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a b s t r a c t 

This paper analyses an SIRS-type model for infectious diseases with account for behavioural changes asso- 

ciated with the simultaneous spread of awareness in the population. Two types of awareness are included 

into the model: private awareness associated with direct contacts between unaware and aware popula- 

tions, and public information campaign. Stability analysis of different steady states in the model provides 

information about potential spread of disease in a population, and well as about how the disease dy- 

namics is affected by the two types of awareness. Numerical simulations are performed to illustrate the 

behaviour of the system in different dynamical regimes. 
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1. Introduction 

The last two decades have witnessed a number of major out-

breaks of infectious diseases, including swine flu, SARS, Ebola, and,

most recently, the Zika virus. Due to the globalised travel and sig-

nificant advances in social media, information about these out-

breaks is spreading quite quickly, and this, in turn, can have a pro-

found effect on the actual epidemic dynamics [8,16,29,33] . Inter-

estingly, awareness can have very complex and sometimes unex-

pected effects on the dynamics of the disease spread. It can have a

clearly positive influence, where disease propagation is minimised

or fully stopped by various disease control measures, such as the

use of face masks, condoms or other tools appropriate for specific

diseases, as well as vaccination and even quarantine, with exam-

ples ranging from the plague outbreak in the English village of

Eyam in 1665–1666 [27] , where the village completely sealed itself

off to prevent further transmission of plague, to more recent out-

breaks of swine influenza [16] and Ebola [33] . On the other hand,

the spread of information about a disease can also result in anxi-

ety and panic, which can lead to undesired consequences, such as

the uncontrolled spread of plague during the 1994 outbreak in one

of the states in India, where by fleeing the endemic area the peo-

ple carried the disease with them, thus infecting other parts of the

country [34] . Another example is an HPV vaccination campaign in

Romania, which has failed largely due to a very low take-up of vac-

cination mostly resulting from the negative press coverage [30] . In

light of this complexity of behavioural changes in the population
∗ Corresponding author. 
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n the presence of awareness, it is important to understand how

he concurrent spread of disease and awareness affects disease dy-

amics. 

A number of mathematical models have been proposed to anal-

se the effects of information and awareness on the spread of

pidemics. These models can be roughly divided into two ma-

or classes in terms of how they mathematically represent pop-

lations of interacting individuals: network-based models, where

ndividuals are represented as network nodes, and edges corre-

pond to possible connections along which a disease can be trans-

itted [9,10,14,15,17,36,42,44] , and mean-field models that assume

lobal mixing between individuals in the population (see Man-

redi and d’Onofrio [23] for a review of some of the existing mod-

ls). Funk et al. [9] have investigated how the spread of aware-

ess prompted by a first-hand contact with the disease affects the

pread of the disease. They showed that in a social network, the

pread of awareness and the resulting reduction in susceptibility

oes not only lower the incidence of the disease, but in some cases

an even prevent onset of epidemics, thus implying that aware-

ess can act as an effective measure of disease control. Further-

ore, their results suggest that in the presence of an infectious

isease, social distancing should be considered not only from the

erspective of some centrally controlled action, but also in terms

f self-initiated behavioural changes of individuals. This is further

upported by Kleczkowski et al. [22] who analysed two dimensions

f behavioural changes: reduction in the number of contacts (stay-

ng at home) and reduction in the likelihood of contacts resulting

n infections (washing hands). Their results revealed that “washing

ands” strategy appeared to be more effective for short-lived dis-

ases while “staying at home” was better for long-lived diseases. 

http://dx.doi.org/10.1016/j.mbs.2017.01.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mbs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mbs.2017.01.009&domain=pdf
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Mean-field models have provided an alternative approach for

odelling the effect of awareness on disease transmission. One

ossibility is to represent awareness as the reduction of trans-

ission (contact) rate by some factor that grows with the num-

er of infected individuals, with the common choices being ei-

her a saturated [4,20,38,39] or exponential [5,21,40] growth of the

eduction factor. In the specific context of STIs, most individuals

re actually aware of the spreading infection but they may still

hoose not to respond to the threat, so Kiss et al. [19] have consid-

red the effects of disease awareness in the case of STIs, where

he rate of information transmission has the form of a saturat-

ng function of the number of infected individuals, and the value

f information is allowed to decay over time. The authors have

hown that whilst the population-wide awareness does not affect

he epidemic threshold, it acts to reduce the infection prevalence

t endemic equilibrium. Another approach is to introduce a sep-

rate compartment for the “media” variable that effectively rep-

esents the level of awareness in the population, and the popula-

ions move from the unaware to aware compartments at rates pro-

ortional to this level of awareness [24–26,37] . Mean-field models

ave highlighted a number of important features of dynamics as-

ociated with the simultaneous spread of disease and awareness,

uch as the occurrence of multiple disease outbreaks due to the

pread of information [21] , co-existence of multiple feasible equi-

ibria [5,21] , behavioural changes that are dependent on disease

revalence [2,6,31,32] . They have also helped analyse optimal dis-

ase control programs [20,35,39,43] and the role of time delay in

he response to awareness campaigns on disease dynamics [12,45–

7] . 

