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Algorithmic fairness in machine learning

Fairness definitions (20 Feb, 4pm-6pm)
Fairness methods (26 Feb, 11am-1pm)
Practical session (27 Feb, 4pm-6pm, Huxley 225)

Advancements in algorithmic fairness (5 Mar, 4pm-6pm)



OUTLINE TODAY

» Intro into algorithmic bias
» Fairness definitions

» Group-based

» Individual-based

» Running examples
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A study of computer programmes that improve their performance at
some task with experience (data).
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HUMAN-CENTRIC EXAMPLES

REUTERS Business  Markets World  Politics TV More TS

Amazon scraps secret Al recruiting tool that
showed bias against women

TECHNOLOGY NEWS OCTOBER 10, 2018 / 4:12 AM / A YEAR AGO

Facebook Ads Can Still

Discriminate Against Women

and Older Workers, Despite a

Civil Rights Settlement

New research and Facebook’s own ad archive show
that the company’s new system to ensure diverse
audiences for housing and employment ads has many
of the same problems as its predecessor.
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https://www.propublica.org/series/machine-bias

A study of computer programmes that improve their performance at

some task with experience (data), where automatic decisions are made
about humans.
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A study of computer programmes that improve their performance at

some task with experience (data), where automatic decisions are made
about humans.

A risk of discrimination

== Fair Decision Maker

.g. Accuracymaie = Accuracy femaie
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EDUCATIONAL GAME

ttps:// www.survivalofthebestfit.com/
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Supported by the


https://www.survivalofthebestfit.com/
http://gaborcsapo.com/
https://jihjihk.herokuapp.com/
https://www.mklasinc.com/
https://www.aelkattan.com/about
https://blog.mozilla.org/blog/2018/10/24/keeping-ai-accountable-with-science-fiction-documentaries-and-doodles-plus-225000/
https://foundation.mozilla.org/en/

FAIRNESS DEFINITIONS



HOW TO DEFINE FAIRNESS?

A LEGAL PERSPECTIVE



HOW TO DEFINE FAIRNESS?

Direct discrimination w.r.t. intent

If a decision making process is based on the subject’s sensitive attribute

Indirect discrimination w.r.t. consequences

If the outcomes disproportionately hurt (or benefit) people with certain
sensitive attribute values

Sensitive attributes: gender, race, age, disability, religion etc.


https://www.citizensadvice.org.uk/law-and-courts/discrimination/what-are-the-different-types-of-discrimination/direct-discrimination/
https://www.citizensadvice.org.uk/law-and-courts/discrimination/what-are-the-different-types-of-discrimination/indirect-discrimination/
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sensitive attribute values

Sensitive attributes: gender, race, age, disability, religion etc.

Equality Act 2010, Civil Rights Act of 1964, Article 21 EU Charter of Fundamental rights;


https://www.citizensadvice.org.uk/law-and-courts/discrimination/what-are-the-different-types-of-discrimination/direct-discrimination/
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HOW TO DEFINE FAIRNESS?

QD rect discrimination w.r.t. intent

If a decision making process is based on the subject’s sensitive attribute

) w.r.t. consequences

If the outcomes disproportionately hurt (or benefit) people with certain
sensitive attribute values

No consensus on the mathematical formulations of fairness!



https://www.citizensadvice.org.uk/law-and-courts/discrimination/what-are-the-different-types-of-discrimination/direct-discrimination/
https://www.citizensadvice.org.uk/law-and-courts/discrimination/what-are-the-different-types-of-discrimination/indirect-discrimination/
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DEFINITIONS

;Fairness through Unawareness

GROUP-BASED

Demographic Parity

qualized Odds
redictive Parit

vV VvV VvV Vv

EXAMPLE

INDIVIDUAL-BASED

MIndividual Fairness
MWCounterfactual fairness

and


https://arxiv.org/pdf/1710.03184.pdf
http://fairware.cs.umass.edu/papers/Verma.pdf

PREDICTING IF HIRING AN APPLICANT.

X E Rd quantified features of the applicant (e.g. education, experience, college GPA, etc.)

A€ {()’ 1} a binary sensitive attribute(e.g. male/female)
C(X, A) an ML predictor (e.g. hire/reject)

Y {O 1} target variable(e.g. if the candidate is truly capable of the position)

)U\MPLE

X, A7 Y ~ from an underlying distribution D. M recrult'ng .

amazon



PREDICTING IF HIRING AN APPLICANT.

X E Rd quantified features of the applicant (e.g. education, experience, college GPA, etc.)

A€ {()’ 1} a binary sensitive attribute(e.g. male/female)
C(X, A) an ML predictor (e.g. hire/reject)

Y {O 1} target variable(e.g. if the candidate is truly capable of the position)

)U\MPLE

X, A7 Y ~ from an underlying distribution D. M recrult'ng .

amazon

FAIR MACHINE LEARNING:

Training the best C(X, A) that is accurate
and fair.
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Not including the sensitive attribute as a
feature in the training data.
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eature In the training data. C(X, A) predictor (nirelreject)

Y € {O, 1} target variable (truly capable)

C'(X) instead of C'(X, A)

» This definition protects agains direct discrimination.



https://www.citizensadvice.org.uk/law-and-courts/discrimination/what-are-the-different-types-of-discrimination/direct-discrimination/

1. FAIRNESS THROUGH UNAWARENESS

X € Rd features of the applicant;

A € {()7 1} sensitive attribute;

C ( X, A) predictor (hire/reject)

Y € {O, 1} target variable (truly capable)

Not including the sensitive attribute as a

feature in the training data.

C'(X) instead of C'(X, A)

» This definition protects agains direct discrimination.

FLAWS

» there can be many highly correlated features in X (e.g. marital
status, height) that are proxies of the sensitive attribute (e.g.
gender).



https://www.citizensadvice.org.uk/law-and-courts/discrimination/what-are-the-different-types-of-discrimination/direct-discrimination/
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X € R% features of the applicant:

The acceptance rates of the applicants A € {0,1} sensitive attribute;
from each of the groups must be equal. C(X,A) predictor (hire/reject)

Y € {0, 1} target (truly capable)

C is independent of A:
PI[C=1|A=0]=P[C=1|A=1]

A positive outcome is often the preferred decision, such as getting to
university, getting a loan or being shown the ad.
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2. DEMOGRAPHIC/STATISTICAL PARITY

X € R% features of the applicant:

The acceptance rates of the applicants A € {0,1} sensitive attribute;
from each of the groups must be equal. C(X,A) predictor (hire/reject)

Y € {0,1} target (truly capable)

C is independent of A:
PI[C=1|A=0]=P[C=1|A=1]

Variations:

» The p% rule: P[C=1|A=0]/P[C=1|A=1]=p/100

Legal Support: “four-fifth rule” prescribes that a selection rate for any
protected/disadvantaged group should be at least 80% (four-fifths) of the
selection rate for the unprotected/advantaged group.



