Deep Learning

G6032, G6061, 934G5, 807GS5, G5015

Dr. Viktoriia Sharmanska

Content: today

O Deep architectures: short intro

[Deep Convolutional Neural Networks
A Convolutional layer
d Max pooling layer
A Fully connected layer
d Non-linear activation function ReLU

A Case study: AlexNet, winner of ILSVRC'12

O AlexNet architecture
O Fast-forward to today: Revolution of Depth

Content: tomorrow

A Training Deep Convolutional Neural Networks
O Stochastic gradient descent
O Backpropagation
Q Initialization

A Preventing overfitting
O Dropout regularization
O Data augmentation

Q Fine-tuning

1 Visualization of CNNs

DeepMind’s AlphaGo

Value network
20-88-00--DO@BT 1
B o e
+4+44+4

L
® e
L

LR L]

O Deep policy network is trained to produce probability map of promising moves

Goal of Deep architectures

very high level representation:
MAN| |SITTING

4

= where features from higher levels of the etc
hierarchy are formed by lower level features. ‘

Goal: Deep learning methods aim at

= |earning feature hierarchies

Edges, local shapes, object parts slightly higher level representation

4

raw input vector representation:

Low level representation «'=

Figure is from Yoshua Bengio

Deep architectures

Defintion: Deep architectures are composed of multiple levels of non-linear
operations, such as neural nets with many hidden layers.

Examples of non-linear

Output layer activations:

tanh(x)

ox)=1+e™)"

max(0,x) <M today

Hidden layers

Input layer

Q In practice, NN with multiple hid. layers work better than with a single hid. layer.
6

Deep Convolutional Networks CNNs

Compared to standard neural networks with similarly-sized layers,
= CNNs have much fewer connections and parameters
= and so they are easier to train

= and typically have more than five layers (a number of layers
which makes fully-connected neural networks almost
impossible to train properly when initialized randomly)

LeNet, 1998 LeCun Y, Bottou L, Bengio Y, Haffner P: Gradient-Based Learning Applied to
Document Recognition, Proceedings of the IEEE

AlexNet, 2012 Krizhevsky A, Sutskever I, Hinton G: ImageNet Classification with Deep
Convolutional Neural Networks, NIPS 2012

Deep Convolutional Networks

d Convolutional layer

O Non-linear activation function ReLU
d Max pooling layer

Q Fully connected layer

Convolutional layer

32x32x3 image

32 height

3 depth

Convolutional layer

Filters always extend the full

. depth of the input volume
32x32x3 image /

5x5x3 filter

32 III

32

10

Convolutional layer

Filters always extend the full

. depth of the input volume

32x32x3 image /
oxox3 filter
32 L/
I Convolve the filter with the image
i.e. “slide over the image spatially,

computing dot products”

32

11

Convolutional layer

__— 32x32x3 image
5x5x3 filter w

V
=0

32

~ 1 number:
the result of taking a dot product between the
filter and a small 5x5x3 chunk of the image Xx

T
w X (in general, w' x+ bias)

12

Convolutional layer

activation map

__— 32x32x3 image

5x5x3 filter w, /
2
@>@ ”

convolve (slide) over all

spatial locations
32 28

13

Convolutional layer

consider a second, green filter

_— 32x32x3 image activation maps

5x5x3 filter w, %
2
@>@ ”

convolve (slide) over all

spatial locations
32 / 28

14

Convolutional layer

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

x3
activation maps

T

Convolution Layer

g A

3 6

28

We stack these up to get a “new image” of size 28x28x6!

15

[Convolution Demo: extral

http://cs231n.github.io/assets/conv-demo/index.html

16

Spatial dimensions

A closer look at spatial dimensions

7

/X7x1 image
3x3x1 filter w

17

Spatial dimensions

A closer look at spatial dimensions

7

/X7x1 image
3x3x1 filter w

7

Slide over all locations using stride 1
horizontally and vertically, S=1

18

Spatial dimensions

A closer look at spatial dimensions

7

/X7x1 image
3x3x1 filter w

7

Slide over all locations using stride 1
horizontally and vertically, S=1

19

Spatial dimensions

A closer look at spatial dimensions

7

/X7x1 image
3x3x1 filter w

7

Slide over all locations using stride 1
horizontally and vertically, S=1

20

Spatial dimensions

A closer look at spatial dimensions

7

/X7x1 image
3x3x1 filter w

7

Slide over all locations using stride 1
horizontally and vertically, S=1

21

Spatial dimensions

A closer look at spatial dimensions

7

/X7x1 image
3x3x1 filter w

7

Slide over all locations using stride 1
horizontally and vertically, S=1

22

Spatial dimensions

A closer look at spatial dimensions

7

/X7x1 image
3x3x1 filter w

7

Slide over all locations using stride 1
horizontally and vertically, S=1

23

Spatial dimensions

A closer look at spatial dimensions

7

/X7x1 image
3x3x1 filter w

7

Slide over all locations using stride 1
horizontally and vertically, S=1

24

Spatial dimensions

A closer look at spatial dimensions

7

/X7x1 image
3x3x1 filter w

7

Slide over all locations using stride 1
horizontally and vertically, S=1

25

Spatial dimensions

A closer look at spatial dimensions

7

/X7x1 image
3x3x1 filter w

and so on ...