In this paper, we focus on the question of how the dissemi-

ation of private awareness arising from direct contacts between

naware and aware individuals, and public awareness stemming

rom population-wide information campaigns affect the dynam-

cs of the disease spread [1] . The model includes the possibility

f direct contacts between unaware and aware individuals regard-

ess of their disease status, and it also takes into account pub-

ic spread of awareness through various media and information

ampaigns. 

The outline of the paper is as follows. In the next Section we

erive the model and discuss its basic properties. Section 3 con-

ains the analysis of feasibility and conditions for stability of differ-

nt steady states. In Section 4 we explore how different aspects of

isease awareness affect epidemic threshold, and also present nu-

erical simulations of the model to illustrate different dynamical

ehaviours. The paper concludes in Section 5 with the discussion

f results and future outlook. 

. Model derivation 

In order to analyse the effects of awareness on the dynamics

f a directly transmitted disease, we use an SIRS-type model simi-

ar to [11] , and divide the overall population into two major com-

artments: unaware susceptible, infected and recovered individuals

denoted by S n , I n and R n ) and aware susceptible, infected and re-

overed individuals (denoted by S a , I a and R a ). The need to include

nfected and recovered individuals who are themselves unaware of

he epidemic stems from the observation that many infectious dis-

ases possess non-negligible incubation periods, during which they

re asymptomatic, or symptoms may actually never develop at all,

nd hence, individuals may be completely unaware that they are

ctually the carriers of infections. Notable examples of such in-

ections include tuberculosis and many STIs, including chlamydia,

onorrhoea and HIV [18,28] . 

A disease is characterised by a transmission rate β for unaware

opulation, which is reduced by the factors 0 < σ i ≤ 1 and 0 <

s ≤ 1 that represent the decrease in infectivity and susceptibil-
ty, respectively. A reduction in infectivity occurs due to infected

ndividuals taking treatment or possibly staying at home (quaran-

ine) to reduce their contacts, while a reduction in susceptibility

s associated with susceptible individuals taking measures for dis-

ase prevention, such as face masks, vaccination or tablets etc. In-

ected individuals recover at a rate r , which is further amplified

y a factor ε for aware individuals. Upon recovery, it is assumed

hat individuals remain immune to the disease for an average pe-

iod of 1/ δ, after which time they return to their respective class

f susceptibles. The duration of this temporary immunity for aware

ndividuals is taken to be longer by a factor of 1/ φ [11] . 

As mentioned in the Introduction, there are several different

ays how disease awareness can be incorporated into the mean-

eld model. Irrespective of whether awareness is modelled explic-

tly as a separate compartment, or acts as a direct modification of

he disease transmission rate, a number of authors have explicitly

ncluded prevalence-dependent reduction in the disease transmis-

ion rate to signify the fact that a higher overall number of infected

ndividuals results in a higher level of awareness [2,6,31,32] . We

dopt a slightly different approach used by Funk et al. [11] , where

e rather explicitly introduce distinct compartments for unaware

nd aware individuals in each of the disease states, and transitions

etween respective unaware and aware compartments take place

t constant rates. ‘Private’ awareness is assumed to spread from

he aware section of the population to the unaware at a rate αj 

nd to be lost at a rate λj , where j = 1 , 2 , 3 corresponds to the

usceptible, infected and recovered individuals, respectively. When

ompared to the model studied in Perra et al. [31] , this is fully

nalogous to a prevalence-dependent transmission of awareness.

esides this private awareness associated with direct contacts be-

ween unaware and aware individuals, we also include a possibil-

ty of a ‘public’ or population-wide campaign aimed at reducing

he impact of the disease by distributing information about this

isease. Formally, this is represented in the model by direct transi-

ions from each unaware population to an associated aware pop-

lation, i.e. from S n to S a , from I n to I a , and from R n to R a , at

 rate ω j , j = 1 , 2 , 3 . With the above assumptions, the model for

he simultaneous spread of the disease and awareness takes the

orm 

dS n 

dt 
= − (I n + σi I a ) β S n 

N 

− α1 (S a + I a + R a ) S n 
N 

+ λ1 S a + δ R n − ω 1 S n , 

dI n 

dt 
= 

(I n + σi I a ) β S n 

N 

− α2 (S a + I a + R a ) I n 
N 

+ λ2 I a − r I n − ω 2 I n , 

dR n 

dt 
= −α3 (S a + I a + R a ) R n 

N 

+ λ3 R a − δ R n + r I n − ω 3 R n , 

dS a 

dt 
= − (I n + σi I a ) σs β S a 

N 

+ 

α1 (S a + I a + R a ) S n 
N 

−λ1 S a + φ δ R a + ω 1 S n , 

dI a 

dt 
= 

(I n + σi I a ) σs β S a 

N 

+ 

α2 (S a + I a + R a ) I n 
N 

−λ2 I a − ε r I a + ω 2 I n , 

dR a 

dt 
= 

α3 (S a + I a + R a ) R n 

N 

− λ3 R a − φ δ R a + ε r I a + ω 3 R n . (1) 