2. DEMOGRAPHIC/STATISTICAL PARITY

X € R% features of the applicant:

The acceptance rates of the applicants A € {0,1} sensitive attribute;
from each of the groups must be equal. C(X,A) predictor (hire/reject)

Y € {0, 1} target (truly capable)

C is independent of A:
PI[C=1|A=0]=P[C=1|A=1]

Variations:
» The p% rule: P[C=1|A=0]/P[C=1|A=1]=p/100

» | P[C=1]|A=0]-P[C=1]|A=1]| < € where € € [0,1].
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Whiteboard example.



2. DEMOGRAPHIC/STATISTICAL PARITY

X € R% features of the applicant:
A€ {O, 1} sensitive attribute:

The acceptance rates of the applicants
from each of the groups must be equal.

C' (X, A) predictor (hire/reject)
Y € {0,1} target (truly capable)

C is independent of A:
PI[C=1|A=0]=P[C=1|A=1]

QUIZZL

» We have a perfect predictor, C=Y. Will it satisfy statistical parity?

» If we hire the qualified from one group and random people from
the other group, we can still achieve demographic parity. How?



2. DEMOGRAPHIC/STATISTICAL PARITY

X € R% features of the applicant:
A€ {O, 1} sensitive attribute:

The acceptance rates of the applicants
from each of the groups must be equal.

C' (X, A) predictor (hire/reject)
Y € {0,1} target (truly capable)

C is independent of A:
PI[C=1|A=0]=P[C=1|A=1]

FLAWS

» This definition rules out a perfect predictor C=Y when base rates
are different (i.e. P[Y=1 | A=0] # P [Y=1| A=1]).

» If we hire the qualified from one group and random people from
the other group, we can still achieve demographic parity.
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applicants from each of the groups must
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3. EQUALITY OF OPPORTUNITY

X € Rd features of the applicant;

A € {O7 1} sensitive attribute;

C ( X, A) predictor (hire/reject)

Y € {O, 1} target variable (truly capable)

The acceptance rates of the qualified

applicants from each of the groups must
be equal.

C is independent of A conditioned on Y=1:
PI[C=1]|A=0,Y=1]=P[C=1]|A=1,Y=1]

» Allows a perfect predictor C=Y.

» Stimulates to reduce errors uniformly in all groups.


https://arxiv.org/pdf/1610.02413.pdf

3. EQUALITY OF OPPORTUNITY

Whiteboard example.



3. EQUALITY OF OPPORTUNITY

X € Rd features of the applicant;
A € {()7 1} sensitive attribute;

The acceptance rates of the qualified
applicants from each of the groups must

C'(X,A) predictor (hire/reject)
be equal.

Y € {O, 1} target variable (truly capable)

C is independent of A conditioned on Y=1:
PI[C=1]|A=0,Y=1]=P[C=1]|A=1,Y=1]

QUIZZL

Group A=0 has 100 applicants and 58 of them are qualified while group A=1
also have 100 applicants but only 2 of them are qualified.

If the company decides to accept 30 applicants and satisfies equality of
opportunity,

? offers will be conferred to group A=0 and
? offers will be conferred to group A=1.



3. EQUALITY OF OPPORTUNITY

The acceptance rates of the qualified

applicants from each of the groups must

be equal.

FLAWS

The gap between the groups has tendency to grow over time.

If the job is a well-paid job, group A=0 tends to have a better living
condition and affords better education for their kids, and thus enable
them to be qualified for such well-paid jobs when they grow up. The gap
between group A=0 and group A=1 will tend to be enlarged over time.


https://arxiv.org/pdf/1803.04383.pdf

4. EQUALIZED ODDS

The acceptance/rejection rates of the

qualified/unqualified applicants from each
of the groups must be equal.
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_» [IPR

™S TNR

» How about false positive and false negative rates? FPR=1-TNR

and
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4. EQUALIZED ODDS

X € Rd features of the applicant;

A € {()7 1} sensitive attribute;

C ( X, A) predictor (hire/reject)

Y € {O, 1} target variable (truly capable)

The acceptance (rejection) rates of the

qualified (unqualified) applicants from
each of the groups must be equal.

C is independent of A conditioned on Y:
PIC=1]|A=0,Y=1]=P[C=1|A=1,Y=1]
P[C=0|A=0,Y=0]=P[C=0]|A=1,Y=0

_» [IPR

™S TNR

» How about false positive and false negative rates?
» Canwedo P[C #Y|A=0]=P[C=Y|A=1] instead? pcc* T

Could lead to a tradeof: rejecting (C=0) qualified applicants (Y=1) from one group (A=0) for accepting
(C=1) unqualified people (Y=0) from another group (A=1).
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equal chance of being qualified
(unqualified) for each of the groups.
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» Predictor C reflects the candidate’s real capability of doing the job.
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GROUP FAIRNESS DEFINITIONS

Let’s have all fairness metrics together, then we are surely fair. right?

THE IMPOSSIBILITY THEOREM

Any two of the three criteria (demographic parity, equalised
odds, predictive parity) are mutually exclusive except in non-
degenerate cases.


https://arxiv.org/pdf/1610.07524.pdf
https://arxiv.org/pdf/1609.05807.pdf

THE IMPOSSIBILITY THEOREM BY EXAMPLE

Equalized odds versus Predictive Parity

Group

Outcome

Predictor

FPR=0 TPR=1 FPR=1/2

lllustration inspired by Ziyuan Zhong
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Equalized odds versus Predictive Parity

Group A=0 A=1

Outcome

TPR=1 FPR=1/2

lllustration inspired by Ziyuan Zhong



THE IMPOSSIBILITY THEOREM BY EXAMPLE

Equalized odds versus Predictive Parity

Group A=0 A=1

FPR=1/2 TPR=1 FPR=1/2

NPP=1 PPP=2/3 NPP=1

lllustration inspired by Ziyuan Zhong



THE IMPOSSIBILITY THEOREM BY BAYES™ RULE

For each group, A=0 and A=1, we compute:

Py =1|C=1] = P[C =1]Y =1] P[Y = 1]

P[C =1y =1]P[Yy = 1]+ P[C =1]Y =0] (1 — P[Y = 1))


https://arxiv.org/pdf/1810.05598.pdf
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» Suppose we have equalized odds (TPR and FPR rates are equal
for A=0 and A=1), can we have (positive) prediction parity?
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THE IMPOSSIBILITY THEOREM BY BAYES™ RULE

For each group, A=0 and A=1, we compute:

PR ((rU€
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e
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P[C=1]y =1] Py =1] + P[C =1]Y =0] (1 — P[Y = 1])
PR fals
\:Pcs'\’{\\l e rate)

» Suppose we have equalized odds (TPR and FPR rates are equal
for A=0 and A=1), can we have (positive) prediction parity?

» YES! But only if we had a perfect dataset (base rates are equal) or a
perfect predictor (TPR=1 and FPR=0 for A=0 and A=1).



DEFINITIONS

;Fairness through Unawareness

GROUP-BASED

Demographic Parity

qualized Odds
redictive Parit

vV VvV VvV Vv

EXAMPLE

INDIVIDUAL-BASED

MIndividual Fairness
MWCounterfactual fairness

and
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Similar individuals should be treated similarly.
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Similar individuals should be treated similarly.

» How to define a similarity metric?

