Deep Learning

G6032, G6061, 934G5, 807G5, G5015

Dr. Viktoriia Sharmanska

Content: today

☐ Deep architectures: short intro ■ Deep Convolutional Neural Networks □ Convolutional layer Max pooling layer Fully connected layer Non-linear activation function ReLU ☐ Case study: AlexNet, winner of ILSVRC'12 □ AlexNet architecture ☐ Fast-forward to today: Revolution of Depth

Content: tomorrow

☐ Training Deep Convolutional Neural Networks ☐ Stochastic gradient descent Backpropagation **Initialization** ☐ Preventing overfitting **Dropout regularization** Data augmentation ☐ Fine-tuning ☐ Visualization of CNNs

DeepMind's AlphaGo

☐ Deep policy network is trained to produce probability map of promising moves

Goal of Deep architectures

Goal: Deep learning methods aim at

- learning feature hierarchies
- where features from higher levels of the hierarchy are formed by lower level features.

Edges, local shapes, object parts

Low level representation

slightly higher level representation

raw input vector representation:

Figure is from Yoshua Bengio

Deep architectures

Defintion: Deep architectures are composed of multiple levels of non-linear operations, such as neural nets with many hidden layers.

Examples of non-linear activations:

tanh(x)

$$\sigma(x) = (1 + e^{-x})^{-1}$$

$$\max(0,x)$$
 today

☐ In practice, NN with multiple hid. layers work better than with a single hid. layer.

Deep Convolutional Networks CNNs

Compared to standard neural networks with similarly-sized layers,

- CNNs have much fewer connections and parameters
- and so they are easier to train
- and typically have more than five layers (a number of layers which makes fully-connected neural networks almost impossible to train properly when initialized randomly)

LeNet, 1998 LeCun Y, Bottou L, Bengio Y, Haffner P: Gradient-Based Learning Applied to Document Recognition, Proceedings of the IEEE

AlexNet, 2012 Krizhevsky A, Sutskever I, Hinton G: ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012

Deep Convolutional Networks

- □ Convolutional layer
- Non-linear activation function ReLU
- Max pooling layer
- ☐ Fully connected layer

32x32x3 image

activation map

consider a second, green filter

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

[Convolution Demo: extra]

http://cs231n.github.io/assets/conv-demo/index.html

A closer look at spatial dimensions

A closer look at spatial dimensions

7x7x1 image

3x3x1 filter w

A closer look at spatial dimensions

7x7x1 image

3x3x1 filter w

A closer look at spatial dimensions

7x7x1 image

3x3x1 filter w

A closer look at spatial dimensions

7x7x1 image

3x3x1 filter w

A closer look at spatial dimensions

7x7x1 image

3x3x1 filter w

A closer look at spatial dimensions

7x7x1 image

3x3x1 filter w

A closer look at spatial dimensions

7x7x1 image

3x3x1 filter w

A closer look at spatial dimensions

7x7x1 image

3x3x1 filter w

A closer look at spatial dimensions

A closer look at spatial dimensions

7x7x1 image

3x3x1 filter w

stride S=1

⇒ **5x5 output** activation map

A closer look at spatial dimensions

7x7x1 image

3x3x1 filter w

A closer look at spatial dimensions

7x7x1 image

3x3x1 filter w

A closer look at spatial dimensions

7x7x1 image

3x3x1 filter w

A closer look at spatial dimensions

7x7x1 image

3x3x1 filter w

A closer look at spatial dimensions

7x7x1 image

3x3x1 filter w

A closer look at spatial dimensions

7x7x1 image

3x3x1 filter w

Slide over all locations **using stride 2** horizontally and vertically, S=2

. . .

=> ? output

A closer look at spatial dimensions

7x7x1 image

3x3x1 filter w

stride S=2

⇒ **3x3 output** activation map

A closer look at spatial dimensions

7x7x1 image

3x3x1 filter w

stride S=3

A closer look at spatial dimensions

A closer look at spatial dimensions

A closer look at spatial dimensions

7x7x1 image

3x3x1 filter w

stride S=3

☐ Add zero padding around the border

				9					
0	0	0	0	0	0	0	0	0	
0				7				0	
0								0	
0								0	
0							7	0	9
0								0	
0								0	
0								0	
0	0	0	0	0	0	0	0	0	

7x7x1 image 3x3x1 filter wstride S=3padding = 1

⇒ 3x3 output activation map

☐ Spatial dimension of the output

$$\frac{I-F+2P}{S}+1$$

I

IxIxd input

FxFxd filter w

stride S

padding P

 \Box If width \mathbf{I}_{width} and height \mathbf{I}_{height} of the input differ, this formula is applied independently for \mathbf{I}_{width} and \mathbf{I}_{height} .