26

Spatial dimensions

A closer look at spatial dimensions

7

/X7x1 image

3x3x1 filter w
7 stride S=1

= 9X5 output

activation map

27

Spatial dimensions

A closer look at spatial dimensions

7

/X7x1 image
3x3x1 filter w

7

Slide over all locations using stride 2
horizontally and vertically, S=2

28

Spatial dimensions

A closer look at spatial dimensions

7

/X7x1 image
3x3x1 filter w

7

Slide over all locations using stride 2
horizontally and vertically, S=2

29

Spatial dimensions

A closer look at spatial dimensions

7

/X7x1 image
3x3x1 filter w

7

Slide over all locations using stride 2
horizontally and vertically, S=2

30

Spatial dimensions

A closer look at spatial dimensions

7

/X7x1 image
3x3x1 filter w

7

Slide over all locations using stride 2
horizontally and vertically, S=2

31

Spatial dimensions

A closer look at spatial dimensions

7

/X7x1 image
3x3x1 filter w

7

Slide over all locations using stride 2
horizontally and vertically, S=2

32

Spatial dimensions

A closer look at spatial dimensions

7

/X7x1 image
3x3x1 filter w

Slide over all locations using stride 2
horizontally and vertically, S=2

=> ? output

33

Spatial dimensions

A closer look at spatial dimensions

7

/X7x1 image

3x3x1 filter w
7 stride S=2

= 3x3 output

activation map

34

Spatial dimensions

A closer look at spatial dimensions

7

/X7x1 image

3x3x1 filter w
7 stride S=3

35

Spatial dimensions

A closer look at spatial dimensions

7

/X7x1 image

3x3x1 filter w
7 stride S=3

36

Spatial dimensions

A closer look at spatial dimensions

7

/X7x1 image

3x3x1 filter w
7 stride S=3

doesn’t fit!
cannot apply 3x3x1 filter on
7x7x1 1mage with stride 3

37

Spatial dimensions

A closer look at spatial dimensions

7

/X7x1 image

3x3x1 filter w
7 stride S=3

‘)

38

Spatial dimensions

A Add zero padding around the border

9

0

O 0O |0 oo o o|lo| o | o

olo|lolo|lo|o|o o] o

/X7x1 image

3x3x1 filter w
stride S=3
padding = 1

= 3x3 output
activation map

39

Spatial dimensions

[Spatial dimension of the output [-F+2P N

I S
IXIxd input
F FxFxd filter w
F I stride s
padding P

Q If width 14, and height I, Of the input differ, this
formula is applied independently for I, and I g -

1

40

Back to convolutional layer

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

x3
activation maps

T

28
Convolution Layer
32 A
3 6
We stack these up to get a “new image” of size 28x28x6!
o _ 32-5+2-0)
Spatial dimension: +1=28

1

41

32

32

Convolution Layer

32x32x3 image
10 filters 5x5x3
stride S=1
padding P=2

Output volume size

Py

42

32

32

Convolution Layer

32x32x3 image
10 filters 5x5x3
stride S=1
padding P=2

activation maps

y
4

32

10

32—5+2-2_|_1=32

43

32

32

Convolution Layer

32x32x3 image
10 filters 5x5x3
stride S=1
padding P=2

Number of parameters
in this layer?

Py

44

32

32

Convolution Layer

32x32x3 image
10 filters 5x5x3
stride S=1
padding P=2

Number of parameters
in this layer?

Each filter has
S5X5x3=7/5 parameters

=>75x10 = 750

45

Can we do convolution
1x1 CONV with 1x1xdepth filter
56 with 32 filters
(each filter has size -l P
1x1x64, and performs a
64-dimensional dot -
56 product)

64

56x56x64 image
32 filters 1x1x64
S=1, P=0

46

1x1 CONV

56 with 32 filters 56

(each filter has size
1x1x64, and performs a
64-dimensional dot

56 product)

64 32

56

A Inexpensive convolution

Using 5x5x64 filters would result in 1600-dimensional dot product

47

Convolutional layer: summary

[Accepts an input of size IxIxd Often in practice:
Q Requires four specifications: K'is power of 2, e.g. 32, 64, 128
= Number of filters K F=3,5=1P=1

: : F=05,5=1,P=2
= Filter size FxFxd F =5, S=2, P is set accordingly
= The stride S F=1 5=1, P=0
= Padding P
I-F+2P
A Outputs a volume of size OxOxK, where O = S+ +1

d In the output volume, the i-th activation map is the result of a
convolution of the i-th filter over the input with a stride S and
padding P.

d Local connectivity and parameter sharing:

each convolutional layer has (FxFxd)xK weight parameters to be
learned (the fully connected layer would have IxIxdxOxOxK par.)

48

[Convolutional layer: extra]

A We call the layer convolutional because it
is related to convolution of two signals:

fleyl=glxyl= Y ¥ fln.n]-glx-n,y-n,]

elementwise multiplication and sum of
a filter and the signal (image)

49

Deep Convolutional Networks

\M Convolutional layer

O Non-linear activation function ReLU
d Max pooling layer

Q Fully connected layer

50

Where is ReLU?