e assume that in this model the relations α2 ≥ α3 ≥ α1 and ω 2 

ω 3 ≥ ω 1 hold to represent the fact that through their exposure

nd development of symptoms infected individuals are more likely

o look for information about the disease either through their con-

acts or more generally in the media, and the same applies to re-

overed individuals, though to a smaller degree, while susceptibles

re least likely to be interested in the potential outbreak. On the

ther hand, having become aware, we assume that susceptibles are

ost likely to lose their awareness as something unimportant and
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Fig. 1. Model diagram: dynamics of transitions in model (1) . Solid lines represent 

transitions associated with individuals. Arrows represent a type of “possible tran- 

sitions”: double-head arrows indicate processes subject to contacts associated with 

the disease (solid lines) or awareness (dash lines), single-head arrows indicate pro- 

cesses that are not subject to contact. 
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not directly relevant, whereas recovered and infected individuals

will retain the awareness for a greater amount of time, as repre-

sented by λ1 ≥ λ3 ≥ λ2 . 

This model generalises an earlier work of Funk et al. [11] by

allowing the unaware susceptible and recovered populations to

acquire information through public awareness programme with-

out the need for contacts with aware individuals. This provides a

very important practical difference, since preventing the disease

through an appropriate information programme is very effective

and more economical than treating the disease once it takes off in

the population. Fig. 1 shows the model diagram with all the tran-

sitions between different model compartments. 

Since the model (1) does not include vital dynamics and there

are no disease-induced deaths, this implies that the total popu-

lation N(t) = N n (t) + N a (t) = N is constant, where N n (t) = S n (t) +
I n (t) + R n (t) and N a (t) = S a (t) + I a (t) + R a (t) are total populations

of unaware and aware individuals, respectively. It is easy to show

that the model (1) is well-posed, i.e. its solutions are non-negative

for all t ≥ 0. 

Summing up the last three equations in (1) under the assump-

tion of equal rates of awareness gain and loss, i.e. for α j = α,

ω j = ω and λ j = λ, j = 1 , 2 , 3 , and the fact that N a (t) = N − N n (t)

yields a logistic-type equation for the total aware population 

dN a 

dt 
= b N a 

(
1 − N a 

K 

)
+ ω N a , (2)

where b = α − λ − ω and K = 

b N 
α . This equation can be solved with

the initial condition N a (0) = 0 to give 

N a (t) = 

N 

2 α

[
b + 

√ 

b(4 p + b) tanh 

(
t 

2 

√ 

b(4 p + b) 

− arctanh 

b √ 

b(4 p + b) 

)]
, p = 

α ω 

b 
. 

From this expression it immediately follows that 

N a (∞ ) = N 

⎡ 

⎣ 

1 

2 

(
1 − λ + ω 

α

)
+ 

√ 

1 

4 

(
1 − λ + ω 

α

)2 

+ 

ω 

α

⎤ 

⎦ , 
E

nd 

 n (∞ ) = N − N a (∞ ) 

= N 

⎡ 

⎣ 

1 

2 

(
1 + 

λ + ω 

α

)
−

√ 

1 

4 

(
1 − λ + ω 

α

)2 

+ 

ω 

α

⎤ 

⎦ , 

his implies that as t → ∞ , N n ( t ) and N a ( t ) tend to some constant

alues that only depend on the rates of gain of private and pub-

ic awareness ( α and ω) and the loss rate of awareness λ, but are

ndependent of the initial conditions for individual populations or

he characteristics of the disease, such as the transmission rate, or

he durations of recovery or temporary immunity. 

. Steady states and their stability 

As a first step in the analysis, we look at possible steady states

f the model (1) . In the absence of public awareness, i.e. for ω 1 =
 3 = ω 3 = 0 , the model (1) always has a disease-free steady state

 0 = (S ∗n , 0 , 0 , 0 , 0 , 0) = (N, 0 , 0 , 0 , 0 , 0) . (3)

t can also have an awareness-endemic equilibrium (characterised

y only private dissemination of awareness) 

 

0 
0 = (S ∗n , 0 , 0 , S ∗a , 0 , 0) with S ∗n = N 

λ1 

α1 

, S ∗a = N 

(
1 − λ1 

α1 

)
, 

(4)

nd a disease-endemic steady state 

 1 = (S ∗n , I 
∗
n , R 

∗
n , 0 , 0 , 0) , (5)

here 

 

∗
n = 

r N 

β
, I ∗n = 

δ N 

δ + r 

(
1 − r 

β

)
and R 

∗
n = 

r N 

δ + r 

(
1 − r 

β

)
. 

hile the disease-free steady state exists for any values of system

arameters, the endemic states E 0 
0 

and E 1 are only biologically fea-

ible, provided the conditions 

 

a 
0 = 

α1 

λ1 

> 1 , (6)

nd 

 

d 
0 = 

β

r 
> 1 , (7)

espectively, hold. 