Back to convolutional layer

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

Spatial dimension:
$$\frac{32-5+2\cdot 0}{1}+1=28$$

Output volume size

Number of **parameters** in this layer?

Number of **parameters** in this layer?

Each filter has 5x5x3=75 parameters =>75x10 = 750

1x1 CONV with 32 filters

(each filter has size 1x1x64, and performs a 64-dimensional dot product)

Can we do convolution with 1x1xdepth filter

56x56x64 image

32 filters 1x1x64

☐ Inexpensive convolution

Using 5x5x64 filters would result in 1600-dimensional dot product

Convolutional layer: summary

- ☐ Accepts an input of size **I**x**I**x**d**
- ☐ Requires four specifications:
 - Number of filters K
 - Filter size FxFxd
 - The stride S
 - Padding P

Often in practice:

K is power of 2, e.g. 32, 64, 128

$$F = 3$$
, $S=1$, $P=1$

$$F = 5$$
, $S=1$, $P=2$

 $\mathbf{F} = 5$, S=2, P is set accordingly

$$F = 1, S=1, P=0$$

- \square Outputs a volume of size $\mathbf{O} \times \mathbf{O} \times \mathbf{K}$, where $O = \frac{I F + 2P}{S} + 1$
- ☐ In the output volume, the i-th activation map is the result of a convolution of the i-th filter over the input with a stride S and padding P.
- □ Local connectivity and parameter sharing:

each convolutional layer has (**F**x**F**x**d**)x**K** weight parameters to be learned (the fully connected layer would have **I**x**I**x**d**x**O**x**O**x**K** par.)

[Convolutional layer: extra]

☐ We call the layer convolutional because it is related to convolution of two signals:

$$f[x,y] * g[x,y] = \sum_{n_1 = -\infty}^{\infty} \sum_{n_2 = -\infty}^{\infty} f[n_1, n_2] \cdot g[x - n_1, y - n_2]$$

elementwise multiplication and sum of a filter and the signal (image)

Deep Convolutional Networks

- Convolutional layer
- Non-linear activation function ReLU
- Max pooling layer
- ☐ Fully connected layer

Where is ReLU?

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with activation functions

Rectified Linear Unit, ReLU

- Non-linear activation function are applied per-element
- Rectified linear unit (ReLU):
 - max(0,x)
 - makes learning faster (in practice x6)
 - avoids saturation issues (unlike sigmoid, tanh)
 - simplifies training with backpropagation
 - preferred option (works well)

Other examples:

[Activation functions: extra]

☐ State-of-the-art

Leaky ReLU

$$f(x) = \max(0.01x, x)$$

Parametric Rectifier (PReLU)

$$f(x) = \max(\alpha x, x)$$

[Mass et al., 2013] [He et al., 2015]

$$f(x) = \begin{cases} x & \text{if } x > 0 \\ \alpha (\exp(x) - 1) & \text{if } x \le 0 \end{cases}$$

Exponential Linear Units (ELU)

[Clevert et al., 2015]

Deep Convolutional Networks

- Convolutional layer
- Non-linear activation function ReLU
- Max pooling layer
- ☐ Fully connected layer

Where is pooling?

Two more layers to go: pooling and fully connected layers ©

Spatial pooling

- ☐ Pooling layer:
 - Makes the representations smaller (downsampling)
 - Operates over each activation map independently
 - ☐ Role: invariance to small transformation

Max pooling

Single activation map

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

max pool with 2x2 filters and stride 2

6	8
3	4

- Alternatives:
 - sum pooling
 - overlapping pooling

Deep Convolutional Networks

- Convolutional layer
- Non-linear activation function ReLU
- Max pooling layer
- ☐ Fully connected layer

Where is a fully connected layer?