Dwork et al, 2012: Fairness Through Awareness



https://arxiv.org/pdf/1104.3913.pdf

Similar individuals should be treated similarly.

» How to define a similarity metric?

M(x) The Lipschitz condition:

’,’ d(x,x’) ‘ any two individuals X, X' that are at distance
'5 d(X, X") € [0, 1] map to distributions M(X) and
X \_2 M(x) M(X'), respectively, such that the statistical
distance between M(X) and M(X') is at most
d(X, X').

Dwork et al, 2012: Fairness Through Awareness



https://arxiv.org/pdf/1104.3913.pdf

Similar individuals should be treated similarly.

» How to define a similarity metric?

Or:
X m | . .
| The distributions over outcomes observed

‘i dixx) by X and X' are indistinguishable up to

! \_2 their distance d(X, X’).
M(x)

Dwork et al, 2012: Fairness Through Awareness
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Similar individuals should be treated similarly.

» How to define a similarity metric?

EXAMPLE

Imagine three job applicants, A, B and C.

A has a bachelor degree and 1 year related work experience.
B has a master degree and 1 year related work experience.
C has a master degree but no related work experience.

Is A closer to B than C? If so, by how much?



Similar individuals should be treated similarly.

» How to define a similarity metric?

EXAMPLE

Imagine three job applicants, A, B and C.

A has a bachelor degree and 1 year related work experience.
B has a master degree and 1 year related work experience.
C has a master degree but no related work experience.

Is A closer to B than C? If so, by how much?

» How about the sensitive attribute?
» How to count for the difference of group membership in the metric?
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If we intervene the sensitive feature, the prediction should
not change.

PI[C{A+ 0}=1| X, A=a] = P[C{A« 1}=1 |X, A=a]

PIC{A+ 0}=0 | X, A=a] = P[C{A+ 1}=0 [X, A=a]

Russell et al., NIPS2017



https://papers.nips.cc/paper/7220-when-worlds-collide-integrating-different-counterfactual-assumptions-in-fairness.pdf

If we intervene the sensitive feature, the prediction should
not change.

PI[C{A+ 0}=1| X, A=a] = P[C{A« 1}=1 |X, A=a]

PIC{A+ 0}=0 | X, A=a] = P[C{A+ 1}=0 [X, A=a]

(race) (race)

(graduated) (graduated) (graduated)

Causal graphs (scenario: applying to college)

Russell et al., NIPS2017
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If we intervene the sensitive feature, the prediction should

not change.

(race) (race)

U 1 U Y U Y
(motivated) (graduated) (motivated) (graduated)

(graduated)
Causal graphs (scenario: applying to college)

We can compute what (the distribution of) any of the variables would
have been had certain other variables been different, or being equal.

Russell et al., NIPS2017



https://papers.nips.cc/paper/7220-when-worlds-collide-integrating-different-counterfactual-assumptions-in-fairness.pdf

If we intervene the sensitive feature, the prediction should

not change.

(race) (race)

Causal graphs (scenario: applying to college)

(motivated) (graduated)

We can compute what (the distribution of) any of the variables would
have been had certain other variables been different, or being equal.



If we intervene the sensitive feature, the prediction should

not change.

@—@ E—@

Y Y Y
(mogmed) (graduated) (moymed) (graduated)

(graduated)
Causal graphs (scenario: applying to college)

» Allows to check the possible impact of replacing only the sensitive attribute;

» In practice: what the causal graph should look like? How to decide which
features to use even if we have such a graph (we may suffer large loss on
accuracy if we eliminate all the correlated features).



CONCLUSIONS
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;Fairness through Unawareness

GROUP-BASED
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MIndividual Fairness
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There's software used across the country to predict future criminals. And it's biased

against blacks.
Technology
by Julia Angwin, Jeff Larson, Surya Mattu and Lauren Kirchner, ProPublica
May 23, 2016
SERIES

¥
$’
MACHINE BIAS

Investigating Algorithmic Injustice

https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorith

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing


https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm

Algorithmic fairness in machine learning

Fairness definitions (20 Feb, 4pm-6pm)
Fairness methods (26 Feb, 11am-1pm)
Practical session (27 Feb, 4pm-6pm, Huxley 225)

Advancements in algorithmic fairness (5 Mar, 4pm-6pm)




Fairness methods
Pre-processing
In-processing

Post-processing

Running examples




RECAP

features of the applicant;

sensitive attribute;

STATISTICAL PARITY podior (iarejoy

The acceptance rates of the applicants target (truly capable)
from each of the groups must be equal.

P[C=1]A=0]=P[C=1|A=1]

The acceptance rates of the qualified
applicants from each of the groups must
be equal.

P[C=1|A=0,Y=1]=P[C=1|A=1,Y=1]



RECAP

features of the applicant;

- " sensitive attribute;
The acceptance (rejection) rates of the predictor (hirefreject)

qualified (unqualified) applicants from target (truly capable)
each of the groups must be equal.

P[C=1|A=0,Y=1]=P[C=1]|A=1,Y=1]
P[C=0]|A=0,Y=0]=P[C=0]|A=1,Y=0]

Given acceptance (rejection), there is an
equal chance of being qualified
(unqualified) for each of the groups.

PIY=1|A=0,C=1]=P[Y=1]|A=1,C=1],
P[Y=0]|A=0,C=0]=P[Y=0]|A=1,C=0].



CLASSIFICATION

features of the applicant;
sensitive attribute;

predictor (hire/reject)

arget (truly capable

O oo
hired hired
hired/not hired




Classification

® Given
« X = R? - input features, e.g. (experience, ML grade) € X,
« Y={ hired, not hired } — target labels,
Learn C': X — ).
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p(y = hired|experience = 24, ML grade = 90)



Classification

® Given
« X = R? - input features, e.g. (experience, ML grade) € X,
« Y={ hired, not hired } — target labels,
Learn C': X — ).

e Conditional probability p(y|z)
p(y = hired|experience = 24, ML grade = 90)

® Given p(y|x), how should you classify?
« Bayes optimal classifier:

Clz)= argmax  p(ylx)
y€{hired, not hired}



EXAMPLE: Logistic regression

e Conditional probability p(y|z) is modeled via a logistic function:

o(s) = exp(s) _ 1
1+exp(s) 1+4exp(—s)




EXAMPLE: Logistic regression

e Conditional probability p(y|z) is modeled via a logistic function:

o(s) = exp(s) _ 1
1+exp(s) 1+4exp(—s)

* Now

p(ylx) = o(yw'x)

where y € {+1, -1}




EXAMPLE: Logistic regression

Given training data D = {(x1,v1), ..., (Xn,Un)}, €8

D = {(88.7,90, hired), (85.7, 87.2, hired), (50.1, 62.0, not hired) . ..

the objective minimises the regularised logistic loss:

N
minimise A||w||* + Z —log (1 + eXp(—inTXz‘))_l :

i=1



Fairness methods

® pre-processing
® in-processing
® post-processing



Pre-processing

Aim: to remove discrimination before a classifier is learned.
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® The simplest pre-processing is to reweight the training data:
those with higher weight are used more often and vice versa with
lower weight.