In the case where public awareness is present, i.e. ω j > 0, the

isease-free steady state is actually an awareness-endemic equilib-

ium 

 

ω 
0 = (S ∗n , 0 , 0 , S ∗a , 0 , 0) , with S ∗a = N h, S ∗n = N (1 − h ) , (8)

here 

 = 

1 

2 

(
1 − λ1 + ω 1 

α1 

)
+ 

√ 

1 

4 

(
1 − λ1 + ω 1 

α1 

)2 

+ 

ω 1 

α1 

, 

0 < h < 1 . (9)

The fully endemic steady state for arbitrary positive values of

j , ω j and λj cannot be found in a closed form, but in the particu-

ar case of equal rates of awareness spread and loss, i.e. for ω j = ω,

j = α and λ j = λ, it can be readily found as follows 

 

ω 
2 = (S ∗n , I 

∗
n , R 

∗
n , S 

∗
a , I 

∗
a , R 

∗
a ) , 
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ith individual components being explicitly given by 

 

∗
n = 

B ± √ 

B 

2 − 4 A C 

2 A 

, I ∗n = 

m 2 m 7 [ N (1 − h ) − S ∗n ] 
m 2 m 7 + r (λ + φ δ) m 7 + λε r m 6 

, 

 

∗
n = 

[ r (λ + φ δ) m 7 + λε r m 6 ] [ N (1 − h ) − S ∗n ] 
m 2 m 7 + r (λ + φ δ) m 7 + λε r m 6 

, 

 

∗
a = 

N m 3 − m 4 S 
∗
n 

m 5 

, I ∗a = 

m 2 m 6 [ N (m 5 h − m 3 ) + m 4 S 
∗
n ] 

m 5 [ m 6 (m 1 + m 2 ) + r (α h + ω) m 7 ] 
, 

 

∗
a = 

[ r (α h + ω) m 7 + m 1 m 6 ] [ N (m 5 h − m 3 ) + m 4 S 
∗
n ] 

m 5 [ m 6 (m 1 + m 2 ) + r (α h + ω) m 7 ] 
, 

(10) 

here 

 1 = ε r (α h + δ + ω) , m 2 = λδ + φ δ (α h + δ + ω) , 

 3 = λ r + ε r (α h + r + ω) , m 4 = β[ σi (αh + ω) + λ + εr] , 

 5 = βσs [ σi (α h + r + ω) + λ] , 

 6 = N(α h + r + ω) − βS n , m 7 = Nλ + σi βS n , 

nd 

 = β [ m 4 λε r + m 5 (m 1 + m 2 )] 

−β σi [ m 4 (m 2 + λ r + r φ δ) + r (α h + ω) m 5 ] , 

B = N (m 4 λ (m 2 + m 3 + r φ δ) 

+ m 5 (m 1 + m 2 ) [ β (1 − h ) + α h + r + ω] 

+ r (α h + ω) m 5 [ λ − σi β (1 − h )] 

−β (m 3 − m 5 h ) [ σi (m 2 + λ r + r φ δ) − λε r]) , 

 = N 

2 [ m 5 (1 − h ) [(α h + r + ω) (m 1 + m 2 ) + λ r (α h + ω)] 

+ λ (m 3 − m 5 h ) (m 2 + m 3 + r φ δ)] . 

he endemic steady state E ω 
2 

is only feasible when the value of S ∗n 
ies within the interval 

N (m 3 − m 5 h ) 

m 4 

< S ∗n < min 

{
N m 3 

m 4 

, 
N (α h + r + ω) 

β
, N (1 − h ) 

}
, 

hich ensures that all steady-state variables have positive values. 

To analyse the stability of different steady states, we start by

onsidering the case ω 1 = ω 3 = ω 3 = 0 and linearise the system

1) near the disease-free steady state E 0 . This gives a characteristic

quation for eigenvalues μ, which can be factorised as follows 

(μ + λ1 − α1 )(μ + r − β)(μ + λ2 + ε r)(μ + δ)(μ + λ3 + φδ) 

= 0 , 

uggesting that the steady state E 0 is linearly asymptotically stable,

rovided 

< r, and α1 < λ1 , 

r, equivalently, 

 

d 
0 < 1 , R 

a 
0 < 1 . (11)

imilarly, one can show that the awareness-endemic equilibrium

 

0 
0 

= (S ∗n , 0 , 0 , S ∗a , 0 , 0) is linearly asymptotically stable if 

 

d 
0 < ψ 0 , R 

a 
0 > 1 , (12)

here 

 0 = 

α1 [ α1 λ2 + ε(α2 (α1 − λ1 ) + α1 r)] 