Fully connected layer

Contains neurons that connect to the entire input volume, as in ordinary Neural Networks:

Output layer

Hidden layer

Hidden layer

neurons between two adjacent layers are fully pairwise connected,
 but neurons within a single layer share no connections

Output layer

In classification:

- the output layer is fully connected with number of neurons equal to number of classes
- followed by softmax non-linear activation

[Running CNNs demo: extra]

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

Case study: AlexNet, 2012

- AlexNet architecture
- ☐ Fast-forward to today: Revolution of Depth

Krizhevsky A, Sutskever I, Hinton G: ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012

AlexNet, 2012

- Input: RGB image
- Output: class label (out of 1000 classes)
- 5 convolutional layers + 3 fully connected layers (with ReLU, max pooling)
- trained using 2 streams (2 GPU). In this lecture, we will present the architecture as 1 stream for simplicity and clarity.

Convolve RGB image 227x227 with 96 filters of size 11x11x3 with stride S=4

Input size: 227x227x3

Each filter produces 55x55 activation map

$$\frac{227 + 2 \times 0 - 11}{4} + 1 = 55$$

Output size: 55x55x96 (290 400 neurons in Layer 1)

Number of parameters: 11x11x3x96 = 34848 ~ 35K

If it was fully connected we had $(227x227x3) \times (55x55x96) \sim 45B$ parameters

 \square Max pooling operation (subsampling) along the spatial dimensions apply with 3x3 filter, stride S=2, padding P=0

Input size: 55x55x96

Output size: 27x27x96

$$\frac{55 + 2 \times 0 - 3}{2} + 1 = 27$$

Convolve Layer 1 with 256 filters of size 5x5x96 with stride 1, padding 2

Input size: 27x27x96 (after max pooling)

Each filter produces 27x27 activation map

$$\frac{27 + 2 \times 2 - 5}{1} + 1 = 27$$

Output size: 27x27x256 (186 624 neurons in Layer 2)

Number of parameters: 5x5x96x256 = 614400 ~ 614K

If it was fully connected we had $(27x27x96) \times (27x27x256) \sim 13B$ parameters

 \square Max pooling operation (subsampling) along the spatial dimensions apply with 3x3 filter, stride S=2, padding P=0

Input size: 27x27x256

Output size: 13x13x256

$$\frac{27+2\times0-3}{2}+1=13$$

Convolve Layer 2 with 384 filters of size 3x3x256 with stride 1 and padding 1

Input size: 13x13x256 (after max pooling)

Each filter produces 13x13 activation map

$$\frac{13 + 2 \times 1 - 3}{1} + 1 = 13$$

Output size: 13x13x384 (64 896 neurons in Layer 3)

Number of parameters: 3x3x256x384 = 884 736 ~ 885K

If it was fully connected we had $(13x13x256) \times (13x13x384) \sim 2.8B$ parameters

Convolve Layer 3 with 384 filters of size 3x3x384 with stride 1 and padding 1

Input size: 13x13x384

Each filter produces 13x13 activation map

$$\frac{13 + 2 \times 1 - 3}{1} + 1 = 13$$

Output size: 13x13x384 (64 896 neurons in Layer 4)

Number of parameters: $3x3x384x384 = 1327104 \sim 1.3M$

If it was fully connected we had $(13x13x384) \times (13x13x384) \sim 4B$ parameters

Convolve Layer 4 with 256 filters of size 3x3x384 with stride 1 and padding 1

Input size: 13x13x384

Each filter produces 13x13 activation map

$$\frac{13 + 2 \times 1 - 3}{1} + 1 = 13$$

Output size: 13x13x256 (43 264 neurons in Layer 5)

Number of parameters: 3x3x384x256 = 884 736 ~ 885K

If it was fully connected we had $(13x13x384) \times (13x13x256) \sim 2.8B$ parameters

 \square Max pooling operation (subsampling) along the spatial dimensions apply with 3x3 filter, stride S=2, padding P=0

Input size: 13x13x256

Output size: 6x6x256

$$\frac{13 + 2 \times 0 - 3}{2} + 1 = 6$$

AlexNet, Layer 6

Layer 5 is fully connected to Layer 6 of size 4096

Input size: 6x6x256 (after max pooling)