Kamiran and Calders, Data preprocessing techniques for classification without
discrimination, KAIS 2012.



Pre-processing

Aim: to remove discrimination before a classifier is learned.

® The simplest pre-processing is to reweight the training data:
those with higher weight are used more often and vice versa with
lower weight.

e E.g. for a data point with ¥ = 1 and A = 0 the weight is:
PY =1)P(A=0)  #(Y =1)#(A=0)

Wiy=1,4=0) =

PY=1,A=0) #(Y =1A=0N

Kamiran and Calders, Data preprocessing techniques for classification without
discrimination, KAIS 2012.



Pre-processing

Aim: to remove discrimination before a classifier is learned.

® The simplest pre-processing is to reweight the training data:
those with higher weight are used more often and vice versa with
lower weight.

e E.g. for a data point with ¥ = 1 and A = 0 the weight is:
» P(Y = )P(A=0) _#(Y = )#(A =0)

V=LAZ0 " TPy = 1,A=0) #(Y =1,A=0)N
® To make Y discrimination-free w.r.t. A in the reweighted
dataset.

Kamiran and Calders, Data preprocessing techniques for classification without
discrimination, KAIS 2012.



Pre-processing:reweighing
Whiteboard example

Ethnicity Highest degree Job type

Native H. school Board
Native Univ. Board
Native H. school Board
Non-nat. H. school Healthcare
Non-nat. Univ. Healthcare
Non-nat. Univ. Education
Native H. school Education
Native None Healthcare
Non-nat. Univ. Education
Native H. school Board

M
M
M
M
M
F
F
F
F
F

Kamiran and Calders, Data preprocessing techniques for classification without
discrimination, KAIS 2012.




Pre-processing:reweighing
Whiteboard example

Ethnicity Highest degree Job type

Native H. school Board
Native Univ. Board
Native H. school Board
Non-nat. H. school Healthcare
Non-nat. Univ. Healthcare
Non-nat. Univ. Education
Native H. school Education
Native None Healthcare
Non-nat. Univ. Education
Native H. school Board

M
M
M
M
M
F
F
F
F
F

\=0)=2 WY =0,A=1)=0.67, W(Y =1,4=0) =0.75,
=1)=15




Classification with reweighing

Input data (x;,¥;,a;),i=1...N
Compute weights W (Y =y, A = a) for all combinations of Y, A:

PY =a
e ((=r=r

Train a classifier C on reweighed data
w < solve \[w||2 = 3V Wiy —y: a—a;) log (1 + exp(—yiw ' x;))
Output classifier C' = (1 + exp(—w ' x))71.



Classification with reweighing

* Logistic regression (logistic loss with reweighing):

N
-1
min‘ivmise Mwl|? — Z Wiy —y:, A=a;) l0g (1 + exp(—yinxi)> .

=1



Classification with reweighing

* Logistic regression (logistic loss with reweighing):

N
-1
min‘ivmise Mwl|? — Z Wiy —y:, A=a;) l0g (1 + exp(—yinxi)> .

i=1
® Other examples of ML methods that allow reweighing:
» SVMs (hinge loss with reweighing)

N
minimise \||w|? + Z Wy =y, A=a,) max(0, 1 — Yiw ! X;).
w
i=1

» Neural networks: torch.nn.BCELoss(weight).



Pre-processing: resampling

Aim: to remove discrimination before a classifier is learned.

® From reweighing to resampling: sample data points with
replacement according to weights.

Sampling bias Debiased
— Tyranny of majority — Unshackled

Kamiran and Calders, Data preprocessing techniques for classification without
discrimination, KAIS 2012.



Pre-processing: resampling

Aim: to remove discrimination before a classifier is learned.

® From reweighing to resampling: sample data points with
replacement according to weights.

Sampling bias Debiased
— Tyranny of majority — Unshackled

e E.g. from the group with Y = 1 and A = 0 sample
P(Y =1)P(A =0)
Y=1A=0).
P(Y =1,A=0) # | )
Kamiran and Calders, Data preprocessing techniques for classification without
discrimination, KAIS 2012.




Classification with resampling

Input data (x;,¥;,a;),i=1...N
Compute weights W (Y =y, A = a) for all combinations of Y, A:
. P =yPA=a)
== = Py =y A=)

Sample uniformly Wiy —, 4—q) X [(Y =y, A = a)| instances for all
groups accordingly.
Output classifier C trained on resampled data.



Pre-processing: resampling

Whiteboard example

Ethnicity

Highest degree

Job type

M
M
M
M
M
F
F
F
F
F

Native
Native
Native
Non-nat.
Non-nat.
Non-nat.
Native
Native
Non-nat.

Native

H. school
Univ.
H. school
H. school
Univ.
Univ.
H. school
None
Univ.
H. school

Board
Board
Board
Healthcare
Healthcare
Education
Education
Healthcare
Education
Board

2x1 samples (Y = 0, A = 0), 3x0.67=2 samples (Y =0, A = 1), 0.75x4=3 samples
(Y =1,A=0), 1.5x2=3 samples (Y =1, A =1).




Pre-processing: Representation learning

® Another popular approach is to produce a fair representation.

e Consider that we have 2 roles, a data vendor, who is charge of
collecting the data and preparing it.

e Qur other role is a data user, someone who will be making predictions
based on our data.

® The data vendor is concerned that the data user may be using their
data to make unfair decisions. So the data vendor decides to learn a
new, fair representation.



Pre-processing: Representation learning

Aim: to remove discrimination before a classifier is learned.




Representation learning

Aim: to remove discrimination before a classifier is learned.

® Learn a new representation Z such that it removes the
information about the sensitive attribute A and preserves the
information of X.

"AFair and Rich Z"
—RichZemel

Z

max /(X;Z)
min /(A; Z)

Zemel et al, Learning fair representations, ICML 2013.



Representation learning

Aim: to remove discrimination before a classifier is learned.

® Learn a new representation Z such that it removes the
information about the sensitive attribute A and preserves the
information of X.

® Train a classifier C' on discrimination-free Z.

"AFair and Rich Z"
—RichZemel

Z

max /(X;Z)
min /(A; Z)

Zemel et al, Learning fair representations, ICML 2013.



Representation learning

Discriminative clustering approach

e cluster training data into K clusters with v, centers v, € X,
such that the probability of being assigned to the cluster £ is
independent of the sensitive feature A:

P|Z = k|Xjaz0) = P|Z = k| xja=1] Vk=1...K,



Representation learning

Discriminative clustering approach

e cluster training data into K clusters with v, centers v, € X,
such that the probability of being assigned to the cluster £ is
independent of the sensitive feature A:

P|Z = k|Xjaz0) = P|Z = k| xja=1] Vk=1...K,

® where

PIZ = kx| = exp(—dist(x, vi)) .