(α1 − λ1 ) [ σi σs (α2 (α1 − λ1 ) + α1 r) + α2 λ1 σi + α1 λ2 σs ] + α1 λ1 (λ2 + εr) 
, 

(13) 

hereas the disease-endemic steady state E 1 = (S ∗n , I ∗n , R ∗n , 0 , 0 , 0) is

inearly asymptotically stable whenever the following conditions

old 

 

d 
0 > 1 , R 

a 
0 < 1 . (14)
In the presence of public awareness, i.e. for ω j > 0, linearisation

ear the awareness-endemic equilibrium E ω 
0 

= (S ∗n , 0 , 0 , S ∗a , 0 , 0 )
ields the following characteristic equation 

(a 3 − a 2 + λ1 + μ)(μ2 + μ g 1 + g 2 )(μ
2 + μ g 3 + g 4 ) = 0 , 

here 

 1 = 

βS ∗n 
N 

, a 2 = 

α1 S 
∗
n 

N 

, a 3 = 

α1 S 
∗
a 

N 

+ ω 1 , a 4 = 

σi βS ∗n 
N 

, 

 5 = 

σs βS ∗a 
N 

, a 6 = 

σi σs βS ∗a 
N 

, a 7 = 

α2 S 
∗
a 

N 

+ ω 2 , 

 8 = 

α3 S 
∗
a 

N 

+ ω 3 , g 1 = λ3 + φ δ + a 8 + δ, 

 2 = λ3 δ + φ δ (a 8 + δ) , g 3 = λ2 + ε r − a 6 + a 7 + r − a 1 , 

 4 = (λ2 + ε r − a 6 ) (a 7 + r − a 1 ) − (a 7 + a 5 ) (a 4 + λ2 ) . 

t is straightforward to show that all roots of this equation (except

or μ = 0 ) have negative real part, provided 

λ1 + ω 1 

α1 

> 1 − 2 h, (15) 

nd 

 

d 
0 < ψ, where 

 = 

λ2 + ε (α2 h + r+ ω 2 ) 

(1 −h )[ σi (α2 h + ω 2 ) + λ2 + ε r] + h σs [ σi (α2 h + r+ ω 2 ) + λ2 ] 
. 

sing the expression for h in (9) , it follows that the first of these

onditions is always satisfied for ω j > 0, and in the limit ω j → 0 it

urns into R a 
0 

> 1 . On the other hand, the second condition in the

imit ω j → 0 turns into R d 
0 

< ψ 0 in agreement with (12) . 

Finally, the characteristic equation for linearisation near the

ndemic equilibrium state E ω 
2 

= (S ∗n , I ∗n , R ∗n , S ∗a , I ∗a , R ∗a ) with ω j = ω,

j = α and λ j = λ, j = 1 , 2 , 3 , has the form 

(μ + a 3 + λ)(μ4 + P 1 μ
3 + P 2 μ

2 + P 3 μ + P 4 ) = 0 , (16)

here 

 1 = x + y + z + λ, 

 2 = δ(φδ + φa 3 + λ) + (x + y )(λ + z) + r(a 9 + a 10 ε) 

+ xy − (a 3 + a 5 )(λ + a 4 ) , 

 3 = δ(φδ + φa 3 + λ)(x + y ) + (λ + z)[ xy − (a 3 + a 5 )(λ + a 4 )] 

+ ra 9 (x + φδ + λ) + a 10 εr(y + a 3 + δ) , 

 4 = δ(φδ + φa 3 + λ) [ xy − (a 3 + a 5 )(λ + a 4 ) ] 

+ r[ a 9 x (λ + φδ) + a 10 a 3 (λ + a 4 )] 

+ εr [ a 9 a 10 r + λa 9 (a 3 + a 5 ) + ya 10 (δ + a 3 ) ] , 

nd 

a 9 = 

(I ∗n + σi I 
∗
a ) β

N 

, a 10 = 

(I ∗n + σi I 
∗
a ) σs β

N 

, 

x = εr + a 10 + λ − a 6 , y = a 3 + a 7 + r − a 1 , z = φδ + δ + a 3 . 

wo of the eigenvalues of the characteristic Eq. (16) are μ = 0 and

= −(αh + ω + λ) , so the stability of the endemic steady state E ω 
2 

s determined by the roots of the quartic 

4 + P 1 μ
3 + P 2 μ

2 + P 3 μ + P 4 = 0 . 

sing the Routh–Hurwitz criterion, one can conclude that the

teady state E ω 
2 

is linearly asymptotically stable if and only if the

ollowing conditions hold 

 4 > 0 , P 1 > 0 , P 2 > 0 and P 3 (P 1 P 2 − P 3 ) > P 2 1 P 4 . (17)

Figs. 2 and 3 illustrate how the stability of different steady

tates varies with parameters. Both of these figures indicate that

he endemic steady state is only biologically feasible and stable in

he parameter region where the disease-free steady state is un-

table. The region of stability of the disease-free steady state in-

reases with α and ω, implying that increasing awareness allows
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Fig. 2. Existence and stability of different steady states for ω j = ω, α j = α and λ j = λ. The disease-free steady state is stable to the right of the surface in (a) and below 

each curve in (b), and in these parameter regions the endemic steady state is not feasible. To the left of the surface in (a) and above each curve in (b), the disease-free 

steady state is unstable, while the endemic steady state exists and is stable. Parameter values are λ = 0 . 6 , r = 0 . 6 , σi = 0 . 5 , σs = 0 . 5 , φ = 0 . 3 , ε = 2 , δ = 0 . 4 . 