Output size: 4096x1 (4096 neurons in Layer 6)

Number of parameters: $6x6x256x4096 = 37748736 \sim 37.7M$

 \square Apply ReLU (Rectified Linear Units) nonlinearity, f(x) = max(0,x)

AlexNet, Layer 7

Layer 6 is fully connected to Layer 7 of size 4096

Input size: 4096x1

Output size: 4096x1 (4096 neurons in Layer 7)

Number of parameters: $4096x4096 = 16777216 \sim 16.8M$

 \square Apply ReLU (Rectified Linear Units) nonlinearity, f(x) = max(0,x)

AlexNet, Layer 8

Layer 7 is fully connected to Layer 8 of size 1000

Input size: 4096x1

Output size: 1000x1 (1000 neurons in Layer 8)

Number of parameters: $4096x1000 = 4096000 \sim 4M$

Apply: softmax non-linear activation to obtain probability scores for 1000 classes

$$Pr(class = i \mid x_1, x_2, ..., x_{1000}) = \exp(x_i) / \sum_{k=1}^{1000} \exp(x_k)$$

AlexNet

Total number of parameters to learn ∼62M:

in convolutional layers 35K + 614K + 885K + 1.3M + 885K = 3.7Min fully connected layers 37.7M + 16.8M + 4M = 58.5M

Fast-forward to today

ImageNet Classification top-5 error (%)

Take Home Messages

- ☐ Understanding the structure of convolutional neural networks
 - □ Convolutional layer
 - □ ReLU
 - Max pooling layer
 - ☐ Fully connected layer
 - ☐ How to compute spatial dimensions
 - ☐ How to compute number of parameters

Training the AlexNet: overview

- □ AlexNet was trained
 - ☐ using a very large dataset ImageNet
 - ☐ on two NVIDIA GTX 580 3GB GPUs
 - ☐ for about a week
 - with stochastic gradient descent using back propagation

ImageNet Dataset

- ☐ 15M images
- ☐ 22K categories
- Images collected from Web
- Human labelers (Amazon's Mechanical Turk crowd-sourcing)
- ☐ ImageNet Large Scale Visual Recognition Challenge (ILSVRC-2010)
 - 1K categories
 - 1.2M training images (~1000 per category)
 - 50,000 validation images
 - 150,000 testing images
- ☐ RGB images; mean normalization
- ☐ Variable-resolution, but this architecture scales them to 256x256 size

ImageNet

Classification goals:

- ☐ Make 1 guess about the label (Top-1 error)
- ☐ make 5 guesses about the label (Top-5 error)

Results: ImageNet

Results: Image similarity

Test column

six training images that produce feature vectors in the last hidden layer with the smallest Euclidean distance from the feature vector for the test image.

83

Deep Learning, Part 2

G6032, G6061, 934G5, 807G5, G5015

Dr. Viktoriia Sharmanska

Content

☐ Training Deep Convolutional Neural Networks ☐ Stochastic gradient descent Backpropagation Initialization ☐ Preventing overfitting Dropout regularization Data augmentation ☐ Fine-tuning ☐ Visualization of CNNs

Training CNNs

- ☐ Stochastic gradient descent
- Backpropagation
- Initialization

Stochastic gradient descent (SGD)

(Mini-batch) SGD

Initialize the parameters

Loop over the whole training data (multiple times):

- **☐ Sample** a datapoint (a batch of data)
- **Forward** propagate the data through the network, compute the classification loss.
- **Backpropagate** the gradient of the loss w.r.t. parameters through the network
- ☐ Update the parameters using the gradient

Stochastic gradient descent (SGD)

(Mini-batch) SGD

Initialize the parameters randomly but smartly

Loop over the whole training data (multiple times):

- Sample a datapoint (a batch of data)
- □ **Forward** propagate the data through the network, compute the classification loss. **For example:** $E = \frac{1}{2}(y_{predicted} y_{true})^2$
- **Backpropagate** the gradient of the loss w.r.t. parameters through the network
- ☐ Update the parameters using the gradient

SGD:
$$w^{t+1} = w^t - \alpha \cdot \frac{dE}{dw}(w^t)$$

□ Backpropagation is recursive application of the chain rule along a computational flow of the network to compute gradients of the loss function w.r.t. all parameters/intermediate variables/inputs in the network

☐ Implementations typically maintain a modular structure, where the nodes/bricks implement the forward and backward procedures

Sequential brick

Propagation

•Apply propagation rule to B_1 , B_2 , B_3 , ..., B_M .