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with
activation functions

32

32

CONYV,

RelLU
e.g.6
9X5x3
filters

S=1, P=0

28

28

CONYV,

RelLU
e.g. 10
ox5x6
filters

S=1, P=0

10

24

CONV,
RelLU

24

51

A Non-linear activation function are applied per-element

Rectified Linear Unit, RelLU

A Rectified linear unit (ReLU):

max(0,X)

makes learning faster (in practice x6)

avoids saturation issues (unlike sigmoid, tanh)
simplifies training with backpropagation
preferred option (works well)

Other examples:

tanh(x)

tanh(x)
[=]

-5 0 5

52

[Activation functions: extra]

O State-of-the-art

Leaky RelLU
f(z) = max(0.01z, x)
Parametric Rectifier (PReLU)
f(z) = max(az, x)

[Mass et al., 2013]
[He et al., 2015]

()

ol = % if 2500
v = a(exp(z)—1) ifz <0

Exponential Linear Units (ELU)

[Clevert et al., 2015]

53

Deep Convolutional Networks

\M Convolutional layer

Non-linear activation function RelLU
d Max pooling layer
Q Fully connected layer

54

Where is pooling?

RELU RELU RELU RELU RELU RELU

CONV lCONVl CONV lCONVl CONV lCONVl FC

bbb

= .| [

- |El= k
- - B ’car |
- o |- | frlick |
i - - (= %Ttplane
=~ |l

le i ﬁ thorse

g . - . (2| [

il

Two more layers to go: pooling and fully connected layers ©

Spatial pooling

d Pooling layer:
O Makes the representations smaller (downsampling)
O Operates over each activation map independently
O Role: invariance to small transformation

224x224x64

112x112x64

pool
—

> S 112
224 downsampling

112
224

56

Max pooling

A

Single activation map

11112 | 4
S| 6|7 |8
312 ,1]0
112]3| 4

 Alternatives:
= sum pooling
= overlapping pooling

max pool with 2x2 filters
and stride 2

>

57

Deep Convolutional Networks

\M Convolutional layer

\M Non-linear activation function RelLU
\M Max pooling layer

Q Fully connected layer

58

Where is a fully connected layer?

RELU RELU RELU RELU RELU RELU

CONV lCONVl CONV lCONVl CONV lCONVl FC

bbb

= ||
=@l
= - g car |
- o [-- | [[tru(:k |
i w - |l Eifplane
= ~ [f -
o = & ﬁ ‘ship
= - ﬁ horse
- . (2| [

R AR

il

Fully connected layer

Contains neurons that connect to the entire input volume, as in ordinary
Neural Networks:

Output layer

Hidden layer

Hidden layer

= neurons between two adjacent layers are fully pairwise connected,
but neurons within a single layer share no connections

60

Output layer

In classification:

= the output layer is fully connected with number of neurons equal to
number of classes

= followed by softmax non-linear activation

Pr(class1) Pr(class2) Pr(class3)

Output layer

Last hidden layer

61

[Running CNNs demo: extra]

http://cs.stanford.edu/people/karpathy/convnetjs/demo/
cifar10.html

62

Case study: AlexNet, 2012

Q AlexNet architecture
O Fast-forward to today: Revolution of Depth

Krizhevsky A, Sutskever I, Hinton G:
ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012

63

55

dense dense|

\
192 192 128 04t 028 \dense

N
=
@
N
H

-

1 13 12 1 > >
= N # N 13 dense | |dense

E | I \l 1000

192 192 128 Max

Max 128 Max pooling
pooling pooling

2048 2048

Input: RGB image
Output: class label (out of 1000 classes)
5 convolutional layers + 3 fully connected layers (with ReLU, max pooling)

trained using 2 streams (2 GPU). In this lecture, we will present the

architecture as 1 stream for simplicity and clarity.
64

AlexNet, Layer 1

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 6 7 8

“““ e 5 13 M3
// 3 —“"::_:_:_::// 3 el s T LS I . | 13
% Il 056 384 @ - S
Max
Max Max) —
256
96 pooling 256 pooling 384 384 pooling 1000
3 96 filters, 256 filters, 384 filters, 384 filters, 256 filters, 4006 4096
S=4, P=0 S=1, P=2 S=1, P=1 S=1, P=1 S=1, P=1 dense dense dense

Convolve RGB image 227x227 with 96 filters of size 11x11x3 with stride S=4
Input size: 227x227x3

: - 227+2x0-11
Each filter produces 55x55 activation map = ; +1=55
Output size: 55x55x96 (290 400 neurons in Layer 1)
Number of parameters: 11x11x3x96 = 34848 ~ 35K
If it was fully connected we had (227x227x3) x (55x55x96) ~ 45B parameters
aQ Apply ReLU (Rectified Linear Units) nonlinearity, f(x) = max(0,x)

65

AlexNet, Layer 1

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 6 7 8

) - 27 7 13 1
I N] 13 13
; e S peEr P
9% || o5 | |1® %8 @ 384 = d

Max
Max Max) —
96 pooling 256 pooling 384 384 256 pooling 1000
3 96 filters, 256 filters, 384 filters, 384 filters, 256 filters, 4006 4096
S=4, P=0 S=1, P=2 S=1, P=1 S=1, P=1 S=1, P=1 dense dense dense

O Max pooling operation (subsampling) along the spatial dimensions
apply with 3x3 filter, stride S=2, padding P=0
Input size: 55x55x96

