðt� �Þ ¼ 0: ð12Þ

This equation was introduced in Ref. [42], where it was shown that depending on the

difference between two damping parameters �1 and �2, the stability domain may shrink

and even split into separate stability regions in the parameter plane (the so-called death

islands). The characteristic equation now modifies to

�2 þ 2�1�þ 1þ p�2e��� þ 2�2�e
��� ¼ 0: ð13Þ

Figure 3 shows the numerical approximation of the roots of this equation in the

neighbourhood of the origin. From this figure it follows that similar to the situation

without velocity feedback, the system undergoes successive stability switches as the time

delay is varied.
Assuming in Equation (13) the same asymptotic behaviour (4) of the eigenvalues for

large time delay (i.e. the real part of the eigenvalue scales as 1=�), gives to the leading order

1��2 þ 2i�1�� p�2e��e�i� þ 2i�2�e��e�i� ¼ 0; ð14Þ
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Figure 3. (Colour online) Spectrum of the characteristic Equation (13) for different time delays:
(a) �¼ 2, (b) �¼ 2.725, (c) �¼ 3.5 and (d) �¼ 5. Parameter values are: �1 ¼ 0:25, �2 ¼ 0:24, p¼ 0.3.
The solid lines show the asymptotic pseudocontinuous spectrum given by Equation (15).
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with the constraint � ¼ �ðnÞ ¼ 2�n=�, n ¼ �1,�2,�3, . . . . One can solve this equa-

tion for the real part of the eigenvalue � at the Hopf bifurcation as a function of

frequency � as

�ð�Þ ¼ �
1

2
ln

1��2
	 
2

þ4�21�
2

p2�4 þ 4�22�
2
: ð15Þ

Transition to instability occurs when �ð�Þ ¼ 0, which gives the expression for

instability frequencies

�2
1;2 ¼

1

1� p2
1þ 2�22 � 2�21 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�22 � 2�21
	 
2

�1þ p2
q� �

: ð16Þ

In a manner similar to the analysis of the delayed force feedback, one can make further

analytical progress by assuming that both damping coefficients are small: j�1j 	 1,

j�2j 	 1. The necessary stability condition �� ¼ �1 ��2 5 2�=� gives the following

asymptotic approximation for the maxima of the stability boundary

1ffiffiffiffiffiffiffiffiffiffiffi
1� p
p �

1ffiffiffiffiffiffiffiffiffiffiffi
1þ p
p �

�21 � �
2
2

p

1ffiffiffiffiffiffiffiffiffiffiffi
1þ p
p þ

1ffiffiffiffiffiffiffiffiffiffiffi
1� p
p

� �
5 2�=�: ð17Þ

The expression (17) can be further simplified for large time delay in a manner similar to

(11), which gives p ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�21 � �

2
2Þð1� �

2
1 þ �

2
2Þ

q
� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�21 � �

2
2

q
.

It is noteworthy that the inequality (17) provides a good approximation for the

stability boundary even when actual values of damping coefficients �1 and �2 are large, as
long as the difference ð�21 � �

2
2Þ is small by the absolute value. Figure 4 shows an excellent

agreement between the asymptotic approximation (17) and the exact stability boundary,

especially for sufficiently large time delay. In the Appendix it is shown how the exact
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Figure 4. (Colour online) Comparison of the approximate upper bound of stability according to
Equation (17) (dotted line) with an exact stability boundary for �1 ¼ 0:25 and �2 ¼ 0:24 in the ð�; pÞ
plane. The grayscale (colour code) encodes the value of the largest real part of the complex
eigenvalues �.
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stability boundary varies depending on parameters, and in particular on the relation

between the two damping coefficients.

3. Conclusions

Time delays are an intrinsic feature of many physical, biological and engineering systems,

and in recent years the analysis of such systems has led to many interesting and important

findings. There are systems where the time delay is present intrinsically due to processing

times, mechanical inertia etc., and there are those where the time delay is introduced

externally in order to stabilize unstable periodic orbits and steady states. Therefore,

a better understanding of delay differential equations will provide a clear picture of the

system’s stability and controllability. In this article we have concentrated on the analysis

of two neutral delay differential equations. We have shown that depending on the time

delay �, the systems exhibit stability switches, where stability is lost/regained depending

on the time delay. In the case of delayed velocity feedback, the interplay between the time

delay and the two damping coefficients gives different stability regimes in the parameter

plane, and for some parameter values the stability area collapses into separate islands.