Fig. 3. Existence and stability of different steady states for ω j = ω, α j = α and λ j = λ. The disease-free steady state is stable to the right of the surface in (a) and below 

each curve in (b), and in these parameter regions the endemic steady state is not feasible. To the left of the surface in (a) and above each curve in (b), the disease-free 

steady state is unstable, while the endemic steady state exists and is stable. Parameter values are α = 0 . 4 , λ = 0 . 6 , σi = 0 . 5 , σs = 0 . 5 , φ = 0 . 3 , ε = 2 , δ = 0 . 4 . 
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a  
disease eradication and prevents establishment of some steady lev-

els of disease even for higher values of the disease transmission

rate β . Similar effect is observed by increasing the recovery rate r ,

where the disease is eradicated not so much through the spread

of awareness, as due to the fact that infected individuals recover

faster than they are able to spread the infection. Increasing the rate

λ of awareness loss naturally has the opposite effect of increasing

the parameter region where the endemic steady state is biologi-

cally feasible and stable. 

4. Effects of awareness on system dynamics 

In order to get a better understanding of relative effects of dif-

ferent aspects of awareness on determining the stability of dif-

ferent steady states and eventual evolution of the system, we fix

three of the four parameters, σ s , σ i , ε and φ, to be equal to one,

and allow one of them to vary to individually investigate the effect

it has on the disease propagation. Qualitative behaviour is simi-

lar in all cases considered below in that in the absence of public

awareness (ω 1 = ω 2 = ω 3 = 0) , the epidemic threshold is R d 
0 

> 1

for R a 
0 

< 1 , and R d 
0 

> ψ 0 with ψ 0 = ψ(ω j = 0) for R a 
0 

> 1 , whereas

for ω j > 0, it is given by R d 
0 

> ψ regardless of the value of R a 
0 
. In

the case of ω j = 0 and R a 
0 

< 1 , the disease is established in the

form of a stable disease-endemic steady state E 1 , while for R a 
0 

> 1 ,

and for ω j > 0 and any value of R a 
0 
, the system settles on the sta-

ble endemic equilibrium E ω . 

2 
In the case of reduced susceptibility , where σi = ε = φ = 1 and 0

σ s < 1, the epidemic threshold is given by 

 = 1 + 

h (1 − σs ) 

1 − h (1 − σs ) 
, (18)

here h was introduced in (9) and can be equivalently rewritten

s 

 = 

1 

2 

(
1 − 1 

R 

a 
0 

− ω 1 

α1 

)
+ 

√ 

1 

4 

(
1 − 1 

R 

a 
0 

− ω 1 

α1 

)2 

+ 

ω 1 

α1 

. (19)

or ω j = ω = 0 , the expression for epidemic threshold reduces to

 0 = 1 + 

(R 

a 
0 − 1)(1 − σs ) 

1 + (R 

a 
0 

− 1) σs 
. (20)

hen α j = α → ∞ , this threshold tends to the same limit of

/ σ s as the epidemic threshold in a model of Funk et al. [11] ,

hus suggesting that when the level of private awareness is much

igher than that of public awareness, it is this private awareness

hat dominates the dynamics, and then it does not really matter

hether public awareness extends only to susceptible individuals

r to the whole population. However, for intermediate values of α,

he epidemic threshold in our model depends not only on R a 
0 

and

s , but also on the ratio of the public ( ω) and private ( α) aware-

ess rates as shown in (19) , whereas in Funk et al. [11] , the epi-

emic threshold was given by (20) for any value of ω. 

When one considers reduced infectivity where σs = ε = φ = 1 ,

nd the infective population has its infectivity reduced by a factor
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Fig. 4. Effects of private and public awareness on the spread of infectious diseases for (a) ω 1 = ω 2 = 0 , (b) ω 1 = 0 . 1 , ω 2 = 0 . 2 . Other parameter values are λ1 = 0 . 5 , λ2 = 

0 . 4 , r = 0 . 5 , σi = 0 . 7 , σs = 0 . 8 , ε = 1 . 5 , α1 , α2 were varied with α2 = α1 + 0 . 01 . In each case we have indicated a single steady state that is stable in that part of the parameter 

plane. 