55+2x0-3
Output size: 27x27x96 ~— *

1=27

66

AlexNet, Layer 2

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 6 7 8

“““ e 5 13 M3
// 3 —“"::_:_:_::// 3 el s T LS I . | 13
% Il 056 384 @ - S
Max
Max Max) —
256
96 pooling 256 pooling 384 384 pooling 1000
3 96 filters, 256 filters, 384 filters, 384 filters, 256 filters, 4006 4096
S=4, P=0 S=1, P=2 S=1, P=1 S=1, P=1 S=1, P=1 dense dense dense

Convolve Layer 1 with 256 filters of size 5x5x96 with stride 1, padding 2
Input size: 27x27x96 (after max pooling)

Each filter produces 27x27 activation map =
Output size: 27x27x256 (186 624 neurons in Layer 2)
Number of parameters: 5x5x96x256 = 614400 ~ 614K
If it was fully connected we had (27x27x96) x (27x27%x256) ~ 13B parameters
d Apply ReLU (Rectified Linear Units) nonlinearity, f(x) = max(0,x)

27+2><2—5_|_1=27

67

AlexNet, Layer 2

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 6 7 8

- 27 7 13 1
I N] 13 13
; e S peEr P
9% || o5 | |1® %8 @ 384 = d

Max Max

Max

96 pooling 256 pooling 384 384 256 pooling 1000
3 96 filters, 256 filters, 384 filters, 384 filters, 256 filters, 4006 4096
S=4, P=0 S=1, P=2 S=1, P=1 S=1, P=1 S=1, P=1 dense dense dense

d Max pooling operation (subsampling) along the spatial dimensions
apply with 3x3 filter, stride S=2, padding P=0

Input size: 27x27x256
Output size: 13x13x256 4w

27+2><O—3_|_1=13

68

AlexNet, Layer 3

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 6 7 8

“““ e 5 13 M3
// 3 —“"::_:_:_::// 3 el s T LS I . | 13
% Il 056 384 @ - S
Max
Max Max) —
256
96 pooling 256 pooling 384 384 pooling 1000
3 96 filters, 256 filters, 384 filters, 384 filters, 256 filters, 4006 4096
S=4, P=0 S=1, P=2 S=1, P=1 S=1, P=1 S=1, P=1 dense dense dense

Convolve Layer 2 with 384 filters of size 3x3x256 with stride 1 and padding 1
Input size: 13x13x256 (after max pooling)

Each filter produces 13x13 activation map - 13+21X1_3+1=13
Output size: 13x13x384 (64 896 neurons in Layer 3)

Number of parameters: 3x3x256x384 = 884 736 ~ 885K

If it was fully connected we had (13x13x256) x (13x13x384) ~ 2.8B parameters
Q Apply ReLU (Rectified Linear Units) nonlinearity, f(x) = max(0,x)

69

AlexNet, Layer 4

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 6 7 8
——— —— 53 13 KE
P RE = % I — . 13
9% JI- 256 13 S
) @ 384 o
Max 256 Max 384 384 256 pooling 1000
96 pooling pooling
3 96 filters, 256 filters, 384 filters, 384 filters, 256 filters, 409 409
S=4, P=0 S=1, P=2 S=1, P=1 S=1, P=1 S=1, P=1 dense dense dense

Convolve Layer 3 with 384 filters of size 3x3x384 with stride 1 and padding 1
Input size: 13x13x384

Each filter produces 13x13 activation map =
Output size: 13x13x384 (64 896 neurons in Layer 4)
Number of parameters: 3x3x384x384 = 1 327 104~ 1.3M
If it was fully connected we had (13x13x384) x (13x13x384) ~ 4B parameters
aQ Apply ReLU (Rectified Linear Units) nonlinearity, f(x) = max(0,x)

13+2x1—3+1=13

70

AlexNet, Layer 5

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 6 7 8

“““ e 5 13 M3
// 3 —“"::_:_:_::// 3 el s T LS I . | 13
% Il 056 384 @ - S
Max
Max Max) —
256
96 pooling 256 pooling 384 384 pooling 1000
3 96 filters, 256 filters, 384 filters, 384 filters, 256 filters, 4006 4096
S=4, P=0 S=1, P=2 S=1, P=1 S=1, P=1 S=1, P=1 dense dense dense

Convolve Layer 4 with 256 filters of size 3x3x384 with stride 1 and padding 1
Input size: 13x13x384

Each filter produces 13x13 activation map - 13+21X1_3 +1=13
Output size: 13x13x256 (43 264 neurons in Layer 5)

Number of parameters: 3x3x384x256 = 884 736 ~ 885K

If it was fully connected we had (13x13x384) x (13x13x256) ~ 2.8B parameters
d Apply ReLU (Rectified Linear Units) nonlinearity, f(x) = max(0,x)

71

AlexNet, Layer 5

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 6 7 8

) - 27 7 13 1
I N] 13 13
; e S peEr P
9% || o5 | |1® %8 @ 384 = d

Max
Max Max) —
96 pooling 256 pooling 384 384 256 pooling 1000
3 96 filters, 256 filters, 384 filters, 384 filters, 256 filters, 4006 4096
S=4, P=0 S=1, P=2 S=1, P=1 S=1, P=1 S=1, P=1 dense dense dense

O Max pooling operation (subsampling) along the spatial dimensions
apply with 3x3 filter, stride S=2, padding P=0
Input size: 13x13x256

