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Abstract. Both the brain and modern digital architectures rely on massive parallelism
for efficient solutions to demanding computational tasks, such as pattern recognition. In
this paper, we implement a parallel classification scheme inspired by the insect brain in
two popular parallel computing frameworks, namely as an NVidiar CUDATM implemen-
tation on a TeslaTM device and a brute force OpenMPTM parallel implementation on a
quad-core CPU. When evaluating the systems on the MNIST data-set of handwritten
digits, we can report that, compared with a standard serial implementation on a single
CPU core, CUDATM implementations of the bio-inspired classification provide a 7-to-11
fold speed-up, whereas the OpenMPTM implementation is 2-to-4 times faster. Our re-
sults are a proof of concept that suggests that modern parallel computing architectures and
bio-mimetic algorithms are compatible and that the CUDATM solution on an NVidiar

TeslaTM C870 device at the time of writing has a small edge over an OpenMP solution
on a recent quad core processor (3 GHz AMDr PhenomTM II X4 940).
Keywords: Parallel hardware, Graphical processing unit, CUDA, OpenMP, Bio-mimetic
systems, Classification, Insect brain, Olfactory system, MNIST data set, Multi-layer per-
ceptron, Random connections

1. Introduction. The remarkable speed and accuracy of information processing in na-
ture has been a strong motivation for computing research. A key characteristic of bio-
logical computing is architectural: the brain is organized in layers of neurons processing
information in a highly parallel fashion. Bio-inspired algorithms, therefore, should natu-
rally have the right structure to take advantage of highly parallel computing architectures.
Although one can, in principle, implement such methods on conventional desktop com-
puters in a serial manner, their full benefits can only be revealed on suitable parallel
devices.

The practice of parallel computing dates back to the late 50s and early 60s, with the
first parallel computer arguably being the D825 of Burroughs Corporation featuring 4
processors. Already in the early 80s, massively parallel computers like the “Connection
Machine” with – depending on configuration – up to 65,536 processors were built. How-
ever, only recently, the domain of parallel computing has begun to expand from exotic
super-computers towards the broader market in the form of multi-core processors, first
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introduced by IBMr with the POWER4TM chip in 2001. Perhaps less noticed by the gen-
eral public until recently, graphic processing units (GPUs) now offer a powerful, highly
parallel computing medium as well.
With the introduction of graphics chips supporting the “Compute Unified Device Ar-

chitecture” (CUDATM) application programming interface (API) extension to the C pro-
gramming language [1], NVidiar has recently made the power of such GPUs more ac-
cessible to general-purpose computing. With hundreds of parallel cores per chip (e.g.,
128 on the NVidiar TeslaTM C870 [2]) operating at competitive speeds in the GHz range
(1.35 GHz on the TeslaTM C870), GPUs can considerably outperform conventional central
processing units (CPUs) in many tasks. However, this potential can only be unleashed
by suitable parallel algorithms developed for principally parallelizable problems.
In a series of recent works, we have formulated a model of pattern classification in the

insect brain [3, 4, 5]. Biological algorithms of this kind not only have been proven to be
effective by withstanding strong evolutionary pressures, but they can also be applied to
situations beyond an insect’s domain of perception, being nearly as successful as cutting-
edge machine learning methods [5].
The CUDA architecture appears to be a natural choice for implementing bio-inspired

parallel algorithms and tapping their potential in a variety of pattern recognition tasks.
The architecture accommodates redundancy and individually inaccurate outcomes, two
aspects that are intrinsic to neural computation but cannot be tolerated in a conventional
digital design. With this motivation, we address in this paper the feasibility of neuromor-
phic computing on an NVidiar TeslaTM C870 GPU within the CUDA framework.
The idea of deploying graphics hardware in general purpose computing is not new. Ear-

lier GPU implementations have mainly used the native graphics programming interfaces
of the HLSL shader language in DirectX or the Cg shader language in OpenGL. Oh and
Jung [24] have implemented a neural network (NN) utilizing matrix product implementa-
tions in OpenGL Cg fragment shaders and reported a 20-fold speed-up in a classification
task over a CPU based implementation. Rolfes [6] reported on similar work within the
DirectX/HLSL framework. These works did not include the training phase in the timing
arguing and it is less time-critical. The enhanced execution speed in these examples can
be attributed mainly to the efficiency of the inner product operation [7, 8] in fragment
shader GPU implementations.
Steinkraus et al. [9] developed a parallel code for training a feed-forward neural network