Back-propagation

•Apply back-propagation rule to B_M , ..., B_3 , B_2 , B_1 .

☐ Last layer used for classification

Square loss brick

Propagation

$$E = y = \frac{1}{2}(x - d)^2$$

Back-propagation

$$\frac{\partial E}{\partial x} = (x - d)^T \frac{\partial E}{\partial y} = (x - d)^T$$

☐ Typical choices

Loss bricks

		Propagation	Back-propagation
Square		$y = \frac{1}{2}(x - d)^2$	$\frac{\partial E}{\partial x} = (x - d)^T \frac{\partial E}{\partial y}$
Log	$c = \pm 1$	$y = \log(1 + e^{-cx})$	$\frac{\partial E}{\partial x} = \frac{-c}{1 + e^{cx}} \frac{\partial E}{\partial y}$
Hinge	$c = \pm 1$	$y = \max(0, m - cx)$	$\frac{\partial E}{\partial x} = -c \ \mathbb{I}\{cx < m\} \frac{\partial E}{\partial y}$
LogSoftMax	$c = 1 \dots k$	$y = \log(\sum_k e^{x_k}) - x_c$	$\left[\frac{\partial E}{\partial x}\right]_{S} = \left(e^{x_{S}}/\sum_{k} e^{x_{k}} - \delta_{SC}\right) \frac{\partial E}{\partial y}$
MaxMargin	$c = 1 \dots k$	$y = \left[\max_{k \neq c} \{x_k + m\} - x_c\right]_+$	$\left[\frac{\partial E}{\partial x}\right]_{S} = (\delta_{Sk^*} - \delta_{SC}) \mathbb{I}\{E > 0\} \frac{\partial E}{\partial y}$

☐ Fully connected layers, convolutional layers (dot product)

Linear brick

Propagation

$$y = Wx$$

Back-propagation

$$\frac{\partial E}{\partial x} = \frac{\partial E}{\partial y} W$$

$$\frac{\partial E}{\partial W} = x \, \frac{\partial E}{\partial v}$$

■ Non-linear activations

Activation function brick

Propagation

$$y_S = f(x_S)$$

Back-propagation

$$\left[\frac{\partial E}{\partial x}\right]_{S} = \left[\frac{\partial E}{\partial y}\right]_{S} f'(x_{S})$$

☐ Typical non-linear activations

Activation functions

	Propagation	Back-propagation
Sigmoid	$y_S = \frac{1}{1 + e^{-x_S}}$	$\left[\frac{\partial E}{\partial x}\right]_{S} = \left[\frac{\partial E}{\partial y}\right]_{S} \frac{1}{(1 + e^{x_{S}})(1 + e^{-x_{S}})}$
Tanh	$y_s = \tanh(x_s)$	$\left[\frac{\partial E}{\partial x}\right]_S = \left[\frac{\partial E}{\partial y}\right]_S \frac{1}{\cosh^2 x_S}$
ReLu	$y_s = \max(0, x_s)$	$\left[\frac{\partial E}{\partial x}\right]_{S} = \left[\frac{\partial E}{\partial y}\right]_{S} \mathbb{I}\{x_{S} > 0\}$
Ramp	$y_s = \min(-1, \max(1, x_s))$	$\left[\frac{\partial E}{\partial x}\right]_{S} = \left[\frac{\partial E}{\partial y}\right]_{S} \mathbb{I}\{-1 < x_{S} < 1\}$

Recap: ReLU

- Non-linear activation function are applied per-element
- Rectified linear unit (ReLU):
 - max(0,x)
 - makes learning faster (in practice x6)
 - avoids saturation issues (unlike sigmoid, tanh)
 - simplifies training with backpropagation
 - preferred option (works well)

Other examples:

$$sigmoid(x) = (1 + e^{-x})^{-1}$$

Quiz

☐ Saturation of the gradient of logistic sigmoid

What happens when x = -10?