Output size: 6x6x256 4w 13+22XO_3 +1=6

72

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 6 7 8

AlexNet, Layer 6

R e Y 1 19 13
//, T 3 = s et LER
9% || 256 384 @ 384 =

Max

Max Max) —
96 pooling 256 pooling 384 384 256 pooling 1000

3 96 filters, 256 filters, 384 filters, 384 filters, 256 filters, 4006 4096
S=4, P=0 S=1, P=2 S=1, P=1 S=1, P=1 S=1, P=1 dense dense dense

Layer 5 is fully connected to Layer 6 of size 4096

Input size: 6x6x256 (after max pooling)

Output size: 4096x1 (4096 neurons in Layer 6)

Number of parameters: 6x6x256x4096 = 37 748 736 ~ 37.7M

A Apply ReLU (Rectified Linear Units) nonlinearity, f(x) = max(0,x)

73

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 6 7 8

AlexNet, Layer 7

R e Y 1 19 13
//, T 3 = s et LER
9% || 256 384 @ 384 =

Max

Max Max) —
96 pooling 256 pooling 384 384 256 pooling 1000

3 96 filters, 256 filters, 384 filters, 384 filters, 256 filters, 4006 4096
S=4, P=0 S=1, P=2 S=1, P=1 S=1, P=1 S=1, P=1 dense dense dense

Layer 6 is fully connected to Layer 7 of size 4096

Input size: 4096x1

Output size: 4096x1 (4096 neurons in Layer 7)

Number of parameters: 4096x4096 = 16 777 216 ~ 16.8M

A Apply ReLU (Rectified Linear Units) nonlinearity, f(x) = max(0,x)

74

AlexNet, Layer 8

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 6 7 8
e e S 33 13 3
3 = = —— S L I . 13
96 |f- 256 113 S
) Q 384 .
Max 256 Max 384 384 256 poo|in) 150
96 pooling pooling
96 filters 256 filters 384 filters, 384 filters, 256 filters, 409 4096
3 ’ ’ dense dense dense

S=4, P=0 S=1, P=2 S=1, P=1 S=1, P=1 S=1, P=1

Layer 7 is fully connected to Layer 8 of size 1000

Input size: 4096x1

Output size: 1000x1 (1000 neurons in Layer 8)
Number of parameters: 4096x1000 = 4 096 000~ 4M

Apply: softmax non-linear activation to obtain probability scores for 1000 classes
1000

Pr(class =il x,,x,,..., X5,) = €Xp(x;)/ 2 exp(x,)
k=1

75

AlexNet

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 6 7 8

= e L 53 13 EE

3 = = sofeeedt8]) 13
96 - 256 i 384 /// 3 384 _-—»’—/ 2=
Max
Max Max) —
96 pooling 256 pooling 384 384 256 pooling 1000
3 96 filters, 256 filters, 384 filters, 384 filters, 256 filters, 409 409

S=4, P=0 S=1, P=2 S=1, P=1 S=1, P=1 S=1, P=1 dense dense dense

Total number of parameters to learn ~62M:
in convolutional layers 35K + 614K + 885K + 1.3M + 885K =3.7M
in fully connected layers 37.7M + 16.8M + 4M = 58.5M

76

Fast-forward to today

Revolution of Depth 282
‘ 152 layers ’ '

\
\
\
‘ 22 layers H 19 Iayers
ol

3 57 I_ o I ‘ 8 layers ’ ‘ 8 layers

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

Kaiming He, et al. Deep residual learning for Image Recognition, 2015

Take Home Messages

d Understanding the structure of convolutional neural networks
A Convolutional layer
0 RelLU
d Max pooling layer
Q Fully connected layer
d How to compute spatial dimensions
d How to compute number of parameters

78

Training the AlexNet: overview

0 AlexNet was trained

d using a very large dataset ImageNet

O on two NVIDIA GTX 580 3GB GPUs

Q for about a week

A with stochastic gradient descent using back propagation

79

ImageNet Dataset

O 15M images

Q 22K categories

d Images collected from Web

A Human labelers (Amazon’s Mechanical Turk crowd-sourcing)

O ImageNet Large Scale Visual Recognition Challenge (ILSVRC-2010)
o 1K categories
o 1.2M training images (~1000 per category)
o 50,000 validation images

o 150,000 testing images

O RGB images; mean normalization

O Variable-resolution, but this architecture scales them to 256x256 size

80

ImageNet

Classification goals:
O Make 1 guess about the label (Top-1 error)

d make 5 guesses about the label (Top-5 error)

Results: ImageNet

miie

container shi

motor scooter

mite container ship motor scooter leapard

black widow lifeboat go-kart Jaguar
cockroach amphibian moped cheetah
tick fireboat bumper car H_J snow leopard

starfish drilling platform golfcart Egyptian cat
- = r : :

3 -)
Y o)

9! e musnroom C et;ry a aq;scar cat
convertible agaric dalmatian squirrel monkey
grille mushroom grape spider monkey

j"l pickup jelly fungus elderberry _]_’ titi
beach wagon gill fungus |ffordshire bullterrier indri
fire engine | dead-man's-fingers currant howler monkey

82

/ Six training images that produce feature vectors in
Test column the last hidden layer with the smallest Euclidean distance
from the feature vector for the test image. 83

Deep Learning, Part 2

G6032, G6061, 934G5, 807GS5, G5015

Dr. Viktoriia Sharmanska

A Training Deep Convolutional Neural Networks
O Stochastic gradient descent
O Backpropagation
Q Initialization

A Preventing overfitting
O Dropout regularization
O Data augmentation

Q Fine-tuning

1 Visualization of CNNs

85

Training CNNs

O Stochastic gradient descent
O Backpropagation
A Initialization

86

Stochastic gradient descent (SGD

(Mini-batch) SGD

Initialize the parameters
Loop over the whole training data (multiple times):
O Sample a datapoint (a batch of data)

A Forward propagate the data through the network, compute
the classification loss.