Zfil exp(—dist(x, v;))




Representation learning

® To enforce fairness
P|Z = k| Xja=0) = P|Z = k| xja=1] Vk=1...K,

we minimise the fair representation loss across all K clusters:

Mx

P|Z = k|x] — By _ P[Z = k|x]|.

x|A 0 X|A=1

k=1



Representation learning

® To ensure the mapping to Z space retains information in X, we
minimise the reconstruction loss on the training data:

N K

L;l; = Z(Xi — }A(L)Z f(i = ZP{Z = k’|XJVk

=1 k=1



Representation learning

® To ensure the mapping to Z space retains information in X, we
minimise the reconstruction loss on the training data:

K

Le=)Y (xi—%)? %i=)» PlZ=kx]v.
i1

k=1

® To ensure accurate predictions of the induced mapping from X to Y
(by first mapping probabilistically to Z-space, and then mapping Z to
Y'), we minimise the classification error:

N

L, = Z —y;log(9;) — (1 — ;) log(1 — ),
i=1

where §; = S, P[Z = k|x;Jwy, wy, € [0,1]. Here y; € {0,1}.



Representation learning

minimise oL, + 3L, + vL,,, where

Vi, W

e [ is fair representation loss,

e [ is reconstruction loss,
® L, is classification loss,
® v, are the prototype locations, w are the classifier weight
parameters.
"A Fair and Rich Z."
—RichZemel
Y4,
max /(X;Z)
min/(A; Z)
Questions?

Zemel et al, Learning fair representations, ICML 2013.



Pre-processing: Representation learning

Aim: to remove discrimination before a classifier is learned.

® \Which fairness metric is enforced?
e Can we enforce a different one?
e |s Z interpretable?



Adversarial representation learning

® Many adversarial-based fair representation learning approaches.

Edwards and Storkey, Censoring representations with an adversary, ICLR 2016

Ganin et al.,Domain-adversarial training of neural networks, JMLR 2016

Beutel et al., Data decisions and theoretical implications when adversarially learning fair
representations, Jul 2017

Madras et al., Learning adversarially fair and transferable representations, ICML 2018.



Adversarial representation learning

® Many adversarial-based fair representation learning approaches.

® For an encoder X — Z with parameters 6 and an adversary
classifier R : Z — [0, 1] with parameters ¢:

minigmise maximise Ex 4 Alog(R(Z)) + (1 — A)log(1 — R(Z)).

[}

Edwards and Storkey, Censoring representations with an adversary, ICLR 2016

Ganin et al.,Domain-adversarial training of neural networks, JMLR 2016

Beutel et al., Data decisions and theoretical implications when adversarially learning fair
representations, Jul 2017

Madras et al., Learning adversarially fair and transferable representations, ICML 2018.



Adversarial representation learning

® Many adversarial-based fair representation learning approaches,
e.g. using a Gradient-Reversal Layer.

Ganin et al.,Domain-adversarial training of neural networks, JMLR 2016

Edwards and Storkey, Censoring representations with an adversary, ICLR 2016

Beutel et al., Data decisions and theoretical implications when adversarially learning fair
representations, Jul 2017

Madras et al., Learning adversarially fair and transferable representations, ICML 2018.



Adversarial fair representation learning

® Does this representation really hide A?



Adversarial fair representation learning

® Does this representation really hide A?

e A work by Elazar and Goldberg shows that adversarially trained latent
embeddings still retain sensitive attribute information when a
post-hoc classifier is trained on them.

Elazar and Goldberg, Adversarial removal of demographic attributes
from text data, EMNLP 2018.



Fairness methods

® pre-processing
® in-processing
® post-processing
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Aim: to constraint learning with fairness metrics.
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Aim: to constraint learning with fairness metrics.

® Given we have a loss function, L(w),

Zafar et al., Fairness constraints: Mechanisms for fair classification, AISTATS 2017
Zafar et al., Fairness Beyond Disparate Treatment and Disparate Impact: Learning
Classification without Disparate Mistreatment, WWW 2017



In-processing

Aim: to constraint learning with fairness metrics.

® Given we have a loss function, L(w),
® In an unconstrained classifier, we would expect to see:

minimise L(w).

Zafar et al., Fairness constraints: Mechanisms for fair classification, AISTATS 2017
Zafar et al., Fairness Beyond Disparate Treatment and Disparate Impact: Learning
Classification without Disparate Mistreatment, WWW 2017



In-processing

Aim: to constraint learning with fairness metrics.

® Given we have a loss function, L(w),
® In an unconstrained classifier, we would expect to see:

minimise L(w).
® To enforce a statistical parity metric, a constraint is added:
minimise L(w) s.t. P[Y = 1|]A = 0] = P[Y = 1|4 = 1].

Zafar et al., Fairness constraints: Mechanisms for fair classification, AISTATS 2017
Zafar et al., Fairness Beyond Disparate Treatment and Disparate Impact: Learning
Classification without Disparate Mistreatment, WWW 2017



In-processing

Aim: to constraint learning with fairness metrics.

® Given we have a loss function, L(w),
In an unconstrained classifier, we would expect to see:

minimise L(w).

To enforce a statistical parity metric, a constraint is added:
minimise L(w) s.t. P[Y = 1|]A = 0] = P[Y = 1|4 = 1].

Problem: The formulation is not convex!

Zafar et al., Fairness constraints: Mechanisms for fair classification, AISTATS 2017
Zafar et al., Fairness Beyond Disparate Treatment and Disparate Impact: Learning
Classification without Disparate Mistreatment, WWW 2017



In-processing

Need to find a better way to specify the constraints

Disparate impact constraints: Intuition

~N
[
=
3
-
©
@
w

Feature 1
P=1z=0)=P(H=1z=1)
Limit the differences in the acceptance (or rejection) ratios
across members of different sensitive groups

Zafar et al., Fairness constraints: Mechanisms for fair classification, AISTATS 2017
Zafar et al., Fairness Beyond Disparate Treatment and Disparate Impact: Learning
Classification without Disparate Mistreatment, WWW 2017



In-processing

Need to find a better way to specify the constraints

Disparate impact constraints: Intuition Disparate impact constraints: Intuition

~N
[
=
3
-
©
[
w

Feature 2

Feature 1
P=1z=0)=P(H=1z=1)
Limit the differences in the acceptance (or rejection) ratios
across members of different sensitive groups

Feature 1
A proxy measure for P(j=1z=0)=P(j=1z=1)
Limit the differences in the average strength of acceptance
and rejection across members of different sensitive groups

Zafar et al., Fairness constraints: Mechanisms for fair classification, AISTATS 2017
Zafar et al., Fairness Beyond Disparate Treatment and Disparate Impact: Learning
Classification without Disparate Mistreatment, WWW 2017



In-processing

o Instead of P[Y = 1|A =0] = P[Y = 1|A = 1]

Zafar et al., Fairness constraints: Mechanisms for fair classification, AISTATS 2017
Zafar et al., Fairness Beyond Disparate Treatment and Disparate Impact: Learning
Classification without Disparate Mistreatment, WWW 2017



In-processing

o Instead of P[Y = 1|A =0] = P[Y = 1|A = 1]

® Bound covariance between items sensitive feature values and
their signed distance from classifier's decision boundary to less

that a threshold:

Zafar et al., Fairness constraints: Mechanisms for fair classification, AISTATS 2017
Zafar et al., Fairness Beyond Disparate Treatment and Disparate Impact: Learning
Classification without Disparate Mistreatment, WWW 2017
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® Bound covariance between items sensitive feature values and
their signed distance from classifier's decision boundary to less

that a threshold:
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In-processing

o Instead of P[Y = 1|A =0] = P[Y = 1|A = 1]

® Bound covariance between items sensitive feature values and
their signed distance from classifier's decision boundary to less
that a threshold:

N

1
- N Zl(a - a’l)fl

® From Cov(A — A, f) = 0 — equal positive rates across groups
— statistical parity
Zafar et al., Fairness constraints: Mechanisms for fair classification, AISTATS 2017

Zafar et al., Fairness Beyond Disparate Treatment and Disparate Impact: Learning
Classification without Disparate Mistreatment, WWW 2017



In-processing

Aim: to constraint learning with fairness metrics.