Fig. 5. Effects of private and public awareness on the spread of infectious diseases with α j = α, ω j = ω, λ j = λ, j = 1 , 2 , 3 , for (a) ω = 0 , (b) ω = 0 . 2 . Other parameter 

values are λ = 0 . 5 , r = 0 . 5 , σi = 0 . 7 , σs = 0 . 8 , ε = 1 . 5 . In each case we have indicated a single steady state that is stable in that part of the parameter plane. 
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 ≤ σ i < 1, the epidemic threshold is given by 

 = 1 + 

[ h (α2 + r) + ω 2 ](1 − σi ) 

σi [ h (α2 + r) + ω 2 ] + λ2 + r(1 − h ) 
, 

nd similarly to the previous case, it now depends on both types of

wareness and, in fact, it increases with both αj and ω j ( j = 1 , 2) .

n the case of faster recovery with σs = σi = φ = 1 and ε > 1, the

pidemic threshold becomes 

 = 1 + 

[ h (α2 + r) + ω 2 ] (ε − 1) 

h (α2 + r) + ω 2 + λ2 + ε r (1 − h ) 
. 

or longer temporary immunity with σs = σi = ε = 1 and 0 ≤ φ <

 (average duration of immunity is given by 1/ φ), the epidemic

hreshold remains unchanged at R d 
0 

> 1 . However, if the awareness

f an individual population influences the duration of its immunity
−1 , the fractions of infected and recovered populations in the en-

emic state can also change [11] . 

Fig. 4 illustrates the dependence of epidemic threshold on the

alues of R d 
0 

and R a 
0 

for reduced susceptibility, reduced infectivity

nd faster recovery. As suggested by the earlier analysis, in the ab-

ence of public awareness (ω 1 = ω 2 = ω 3 = 0) , depending on the

alues of R d 
0 

and R a 
0 

the system can settle on one of the four stable

teady states, namely, a disease-free E 0 , a disease-endemic E 1 , an

wareness-endemic E 0 
0 
, or endemic equilibrium E 0 

2 
. When the pub-

ic awareness is present, i.e. ω j > 0, the options are limited to ei-

her an awareness-endemic equilibrium E ω 
0 

, which in this case also

lays a role of a disease-free state, and an endemic steady state

 

ω . Fig. 5 shows the dependence of epidemic threshold on the val-

2 
es of R d 
0 

and R a 
0 

for reduced susceptibility, reduced infectivity and

aster recovery with α j = α, ω j = ω, λ j = λ for j = 1 , 2 , 3 . We ob-

erve that having unequal values of parameters λ1 > λ2 and ω 2 >

 1 gives qualitatively similar behaviour of epidemic thresholds to

hat with equal values of these parameters, though for equal values

f parameters, the stability region of the steady state E ω 
0 

is larger

or smaller values of R a 
0 

and slightly smaller for larger values of

 

a 
0 
. In the case when ω 1 = ω 2 and λ1 > λ2 , the results show an

ncrease in the stability region of the steady state E ω 
0 

for reduced

usceptibility, reduced infectivity and faster recovery. On the con-

rary, for λ1 = λ2 and ω 2 > ω 1 , the stability region for the reduced

usceptible has no noticeable change, while for reduced infectivity

nd faster recovery there is a reduction in the stability region of

he steady state E ω 
0 

. 

In Fig. 6 we show numerical solution of the system (1) in the

bsence of public awareness, i.e. for ω 1 = ω 2 = ω 3 = 0 . Provided

he level of privately acquired awareness is sufficiently small to en-

ure R a 
0 

< 1 , and the transmission rate is such that R d 
0 

< 1 , after the

nitial growth, the number of infected individuals decreases, and

ventually the system approaches a disease-free steady state E 0 , as

llustrated in Fig. 6 (a). Once the transmission rate exceeds the crit-

cal value determined by R d 
0 
, even after the initial outbreak, cer-

ain level of disease is maintained in the population, however, all

ompartments with aware individuals approach zero, thus giving a

isease-endemic steady state E 1 shown in Fig. 6 (b). Fig. 6 (c) shows

hat for sufficiently high private awareness rate, such that R a 
0 

> 1 ,

s long as the disease transmission rate β is not too high, the pop-
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Fig. 6. Steady states in the absence of public awareness (ω = 0) . (a) disease-free state E 0 with R d 0 < 1 , R a 0 < 1 ( r = 1 , β = 0 . 6 , λ = 0 . 6 ) (b) disease-endemic state E 1 with 

R d 0 > 1 , R a 0 < 1 ( r = 0 . 6 , β = 1 . 8 , λ = 0 . 6 ) (c) awareness-endemic state E 0 0 with R d 0 < ψ 0 , R 
a 
0 > 1 ( r = 1 , β = 0 . 6 , λ = 0 . 3 ) (d) endemic state, E 0 2 with R d 0 > ψ 0 , R 

a 
0 > 1 ( r = 0 . 6 , β = 

1 . 8 , λ = 0 . 3 ). Dashed line denotes S n , dotted line denotes I n , solid line denotes R n . Other parameters are: α = 0 . 4 , σi = 0 . 5 , σs = 0 . 5 , φ = 0 . 3 , ε = 2 , δ = 0 . 4 , N = 100 . 