O Backpropagate the gradient of the loss w.r.t. parameters
through the network

O Update the parameters using the gradient

87

Stochastic gradient descent (SGD

(Mini-batch) SGD

Initialize the parameters randomly but smartly
Loop over the whole training data (multiple times):
O Sample a datapoint (a batch of data)

A Forward propagate the data through the network, compute

the classification loss. For example: 1 2
E = E(y predicted ~ Y true)

O Backpropagate the gradient of the loss w.r.t. parameters
through the network

O Update the parameters using the gradient

SGD: w™=w' —a-d—E(w’)
dw

88

O Backpropagation is recursive application of the chain rule along a
computational flow of the network to compute gradients of the
loss function w.r.t. all parameters/intermediate variables/inputs in
the network

89

O Implementations typically maintain a modular structure, where the
nodes/bricks implement the forward and backward procedures

Sequential brick

B ERE B

Propagation

“Apply propagation rule to B4, By, Bs, ..., By.-
Back-propagation

“Apply back-propagation rule to By, ..., B3, B,, B;.

90

Q Last layer used for classification

Square loss brick

Propagation

1
E=y=5(x—d)*
= g |

Back-propagation

X

OF OF
(v — AT — (v _ AT
e (x—d) 3y (x—d)

91

O Typical choices

Loss bricks

Square y =%(x—d)2

y =log(1+ e~ %)
y = max(0,m —cx)
LogSoftMax y =log(2, e*k) —x,

MaxMargin y = [r,?j;‘é‘{xk + m} — xc]

aE_ _ Ta_E
—=(x-a) %

0x
OF _ _—c_OF

dx 1+e* dy

OE OE
Friai [{cx <m}@

a_E —_ X xk _ a_E
axL = (e¥s /T e — 85) 5

9E] 9E
[515 = (8 = O5c) HE > 0} 5

92

Q Fully connected layers, convolutional layers (dot product)

Linear brick

Propagation

y=Wx

Back-propagation

OF _OF

w dx 0y
0F 0F
— e =

93

O Non-linear activations

Activation function brick

Propagation

Vs = f(xs)
Back-propagation

= - 3—5] Fxs)

94

Q Typical non-linear activations

Activation functions

1 [OE] [OE] 1
Sigmoid Vs = The*s lox] - _@_S (1+eXs)(1+e~%s)
Tanh Yy, = tanh(x;) g—i . = Z—i . COS;Z o
RelLu ¥, = max(0, x,) :Z—i:s = :Z—i:s [{x; > 0}
Ramp y, = min(—1,max(1, x,)) g_is - Z_is =l = o L

95

Recap: Rel U

A Non-linear activation function are applied per-element

A Rectified linear unit (ReLU):

= max(0,x)

= makes learning faster (in practice x6)

= avoids saturation issues (unlike sigmoid, tanh)
= simplifies training with backpropagation

= preferred option (works well)

Other examples:

tanh(x)

tanh(x)
[=]

-5 0 5

96

A Saturation of the gradient of logistic sigmoid ?

10F ——

> > I
< < . 0.
OE do GE 43 //
9x Oz Oo oo

1 " " n 1 n
—10 -5 5 10

What happens when x = -107?
What happens when x = 07
What happens when x = 107?

JdO
Hint 1: Think about the gradient 5,

97

A Saturation of the gradient of logistic sigmoid ?

Lot -—

[].8;
IZI.E5
ot
y 3 AR TR

1 " "
—10 -5 5 10

What happens when x = -107?

What happens when x = 07

What happens when x = 107?
00

Hint2: —=0(1-0)
0x

98

A Saturation of the gradient of ReLU max(0,x) ?

X -‘ f(x) = max(0, z)

0E 0o 6E %
dxr Oz Oo oo

What happens when x = -107?
What happens when x = 07
What happens when x = 107?

99

A Saturation of the gradient of ReLU max(0,x) ?

X -‘ f(x) = max(0,z)

OE _ do 6F [
dxr Oz Oo oo

What happens when x = -107?
What happens when x = 07
What happens when x = 107?

= gradient does not saturate in positive region (x>0)
= what happens when x<=0 ?

A Saturation of the gradient of ReLU max(0,x) ?

X -‘ f(x) = max(0,z)

OE _ do 6F [
dxr Oz Oo oo

What happens when x = -107?
What happens when x = 07
What happens when x = 107?

= gradient does not saturate in positive region (x>0)
= gradient is 0 when x<0, so ReLU “dies” ?

A Saturation of the gradient of ReLU max(0,x) ?

X -‘ f(x) = max(0, z)

0E 0o 6E %
dxr Oz Oo oo

What happens when x = -107?
What happens when x = 07
What happens when x = 107?

= gradient does not saturate in positive region (x>0)
= gradient is 0 when x<0, so ReLU “dies”
Good that we have many data points, so it would be back alive

A Saturation of the gradient of ReLU max(0,x) ?