* Given we have a loss function, L(w), e.g.
Liw)= - log (1+ exp(—yl-vaxi))_1

Zafar et al., Fairness constraints: Mechanisms for fair classification, AISTATS 2017
Zafar et al., Fairness Beyond Disparate Treatment and Disparate Impact: Learning
Classification without Disparate Mistreatment, WWW 2017



In-processing

Aim: to constraint learning with fairness metrics.

* Given we have a loss function, L(w), e.g.

L(w) = — Zi\il log (1 + exp(—yl-vaxi))_1
® the formulation is easy to solve!

j\‘"

1 P
minimise L(w) s.t. ‘f Z(a, —a)wlx| < e

i=1

Zafar et al., Fairness constraints: Mechanisms for fair classification, AISTATS 2017
Zafar et al., Fairness Beyond Disparate Treatment and Disparate Impact: Learning
Classification without Disparate Mistreatment, WWW 2017



Fairness methods

® pre-processing
® in-processing
® post-processing



Post-processing

Aim: to fix the trained model with fairness metrics.




Post-processing

® Train two separate models: one for all datapoints with A=0 and
another one for A=0.

Calders and Verwer: Three naive Bayes approaches for discrimination-free classification,
Data Mining and Knowledge Discovery 2010.
Hardt et al, Equality of Opportunity in Supervised Learning, NeurlPS 2016.



Post-processing

® Train two separate models: one for all datapoints with A=0 and
another one for A=0.

® The thresholds of the model are then tweaked until they produce the
same positive rate, i.e. P[Y = 1|A =0] = P[Y =1|A =1].

Calders and Verwer: Three naive Bayes approaches for discrimination-free classification,
Data Mining and Knowledge Discovery 2010.
Hardt et al, Equality of Opportunity in Supervised Learning, NeurlPS 2016.



Post-processing

® Train two separate models: one for all datapoints with A=0 and
another one for A=0.

® The thresholds of the model are then tweaked until they produce the
same positive rate, i.e. P[Y = 1|A =0] = P[Y =1|A =1].

® Disadvantage: A has to be known for making predictions in order to
choose the correct model.

Calders and Verwer: Three naive Bayes approaches for discrimination-free classification,
Data Mining and Knowledge Discovery 2010.
Hardt et al, Equality of Opportunity in Supervised Learning, NeurlPS 2016.



Summary

® pre-processing

Aim: to remove discrimination before a classifier is learned.

® in-processing

Aim: to constraint learning with fairness metrics.

® post-processing

Aim: to fix the trained model with fairness metrics.




Algorithmic fairness in machine learning

Fairness definitions (20 Feb, 4pm-6pm)
Fairness methods (26 Feb, 11am-1pm)
Practical session (27 Feb, 4pm-6pm, Huxley 225)

Advancements in algorithmic fairness (5 Mar, 4pm-6pm)




Fairness methods
Post-processing
Sources of unfairness

Bias from the data

Bias from the models

Transparency in algorithmic fairness




Post-processing

® Given
« X = R? - input features, e.g. (experience, ML grade) € X,
« Y={ hired, not hired } — target labels,
« A=1{0, 1} - sensitive feature,
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® Given
« X = R? - input features, e.g. (experience, ML grade) € X,
« Y={ hired, not hired } — target labels,
« A=1{0, 1} - sensitive feature,

e learnC': X = ).



Post-processing

® Given
« X = R? - input features, e.g. (experience, ML grade) € X,
« Y={ hired, not hired } — target labels,
« A=1{0, 1} - sensitive feature,

e learn C': X — ).

¢ Post-processing:

Aim: to fix the trained model with fairness metrics.

Adjust C' to satisfy fairness, e.g.

P[C =1|A=0] = P[C = 1|A = 1] parity

P[C=1A=0,Y =1 =P[C =1/A=1,Y = 1] equality of
opportunity.



Classifier

Learn C': X — ), e.g. by

® modeling p(y = 1|x) and using Bayes optimal classifier:

C(zr)= argmax p(y|x)
y€{hired, not hired}



Classifier

Learn C': X — ), e.g. by
® modeling p(y = 1|x) and using Bayes optimal classifier:
C(z) = argmax p(y[x)
y€{hired, not hired}

* thresholding a logistic regression classifier f : X — [0, 1] at 0.5.




Post-processing

e Skewed, unbalanced training data;
® A feature set that supports accurate predictions for the majority
group may not for a minority group.

Train two separate models:

Calders and Verwer: Three naive Bayes approaches for discrimination-free classification,
Data Mining and Knowledge Discovery 2010.



Post-processing

e Skewed, unbalanced training data;
® A feature set that supports accurate predictions for the majority
group may not for a minority group.

Train two separate models:

® one, [y, for all datapoints with A=0 and another one, [, for
A=1.

Calders and Verwer: Three naive Bayes approaches for discrimination-free classification,
Data Mining and Knowledge Discovery 2010.



Post-processing

e Skewed, unbalanced training data;
® A feature set that supports accurate predictions for the majority
group may not for a minority group.

Train two separate models:
® one, [y, for all datapoints with A=0 and another one, [, for
A=1.
® Find the thresholds of the models fy, f; to satisfy fairness (with
the lowest loss in accuracy).

Calders and Verwer: Three naive Bayes approaches for discrimination-free classification,
Data Mining and Knowledge Discovery 2010.
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Aim: to fix the trained model with fairness metrics.

Given the binary predictor C': X — {0, 1},

how to adjust its predictions

® to retain accuracy, i.e. minimize the expected loss El(f/,Y),
® adhere to fairness metric,

Hardt et al, Equality of Opportunity in Supervised Learning, NeurlPS 2016.



Post-processing

Aim: to fix the trained model with fairness metrics.

Given the binary predictor C': X — {0, 1},

how to adjust its predictions

® to retain accuracy, i.e. minimize the expected loss El(f/,Y),
® adhere to fairness metric,

® without retraining/changes to C?

Hardt et al, Equality of Opportunity in Supervised Learning, NeurlPS 2016.



Post-processing

e TPR/FRP coordinate system for V" predictor:
Ya—o = (P[Y =1|A=0,Y =0, P[Y =1]A=10,Y = 1))

Similarly for y4—1.