We have derived an asymptotic approximation of the stability peaks for large time delays,

based upon universal scaling arguments, and have compared this approximation with the

exact stability boundary. The results agree quite well even when the time delay is not too

large, and give excellent agreement for large delays. The results presented in this article

include numerical simulations of the characteristic spectrum and constitute the first

attempt to approximate stability peaks for neutral DDEs. As has already been mentioned

in the introduction, neutral DDEs arise naturally in a wide range of physical problems,

which makes the approach developed in this article a useful tool for the stability analysis

of such systems.
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spatiotemporal dynamics in resonant tunneling diodes, Phys. Rev. E 68 (2003), p. 26204.
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Appendix: Exact stability boundary

To find an exact analytical expression for the stability boundary, one has to substitute � ¼ i! into
the characteristic Equation (3). After separating real and imaginary parts, this gives [54]

1� !2 � p!2 cosð!�Þ ¼ 0;

2�!þ p!2 sinð!�Þ ¼ 0:
ðA1Þ

Squaring and adding these equations gives

ð1� p2Þ!4 þ ð4�2 � 2Þ!2 þ 1 ¼ 0: ðA2Þ

This equation can be solved as

!2
1;2 ¼

1

1� p2
1� 2�2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�2ð Þ

2
�1þ p2

q� �
: ðA3Þ

In fact, Equation (A2) provides an expression for stability boundary value of p as parametrized
by the Hopf frequency !:

pð!Þ ¼
1

!2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!4 þ 2!2 2�2 � 1ð Þ þ 1

p
: ðA4Þ

The corresponding value of the time delay at the stability boundary is derived from Equation (A1)

�ð!Þ ¼
1

!
Arctan

2�!

!2 � 1
� �k

� �
; ðA5Þ

where k¼ 0, 1, 2, . . . and Arctan denotes the principal value of arctan. Figure A1 illustrates the
dependence of critical mass ratio p on the time delay � which ensures the stability of the steady state.
It is noteworthy that if jpj4 1, the steady state is unstable for any positive time delay �; on the other
hand, if jpj5 1 and �4 1=

ffiffiffi
2
p

, then the steady state is asymptotically stable for any positive time

Figure A1. Exact stability boundary of the characteristic Equation (3) in ð�; pÞ parameter plane for
�¼ 0.1. The steady state is stable in the shaded area.
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delay �. For �5 1=
ffiffiffi
2
p

, there is a lower bound on the value of pmin ¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
, so that an

asymptotic stability is guaranteed for all �4 0 provided p5 pmin [42].
In the case of time-delayed viscous damping, the characteristic Equation (13) at the points of

stability changes can be written as

1� !2 � p!2 cos!� þ 2�2! sin!� ¼ 0;

2�1 þ p! sin!� þ 2�2 cos!� ¼ 0:
ðA6Þ

Squaring and adding these two equations gives the following parametrization of p by the
Hopf frequency:

!2
1;2 ¼

1

1� p2
1� 2�21 þ 2�22 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�21 þ 2�22
	 
2

�1þ p2
q� �

: ðA7Þ

Similar to the previous case, one can derive parametric expressions for p(!) and �ð!Þ from
Equation (A6)

pð!Þ ¼
1

!2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 � 1ð Þ

2
þ4 �21 � �

2
2

	 

!2

q
: ðA8Þ

The corresponding value of the time delay at the stability boundary can be found as

�ð!Þ ¼
1

!
2�n� arccos

pð1� !2Þ � 4�1�2
p2!2 þ 4�22

� �
; n ¼ 1; 2; 3; . . . : ðA9Þ

Figure A2 demonstrates how stability boundary is affected by the relation between �1 and �2.
In particular, we note that when �1 ¼ �2, the stability boundary touches the �-axis ( p¼ 0), and for
�2 4 �1, the stability area consists of non-overlapping death islands, inside which the oscillations
are damped, and the steady state is stable.

Figure A2. Exact stability boundary of the characteristic Equation (13) in ð�; pÞ parameter plane.
The steady state is stable in the shaded area. Parameter values are: (a) �1 ¼ 0:25 and �2 ¼ 0:24,
(b) �1 ¼ 0:23 and �2 ¼ 0:25.
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