What happens when x = 0?

What happens when x = 10?

Hint 1: Think about the gradient

$$\frac{\partial \sigma}{\partial x}$$

☐ Saturation of the gradient of logistic sigmoid **f**

What happens when x = -10?

What happens when x = 0?

What happens when x = 10?

Hint 2:
$$\frac{\partial \sigma}{\partial x} = \sigma(1 - \sigma)$$

 \square Saturation of the gradient of ReLU max(0,x)

What happens when x = -10?

What happens when x = 0?

What happens when x = 10?

 \Box Saturation of the gradient of ReLU max(0,x)

What happens when x = -10? What happens when x = 0? What happens when x = 10?

- gradient does not saturate in positive region (x>0)
- what happens when x <= 0?

 \square Saturation of the gradient of ReLU max(0,x)

What happens when x = -10? What happens when x = 0? What happens when x = 10?

- gradient does not saturate in positive region (x>0)
- gradient is 0 when x<0, so ReLU "dies"?

 \square Saturation of the gradient of ReLU max(0,x)

What happens when x = -10? What happens when x = 0? What happens when x = 10?

- gradient does not saturate in positive region (x>0)
- gradient is 0 when x<0, so ReLU "dies"

Good that we have many data points, so it would be back alive

Quiz

 \square Saturation of the gradient of ReLU max(0,x)

What happens when x = -10? What happens when x = 0? What happens when x = 10?

- gradient does not saturate in positive region (x>0)
- gradient is 0 when x<0, so ReLU "dies"</p>
- what happens to gradient when x=0?

Subgradient

 \square ReLU gradient is not defined at x=0, use a subgradient instead

☐ Practice note: during training, when a 'kink' point was crossed, the numerical gradient will not be exact.

[Leaky ReLU: extra]

☐ In practice, people like to use *Leaky ReLU*, f(x) = max(0.01x, x) to avoid saturation of the gradient and this ReLU will not "die"

Leaky ReLU

$$f(x) = \max(0.01x, x)$$

Training CNNs

- Stochastic gradient descent
- ☑ Backpropagation
- Initialization

Stochastic gradient descent (SGD)

(Mini-batch) SGD

- Initialization of the (filter) weights
- don't initialize with zero
- don't initialize with the same value
- sample from uniform distribution U[-b,b] around zero or from Normal distribution
- \Box Decay of the learning rate α

$$w^{t+1} = w^t - \alpha \cdot \frac{dE}{dw}(w^t)$$

as we get closer to the optimum, take smaller update steps

- start with large learning rate (e.g. 0.1)
- maintain until validation error stops improving
- divide learning rate by 2 and go back to previous step

Stochastic gradient descent (SGD)

■ Data preprocessing: normalization

☐ In images: subtract the mean of RGB intensities of the whole dataset from each pixel

Preventing overfitting

- ☐ Dropout regularization
- Data augmentation

Regularization: **Dropout**

"randomly set some neurons to zero in the forward pass" (with probability 0.5)

(a) Standard Neural Net

(b) After applying dropout.

[Srivastava et al., 2014]

Regularization: **Dropout**

"randomly set some neurons to zero in the forward pass" (with probability 0.5)

(a) Standard Neural Net

(b) After applying dropout.

[Srivastava et al., 2014]

111

- ☐ The neurons which are "dropped out" do not contribute to the forward pass and do not participate in backpropagation.
- □ So every time an input is presented, the neural network samples different architecture, but all these architectures share weights.

Regularization: **Dropout**

"randomly set some neurons to zero in the forward pass" (with probability 0.5)

(a) Standard Neural Net

(b) After applying dropout.

[Srivastava et al., 2014]

☐ Dropout could be seen as training a large ensemble of models (each model gets trained on one datapoint or on a batch of data)

Regularization: **Dropout**

"randomly set some neurons to zero in the forward pass" (with probability 0.5)

(a) Standard Neural Net

(b) After applying dropout.

[Srivastava et al., 2014]

- ☐ Dropout could be seen as training a large ensemble of models (each model gets trained on one datapoint or on a batch of data)
- ☐ At test time, use average predictions over all models (weighted with 0.5)

Dropout

Dropout: set the output of each hidden neuron to zero w.p. 0.5.