Fig. 7. Dynamics of infectious disease with public awareness: (a) disease-free state, β = 0 . 8 , R d 0 < ψ . (b) endemic state, β = 1 . 8 , R d 0 > ψ . Other parameter values are α = 

0 . 4 , λ = 0 . 6 , ω = 0 . 2 , σi = 0 . 5 , σs = 0 . 5 , φ = 0 . 3 , ε = 2 , δ = 0 . 4 , N = 100 . Dashed line denotes S n , dotted line denotes I n , solid line denotes R n . 
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ulation clears the infection, and then the system tends toward an

awareness-endemic steady state E 0 
0 

. Finally, for higher values of β ,

the final state of the system is given by a stable endemic steady

state E 0 
2 
, as shown in Fig. 6 (d). 

In the case of ω > 0 illustrated in Fig. 7 , there are just two

options: the system either approaches a disease-free steady state,

whose role is now played by the awareness-endemic steady state

E ω 
0 

for R d 
0 

< ψ, or it tends to a fully endemic steady state E ω 
2 

when

R d 
0 

> ψ . 

When the values of the parameters αj , ω j , and λj are unequal

with α2 > α3 > α1 , ω 2 > ω 3 > ω 1 , and λ1 > λ3 > λ2 , numerical

simulations suggest a qualitatively similar dynamics of the system,

but with a slightly lower peak of unaware infective and recovered

individuals, whilst having a slightly higher number of aware sus-

ceptible and infected population, and no significant change in the

aware recovered population. Similar results are observed if only

one or two of the parameters α, ω and λ is varied between dif-

ferent groups. 

Although we have not rigorously proven global stability of indi-

vidual steady states, extensive numerical simulations suggest that

w  
n each parameter region only one of the steady states of the sys-

em is a global attractor, and the system approaches this steady

tate for arbitrary initial conditions. It is noteworthy that while sta-

ility of the disease-free, disease-endemic and awareness-endemic

quilibria can change when some parameters are varied, the en-

emic steady state with all compartments being positive is always

table whenever it is biologically feasible. 

. Discussion 

This paper has analysed the impact of private and public aware-

ess on the spread of infectious diseases in a human population.

he main feature of our model is the possibility of individuals in

ny of the unaware compartments to become aware both through

nteractions with aware individuals (regardless of the disease sta-

us of the latter), and through a public awareness campaign. This

ssumption generalises an earlier work of Funk et al. [11] who only

ccounted for effects of public awareness on infected individuals.

nlike the analysis presented in [11] , we have been able to obtain

nalytical expressions for all steady states of the model together

ith restrictions on parameters that guarantee their biological fea-
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ibility, as well as derived analytical conditions for stability of all

hese equilibria. 

Our results show that both private and public awareness have

he capacity to reduce the spread of epidemic by increasing the

hreshold for onset of a stable endemic steady state characterised

y persistent infection. Interestingly, unlike some of the earlier

odels, we have shown that there is an intricate interplay between

he two aspects of awareness as illustrated by the dependence of

pidemic threshold of α and ω. Quite naturally, the faster peo-

le lose awareness (i.e. the larger is the unaware population), the

igher is the overall rate of infection as manifested by the disease-

ndemic state. Conversely, higher recovery rates due to disease

wareness leads to a reduction in infected population. From a more

eneral perspective, the presence of awareness causes correspond-

ng behavioural change in the population, which, in turn, causes

he reduction in the size of epidemic outbreaks. Hence, the spread

f private awareness or public information campaigns allow one to

ontrol or minimise the spread of the disease, whilst they are also

elping boost recovery rates for infected individuals. This suggests

hat information campaigns provide a viable complement if not a

eplacement for more direct intervention strategies, such as vacci-

ation or quarantine. 

In the last few years, some work has been done on modelling

he effects of time delays associated with non-instantaneous re-

ponse of individuals to awareness campaigns [12,45–47] . One di-

ection for extending the work in this paper could be the explicit

nclusion of such time delays to more accurately represent the re-

ponse of individuals to private and public awareness. Another im-

ortant aspect to be investigated is the development of an opti-

al vaccination/treatment strategy [26,43] that would utilise be-

avioural changes associated with the spread of awareness to re-

uce the amount of vaccine/drug needed to contain an outbreak.

or many diseases, an important part of the dynamics is their spa-

ial spread that can also be accompanied with the spreading infor-

ation about the disease, which can result in very peculiar pat-

erns of disease spread [3,7,13,41] . Whereas in some cases infor-

ation can improve disease prevention, in others it can result in

 public panic thus causing further spread of infection [34] . In

his respect, a more advanced version of the model presented in

his paper could look into the spatial dynamics of the concurrent

pread of disease and infection, as well as optimal strategies for

isease containment through targeted spatial dissemination of in-

ormation and other interventions. 
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