Hardt et al, Equality of Opportunity in Supervised Learning, NeurlPS 2016.
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Post-processing

e TPR/FRP coordinate system for V" predictor:
Ya—o = (P[Y =1|A=0,Y =0, P[Y =1]A=10,Y = 1))

Similarly for y4—1.

e A predictor V" satisfies equalized odds, if and only if va—g = va—1.
Second coordinate for equality of opportunity.
¢ Convex polytops:

Pa—o = convhull{(0,0), %1:0(Y), va=o(1 =Y),(1,1)}

Similarly for Pa—;.

Hardt et al, Equality of Opportunity in Supervised Learning, NeurlPS 2016.



Post-processing

For equal odds, result lies For equal opportunity, results lie
below all ROC curves. on the same horizontal line
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Hardt et al, Equality of Opportunity in Supervised Learning, NeurlPS 2016.



Post-processing

For equal odds, result lies For equal opportunity, results lie
below all ROC curves. on the same horizontal line

: 7

2

Achievable region (A=1)

Overlap N .
Result for Y=Y C

Result for Y=1-Y

Equal-odds optimum

Equal opportunity (A=0)

Equal opportunity (A=1)

Achievable region (A=0) /

=
K
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<
ey

Pr[Y’

0.2 0.4 0.6 0.8 R 0. 0.2 0.4 0.6 0.8 1.0
PrV=1|A,Y=0] Pr{V=1|A,Y=0]

= convhull{(0,0), ya—o(Y), ya—0(1 = Y), (1,1)}

= convhull{(0,0), ’yA:1(§A/), Ya=1(1-Y),(1,1)}

P4—g and P4—q characterize the trade-offs between false positives and
true positives that we can achieve with any derived classifier.
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Post-processing

For equal odds, result lies For equal opportunity, results lie
below all ROC curves. on the same horizontal line

: 7

2

Achievable region (A=0)
Achievable region (A=1) /

Overlap . [
Result for Y=Y

1]4,v=1]

Result for Y=1-Y
Equal-odds optimum
Equal opportunity (A=0)
Equal opportunity (A=1)

Pr[Y

0.2 0.4 0.6 0.8 R 0. 0.2 0.4 0.6 0.8 1.0
PriV=1|A,Y=0] PrV=1|A,Y=0]

minimise E [(Y,Y)
Y

stVA € {0,1} : ya(Y) € Pa(Y)

Ya=0(Y) = va=1(Y)

® a linear program
® solution is an optimal equalized odds predictor derived from Y and A.
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Sources of unfairness

The problem can be divided into two categories (both types of bias
can appear together):

Bias stemming from biased training data

Bias stemming from the algorithms themselves



Sources of unfairness

Bias stemming from biased training data

e Sampling bias: the data sample on which the algorithm is trained
for is not representative of the overall population.

Chouldechova and Roth: The frontiers of fairness in machine learning, Oct 2018

Tolan: Fair and unbiased algorithmic decision making: current state and future
challenges, Dec 2018



Sources of unfairness

Bias stemming from biased training data

e Sampling bias: the data sample on which the algorithm is trained
for is not representative of the overall population.
E.g. training data contains most applicants from a certain region
but the model is applied to the whole population.

Chouldechova and Roth: The frontiers of fairness in machine learning, Oct 2018
Tolan: Fair and unbiased algorithmic decision making: current state and future
challenges, Dec 2018
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Sources of unfairness

Bias stemming from biased training data

e Sampling bias: the data sample on which the algorithm is trained
for is not representative of the overall population.

e Selective labels: only observe the outcome of one side of the
decision.
E.g.in university admissions, we do not have data on performance
of the applicants who were not admitted.

Chouldechova and Roth: The frontiers of fairness in machine learning, Oct 2018
Tolan: Fair and unbiased algorithmic decision making: current state and future
challenges, Dec 2018
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Sources of unfairness

Bias stemming from biased training data

e Sampling bias: the data sample on which the algorithm is trained
for is not representative of the overall population.

e Selective labels: only observe the outcome of one side of the
decision.

L OVAELES

E.g.for predictive policing, we do not have data on who commits
crimes, and only have data on who is arrested.

Chouldechova and Roth: The frontiers of fairness in machine learning, Oct 2018

Tolan: Fair and unbiased algorithmic decision making: current state and future
challenges, Dec 2018



Sources of unfairness

Bias stemming from biased training data

Typical setup

X features of an individual

A sensitive attribute (race, gender, ...)

C = C(X, A) classifier mapping X and A to some prediction

Y actual outcome

Picture credit: Moritz Hardt, Fairness in Machine Learning seminar, UC Berkeley, 2017



Sources of unfairness

Bias stemming from biased training data

Typical setup All of this is a lie

X features of an individual X incorporates all sorts of measurement biases
A sensitive attribute (race, gender, ...) A often not even known, ill-defined, misreported, inferred
C = C(X, A) classifier mapping X and A to some prediction f§ C often not well defined, e.g., large production ML system

Y actual outcome Y often poor proxy of actual variable of interest

Picture credit: Moritz Hardt, Fairness in Machine Learning seminar, UC Berkeley, 2017
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groups because of generalization.



Sources of unfairness

Bias stemming from the algorithms themselves

® Tyranny of the majority

It is simpler to fit to the majority groups than to the minority
groups because of generalization.

Generally, more data means smaller error

By definition, less data on minority groups.

Can lead to higher error rates on minority.

SAMPLE Si2E
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Bias stemming from the algorithms themselves

e Tyranny of the majority

® The meaning of low error



Sources of unfairness

Bias stemming from the algorithms themselves

e Tyranny of the majority

® The meaning of low error
Two classifiers with 5% average error:

RANDOM ERRORS SYSTEMATIC ERRORS




Sources of unfairness

Bias stemming from the algorithms themselves

e Tyranny of the majority
® The meaning of low error

® [eedback effects

Chouldechova and Roth: The frontiers of fairness in machine learning, Oct 2018
Tolan: Fair and unbiased algorithmic decision making: current state and future
challenges, Dec 2018



Sources of unfairness

Bias stemming from the algorithms themselves

e Tyranny of the majority
® The meaning of low error

® [eedback effects

Model at time t 4+ 1 has to consider training data plus decisions
of the model at time ¢.

Chouldechova and Roth: The frontiers of fairness in machine learning, Oct 2018

Tolan: Fair and unbiased algorithmic decision making: current state and future
challenges, Dec 2018



Feedback effects

Model at time ¢ + 1 has to consider training data plus decisions of the
model at time ¢

Consider a bank’s lending decision.

The outcome is not simply reject or accept the applicant for aloan. In
fact, there are multiple effects of this decision.

If the applicant receives a loan, then goes on to successfully pay it back,
then not only will the bank make a profit, but then the applicant’s credit
score will increase.

This will make future loan decisions more favorable to the applicant.

Liu et al, Delayed Impact of Fair Machine Learning, ICML 2018



Feedback effects

Model at time ¢ + 1 has to consider training data plus decisions of the
model at time ¢

We could think of this in terms of loss functions.

The banks objective was to maximize profit. After deciding to give the
loan, the loan was repaid (with interest). The bank made money.

To maximize the objective (minimize the negative of the loss) the bank
wants to give out as many loans that are likely to be repaid as possible.