- This technique reduces complex co-adaptations of neurons, since a neuron cannot rely on the presence of particular other neurons.
- It is, therefore, forced to learn more robust features that are useful in conjunction with many different random subsets of the other neurons.
- Without dropout, CNNs exhibits substantial overfitting.
- Dropout roughly doubles the number of iterations required to converge.

Alternatives:

standard L₂ regularization of weights

Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge the dataset using label-preserving

transformations.

Forms of data augmentation:

- horizontal reflections
- random crop
- changing RGB intensities
- image translation

Fine-tuning

Fine-tuning

1. Train on ImageNet

2. Finetune network on your own data

Fine-tuning

Transfer Learning with CNNs

☐ A lot of pre-trained models in Caffe Model Zoo https://github.com/BVLC/caffe/wiki/Model-Zoo

Visualization of CNNs

The first convolutional layer

□ AlexNet

96 convolutional kernels of size 11×11×3 learned by the first convolutional layer on the 227×227×3 input images.

The top 48 kernels were learned on GPU1 while the bottom 48 kernels were learned on GPU2

The first convolutional layer

■ Which one is good?

The first convolutional layer

■ Which one is good?

- Possible reasons for left filters: unconverged network, improperly set learning rate, weight regularization
- □ Right: nice, smooth, clean and diverse features are a good indication that the training is proceeding well

122

Layer 1

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

Goal: learning feature hierarchies

 where features from higher levels of the hierarchy are formed by lower level features.

[Breaking CNNs: extra]

□ Take a correctly classified image (left in both columns), and add a tiny distortion (middle) to fool the CNNs with the resulting image (right)

Intriguing properties of neural networks [Szegedy ICLR 2014]

[Breaking CNNs: extra]

"panda" 57.7% confidence

 $+.007 \times$

"gibbon"
99.3 % confidence

 $\mathbf{x} \leftarrow \mathbf{x} + \alpha \frac{\partial E}{\partial \mathbf{x}}$

Credits

Many of the pictures, results, and other materials are taken from:

Ruslan Salakhutdinov

Joshua Bengio

Geoffrey Hinton

Yann LeCun

Barnabás Póczos

Aarti Singh

Fei-Fei Li

Andrej Karpathy

Justin Johnson

Rob Fergus

Adriana Kovashka

Leon Bottou

Thanks for your Attention! ©

Fast-forward to today: ConvNets are everywhere

Classification Retrieval

[Krizhevsky 2012]

Fast-forward to today: ConvNets are everywhere

Detection

Segmentation

[Faster R-CNN: Ren, He, Girshick, Sun 2015]

[Farabet et al., 2012]

Fast-forward to today: ConvNets are everywhere

Describes without errors

A group of young people playing a game of frisbee.

A herd of elephants walking across a dry grass field.

Describes with minor errors

Two dogs play in the grass.

Two hockey players are fighting over the puck.

A close up of a cat laying on a couch.

Somewhat related to the image

A skateboarder does a trick on a ramp.

A little girl in a pink hat is blowing bubbles.

A red motorcycle parked on the side of the road.

Unrelated to the Image

A dog is jumping to catch a frisbee.

A refrigerator filled with lots of food and drinks.

A yellow school bus parked in a parking lot.

Image Captioning

[Vinyals et al., 2015]

Fast-forward to today: ConvNets are everywhere

[Toshev, Szegedy 2014]

[Mnih 2013]

Fast-forward to today: ConvNets are everywhere

[Ciresan et al. 2013]

[Sermanet et al. 2011] [Ciresan et al.]

reddit.com/r/deepdream

Resources ☐ Deep Learning course at Stanford: http://cs231n.stanford.edu/syllabus.html ☐ Course at Universite de Sherbrooke: http://info.usherbrooke.ca/hlarochelle/neural_networks/content.html ☐ Deep Learning summer school 2015: http://videolectures.net/deeplearning2015 montreal/ ☐ Deep learning resources: http://deeplearning.net/

- ☐ Libraries
- ☐ <u>Caffe</u>
- □ <u>cuda-convnet2</u>
- ☐ <u>Torch</u>
- ☐ <u>TensorFlow</u>