X -‘ f(x) = max(0, z)

0E 0o 6E %
dxr Oz Oo oo

What happens when x = -107?
What happens when x = 07
What happens when x = 107?

= gradient does not saturate in positive region (x>0)
= gradient is 0 when x<0, so ReLU “dies”
= what happens to gradient when x=07?

Subgradient

O RelLU gradient is not defined at x=0, use a subgradient instead
A

Omax(0,x) =1

0max(0,x) =0

0,maz(0,x) € [0,1]

O Practice note: during training, when a ‘kink’ point was crossed, the
numerical gradient will not be exact.

104

[Leaky RelLU: extra]

A In practice, people like to use Leaky ReLU, f(x) = max(0.01x, x)
to avoid saturation of the gradient and this ReLU will not “die”

Leaky ReLU
f(z) = max(0.01z, x)

Stochastic gradient descent
\M Backpropagation
A Initialization

Stochastic gradient descent (SGD

(Mini-batch) SGD
A Initialization of the (filter) weights

= don't initialize with zero
= don't initialize with the same value
= sample from uniform distribution U[-b,b] around zero or from Normal distribution

O Decay of the learning rate o — wt =y — a-d_E(w’)

dw
as we get closer to the optimum, take smaller update steps
= start with large learning rate (e.g. 0.1)
= maintain until validation error stops improving
= divide learning rate by 2 and go back to previous step

Stochastic gradient descent (SGD

O Data preprocessing: normalization

original data zero-centered data normalized data
- - 10 10

O Inimages: subtract the mean of RGB intensities of the whole
dataset from each pixel

108

Preventing overfitting

O Dropout regularization
O Data augmentation

-
O
e
(O
N
"
©
=
Q
oY

Regqularization: Dropout

“‘randomly set some neurons to zero in the forward pass”

(with probability 0

5)

\ Vi@
w _._.n
»*).M.
.qsﬁﬁa 530

w\X X —

A/

r‘““., h_..r'
H’ L)
o \ﬁ.\ \; .’

[Srivastava et al., 2014]

(b) After applying dropout.

(a) Standard Neural Net

110

Regularization

Regqularization: Dropout

“‘randomly set some neurons to zero in the forward pass”
(with probability 0.5)

(a) Standard Neural Net (b) After applying dropout. [Srivastava et al., 2014]

O The neurons which are “dropped out” do not contribute to the forward pass
and do not participate in backpropagation.

O So every time an input is presented, the neural network samples different

architecture, but all these architectures share weights. 111

Regularization

Regqularization: Dropout

“‘randomly set some neurons to zero in the forward pass”
(with probability 0.5)

(a) Standard Neural Net (b) After applying dropout. [Srivastava et al., 2014]

O Dropout could be seen as training a large ensemble of models (each model
gets trained on one datapoint or on a batch of data)
112

Regularization

Regqularization: Dropout

“‘randomly set some neurons to zero in the forward pass”
(with probability 0.5)

(a) Standard Neural Net (b) After applying dropout. [Srivastava et al., 2014]

O Dropout could be seen as training a large ensemble of models (each model
gets trained on one datapoint or on a batch of data)

O At test time, use average predictions over all models (weighted with 0.5) 113

Dropout: set the output of each hidden neuron to zero w.p. 0.5.

= This technique reduces complex co-adaptations of neurons, since a
neuron cannot rely on the presence of particular other neurons.

= [t is, therefore, forced to learn more robust features that are useful in
conjunction with many different random subsets of the other neurons.

= Without dropout, CNNs exhibits substantial overfitting.

= Dropout roughly doubles the number of iterations required to converge.

Alternatives:

standard L, regularization of weights

114

Data Augmentation

The easiest and most common method to reduce overfitting on image

data is to artificially enlarge the dataset using Iabel preservmg
transformations.

Forms of data augmentation:
= horizontal reflections

= random crop

= changing RGB intensities

= image translation

11
A

1. Train on ImageNet 2. Finetune network on

your own data

N\

ImageNet data

your
data

Transfer Learning with CNNs

conv-64
conv-64

maxpool

conv-128
conv-128

maxpool

conv-256
conv-256

maxpool

conv-512
conv-512

maxpool

conv-512
conv-512

maxpool

FC-4096
FC-4096
FC-1000
softmax

O A lot of pre-trained models in Caffe Model Zoo

1. Train on
ImageNet

image |

conv-64
conv-64

maxpool

conv-128
conv-128

maxpool

conv-256
conv-256

maxpool

conv-512
conv-512

maxpool

conv-512
conv-512

maxpool

FC-4096
FC-4096

2. If small dataset: fix
all weights (treat CNN
as fixed feature
extractor), retrain only
the classifier

i.e. swap the Softmax
layer at the end

https://github.com/BVLC/caffe/wiki/Model-Zoo

image |

conv-64
conv-64

maxpaol

conv-128
conv-128

maxpool

conv-256
conv-256

maxpool

3. If you have medium sized
dataset, “finetune” instead:
use the old weights as
initialization, train the full
network or only some of the
higher layers

retrain bigger portion of the
network, or even all of it.

conv-512
conv-512

maxpool

conv-512
conv-512

maxpool

FC-4096
FC-4096
FC-1000
softmax

—

118

Visualization of CNNs

The first convolutional layer

O AlexNet

96 convolutional kernels of size 11x11x3 learned by the first
convolutional layer on the 227x227x%3 input images.