Liu et al, Delayed Impact of Fair Machine Learning, ICML 2018



Feedback effects

Model at time ¢ + 1 has to consider training data plus decisions of the
model at time ¢

We could think of this in terms of loss functions.

The banks objective was to maximize profit. After deciding to give the
loan, the loan was repaid (with interest). The bank made money.

To maximize the objective (minimize the negative of the loss) the bank
wants to give out as many loans that are likely to be repaid as possible.

Our concern is that if the number of people who receive loans from one
group outweigh the other, then as a whole, the credit rating will become
a euphemism for race.

Liu et al, Delayed Impact of Fair Machine Learning, ICML 2018



Examples

Sampling bias — the tyranny

In the imSitu situation recognition dataset, the activity cooking is
over 33% more likely to involve females than males in a training set,

and a trained algorithm further amplifies the disparity to 68%.
Zhao et al.: Men also like shopping, EMNLP 2017

Slide credit: Novi Quadrianto, Deep Learning & Bayesian Methods Summer School 2019



Examples

Sampling bias — the tyranny

The reason is: the algorithm predicts the gender from the activity and
not from looking at the person.

Anne Hendricks et al.: Women also snowboard, ECCV 2018

Right for the Right Right for the Wrong Right for the Right
Reasons Reasons Reasons
bl

Baseline: Our Model:
A man sitting at a desk with A woman sitting in front of a A man holding a tennis A man holding a tennis
a laptop computer. laptop computer. racquet on a tennis court. racquet on a tennis court.

Baseline: Our Model:

Slide credit: Novi Quadrianto, Deep Learning & Bayesian Methods Summer School 2019



Examples

Right for the Right Right for the Wrong Right for the Right
Reasons Reasons

Baseline: Our Model: Baseline: Our Model:
A man sitting at a desk with A woman sitting in front of a A man holding a tennis A man holding a tennis
a laptop computer. laptop computer. racquet on a tennis court. racquet on a tennis court.

Anne Hendricks et al.: Women also snowboard, ECCV 2018
https://github.com/kayburns/women-snowboard/tree/master/research/im2txt


https://github.com/kayburns/women-snowboard/tree/master/research/im2txt

Examples

Sampling bias — the tyranny

¢ |n the UCI Adult Income dataset, 30% of the male individuals
earn more than 50K per year (high income), however of the
female individuals only 11% have a high income.

e |f an algorithm is trained on this data, the skewness ratio is
amplified from 3:1 to 5:1.

® Simply removing sensitive attribute gender from the training data
is not sufficient.

Slide credit: Novi Quadrianto, Deep Learning & Bayesian Methods Summer School 2019



Examples

Skewed sample — feedback loop

® Future observations of crime confirm predictions
® Fewer opportunities to observe crime that contradicts predictions

¢ [nitial bias may compound over time



Transparency in fairness

Can we provide an individual-level explanation of fair
systems without the difficult learning of fair (e.g.
genderless) representations?



Transparency in fairness

Pre-processing with contrastive examples

The ideal dataset contains an imaginary data point for each person,
i.e. the one inside the black box, whereby we intervene and set the
gender attribute to the opposite that is in real life.

Unfavourable Favourable : Unfavourable Favourable
label label H label ~ label

f \
Person 1 | Person 4 1 Person 1 Person1 |Person4 Person 4|
'

Person 5 E Person 2 Person 2 | Person5 Person 5
H

Person 3 Person 6 \ Person 3 Person 3 |Person 6 Person 6
'

Real World Dataset “Ideal” Dataset



Transparency in fairness

Pre-processing with contrastive examples

The ideal dataset contains an imaginary data point for each person,
i.e. the one inside the black box, whereby we intervene and set the
gender attribute to the opposite that is in real life.

Unfavourable Favourable : Unfavourable Favourable AN contrastive

label label H label label
plE @il =
GA

Person 1 | Person 4 i+ Person 1 Person1 |Person4 Person 4| Person 3 Person 3

| | ' 0 | NN contrastive

Person 2 Person 5 : Person 2 Person 2 | Person5 Person 5

| H ‘ Matching ‘

Person 3 Person 6 1 Person 3 Person 3 |Person 6 Person | Person 3, Person 2,
Feature 1=0.8 Feature 1 =0.

Real World Dataset : “Ideal” Dataset



Contrastive examples

e All previous work with adversarial learning try to remove
protected attributes from data

® Instead, we use adversarial learning to generate data points with
pre-specified protected attributes (contrastive examples)

¢ Contrastive examples "can be easily interpreted”

Real GAN contrastive NN contrastive

AN

Sharmanska et al, Contrastive examples for addressing the tyranny of the majority, 2020.




Contrastive examples: StarGAN model objective

e A standard adversarial loss:

minimise maximise L4,
G D

Lo = Eq[logD(w)] + Eq s[log(1 — D(G(, 5))]



Contrastive examples: StarGAN model objective

e A standard adversarial loss:

minimise maximise L4,
G D

£adv == Ex[logD(x)] + Ex,E[log(l - D(G($7 5))]

® An auxiliary classifier D to predict the correct attributes of the
real samples:

L = K, [~ log Das(z, 5)].

cls

and to guide the generator to produce contrastive examples with
correct attributes s:

contrastive __ Em,E[_ log Dcls<G(x7 5), §>],

cls



Contrastive examples: StarGAN model objective

e A standard adversarial loss:

minimise maximise L4,
G D

£adv == Ex[logD(x)] + Ex,E[log(l - D(G($7 5))]

® An auxiliary classifier D to predict the correct attributes of the
real samples:

L = K, [~ log Das(z, 5)].

cls
and to guide the generator to produce contrastive examples with
correct attributes s:

contrastive __ Em,E[_ log Dcls<G(x7 5), §>],

cls

® A cycle consistency loss:
Leye = Eu5[[|G(G(x, 5), 5) — z[|1].



Contrastive examples: StarGAN model

The full objective for training the StarGAN model for generating
contrastive examples:

trasti
‘cG = Eadv + )\cls‘ccon rastve + )\cyc‘ccyc

cls

ED - _‘Cadv + )\clsﬁreal

cls

where A5 and A, are hyper-parameters.

Choi et al, StarGAN: Unified Generative Adversarial Networks for Multi-Domain
Image-to-Image Translation, CVPR2018.

Code: https://github.com/yunjey/stargan


https://github.com/yunjey/stargan

Contrastive examples: CelebA dataset

¢ We use gender and age as the two protected attributes.

e We use smiling as the classification task.

method Acc. TPRDiff. FPRDiff.
logistic regression (original) 89.71 6.69 640
logistic regression (original and GAN contrastive) 88.94 3.50 279
logistic regression (original and NN contrastive) 88.78 3.32 353
+logistic regression (original and GAN contrastive with output consistency)  94.15 351 218

1:Rejection learning -- classifier only makes a prediction if there is an
agreement between original and contrastive examples (occursin 17,237

out of 20, 000 test examples, i.e. 86.185%).

Sharmanska et al, Contrastive examples for addressing the tyranny of the majority, 2020.



Summary

What is faimess ML about?
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https://www.mentimeter.com
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