The top 48 kernels were learned on GPU1 while the bottom 48 kernels
were learned on GPU2

120

The first convolutional layer

O Which one is good?

121

The first convolutional layer

O Which one is good?

O Possible reasons for left filters: unconverged network, improperly set learning
rate, weight regularization

O Right: nice, smooth, clean and diverse features are a good indication that the

training is proceeding well 122

Visualization of CNNs layers

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

Visualization of CNNs layers

| ”/ | §'! 1|
“ M “"'HH .= Al
, xﬁ 7'1 l// f‘l

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

Visualization of CNNs layers

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

Vlsuallzatlon of CNNs Iayers

Visualizing and Understandlng Convolutlonal Networks [Zeiler and Fergus, ECCV 2014]

Visualization of CNNs layers

Goal: learning feature hierarchies

= where features from higher levels of the hierarchy are formed by
lower level features.

Low-Level _Mid-Level_High-Level | Trainable
Feature Feature Feature Classifier

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013] 1>

correct +distort ostrich correct +distort ostrich

O Take a correctly classified image (left in both columns), and add a tiny distortion
(middle) to fool the CNNs with the resulting image (right)

Intriguing properties of neural networks [Szegedy ICLR 2014]

[Breaking CNNs: extra]

“panda” “nematode” “gibbon”
57.7% confidence 8. 2% conﬁdence 99.3 % confidence

St TR g e VA
+ 007 X EE R s Ja CATLS SA S,
LT A SR Y v B L o W AN)
S 5 ;,3 o

FHEE = 2
y -\.‘ c'-qc-_
cx‘u 3

NN
Lm«d LAY

PSR!
R ok Y
2 :uj‘f-ﬂ‘ :’%" i};@%f

X<—X+0—
0X

Explaining and Harnessing Adversarial Examples [Goodfellow ICLR 2015]

Credits

Many of the pictures, results, and other materials are taken from:
Ruslan Salakhutdinov
Joshua Bengio
Geoffrey Hinton
Yann LeCun
Barnabas Pdczos
Aarti Singh
Fei-Fei Li
Andrej Karpathy
Justin Johnson
Rob Fergus
Adriana Kovashka
Leon Bottou

130

Thanks for your Attention! ©

Fast-forward to today: ConvNets are everywhere

Classification Retrieval

amphibian
fireboat
drilling platform

mushroom
agaric

mushroom
pickup jelly fungus elderberry

beach wagen gill fungus dshire bullterrier
fire engine || dead-man's-fingers currant howler monkey

Appendix

Fast-forward to today: ConvNets are everywhere

Segmentation
s.

[Faster R-CNN: Ren, He, Girshick, Sun 2015] [Farabet et al., 2012]

Cl1:

Calista_Flockhart_0002.jpg Frontalization: 32x11x11x3
Detection & Localization @152X152x3 @142x142
Spatial stream ConvNet
conv1 || conv2 || conv3 || convd || convs fulleé full? ftmax
TxTx96 ||5x5x256 || 3x3x512 || 3x3x512 || 3x3x512 || 4096 2048
siride 2 || sfride 2 || stride 1 sfride 1 || stride 1 || dropout (| dropout
norm. nonm. pool 2x2
pool 2x2 || pool 2x2
Temporal stream ConvNet
conv1 || conv2 || conv3 || convd || conv5 || fullé full?7 ||softmax
TxTx96 || 5x5x256 | | 3x3x512 || 3x3x512 || 3x3x512|| 409 2048
siride 2 || stride 2 || stride 1 siride 1 || stride 1 || dropout (| dropout
norm. || pool 2x2 pool 2x2
pool 2x2

[Simonyan et al. 2014]

>

REPRESENTATION
SFC labels

—
)

L6: F7: Fi:
16x5%5x16 4096d 4030d
@21x21

[Goodfellow 2014]

Image
Captioning

e IR BN P ™ i
A person riding a A skateboarder does a trick

motorcycle on a dirt road. on a ramp. frisbee.

A group of young people Two hockey players are fighting A little girl in a pink hat is
playing a game of frisbee, over the puck. blowing bubbles,

A refrigerator filled with lots of
food and drinks.

A herd of elephants walking A close up of a cat laying A red motorcycle parked on the A yeliow school bus parked in [Vinyals et a/., 201 5]
across a dry grass field. on a couch. side of the road. a parking lot.

Appendix

Fast-forward to today: ConvNets are everywhere

[Mnih 2013]

Appendix

Fast-forward to today: ConvNets are everywhere

[Ciresan et al. 2013] [Sermanet et al. 2011]
[Ciresan et al.]

137

P
O
-
o,
o
Q
<C

reddit.com/r/deepdream

Appendix

] Resources

L Deep Learning course at Stanford:
http://cs231n.stanford.edu/syllabus.html

[Course at Universite de Sherbrooke:
http://info.usherbrooke.ca/hlarochelle/neural networks/content.html

1 Deep Learning summer school 2015:
http://videolectures.net/deeplearning2015 montreal/

O Deep learning resources:
http://deeplearning.net/

139

Appendix

[Libraries

O Caffe

L cuda-convnet2
O Torch

L TensorFlow

140