and achieved a 3× speedup of the GPU implementation over a CPU implementations on
1000 training samples of the MNIST database. More recently, Brandstetter and Artusi
[10] and Li et al. [11] extended the GPU domain for NN training and execution further
by implementing a radial basis function neural network on a GPU. In this work, the
training times of the GPU implementation was compared with a standard algorithm on
Mathematicar 5 leading to a speed improvement of two orders of magnitude when fitting
a sine function and Hermite functions.
Other works on implementing numerical methods within the OpenGL Cg vertex and

fragment shader framework have included wavelet transforms [12, 13], self-organized maps
and multi-layer perceptrons [14], a form of spiking neural network [15], simulations of the
ocean surface [16] and a cellular neural network [17]. All authors report a speed-up over
standard CPU implementations within the range of 3× to 20×.
A different approach is the use of the novel and much more flexible CUDA framework,

which we focus in this work. Catanzaro et al. [18] have translated the support vector
machine classifier design procedure into the CUDA framework based on the sequential
minimal optimization (SMO) method. They have reported a 9 − 35× increase in speed
compared with a regular CPU when training several large data sets. The trained classifier
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itself runs two orders of magnitude faster than a CPU implementation in a more tradi-
tional approach [9, 10]. The key factor of their overall success lies in the parallelization of
the SMO method. More recently, Nageswaran et al. [19] have implemented a configurable
simulation environment for networks of Izhikevich neurons on CUDA reporting an up to
24× speedup on their hardware while Khanna and McKennon [20] have implemented a
model for gravitational waves in OpenCL, finding speedups of the order of 30×. Other
bioinspired motivated approaches can be found in ant colony optimization for hard com-
binatorial optimization problems which have also shown substantial speed improvement
[21].

In the sequel, we consider a bio-inspired algorithm that is similarly suitable for par-
allelization as the problems highlighted above. Specifically, we implement a two-layer
feed-forward neural network [3, 5] using CUDA parallel kernels in compliance with the
memory and communication constraints of the device with appropriate data structures
and handling. Our implementation incorporates learning in an incremental, stochastic and
local fashion, mimicking the plasticity in the insect brain. As opposed to the conventional
machine learning paradigm that isolates the training phase from the actual performance,
the considered insect-inspired scheme learns “on-the-fly.” Also, unlike earlier work on
similar problems, the system we implement here deals with rather sparse matrices with
random entries such that the parallel implementations have to compete with efficient
sparse matrix methods rather than direct matrix multiplication. We test our system on a
benchmark classification task, the MNIST database of handwritten digits [22], and com-
pare the speed of the learning scheme on a standard (Intelr-based) serial processor, on a
GPU system, and on an OpenMP parallelized version on a modern quad-core CPU. We
observe a significant speed-up in the CUDA and OpenMP implementations over the serial
implementations.

For decades, biological methods of classification have inspired the field of machine
learning. Nevertheless, the complexity of the redundancy in these systems has always
tempted the developers to abstract and simplify these architectures. Our view is that
such complexity has a key role in the separation of classes. To the best of our knowledge,
this work constitutes the first attempt to translate a massively sparse and tunable kernel
expansion to a parallel machine.

The remainder of this paper is organized as follows: in the following section, we briefly
outline the biological motivation, the classifier model, its training scheme and the bench-
mark problem; in Section 3, we evaluate the performance of CUDA, OpenMP and the
serial implementations; we provide a brief discussion and outlook in Section 4.

2. Methodology.

2.1. Classifier model. We consider a bio-inspired classifier model based on the insect
brain described before [3, 5] and outlined in Figure 1. The main biological observations
captured in this model are: (1) The areas responsible for pattern recognition in the insect
brain are layered and mainly feedforward; (2) The hidden layer (mushroom body calyx
(MB)) code is sparse; (3) Input-to-MB connectivity is dense and unspecific: the connec-
tivity of the first layer is not reproducible from insect to insect; (4) Output layer (MB lobe)
neurons compete: Mutual (lateral) inhibition is the most likely instrument for competition
in the MB outputs; and (5) Plasticity in the MB is tuned by reinforcement: Behavioral
studies and direct electrophysiological evidence indicate that the synaptic changes un-
derlying conditioning (in reinforcement paradigms) take place in the synapses from the
so-called Kenyon cells (KC) in the MB to the output neurons in the MB lobes [23].
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Figure 1. Diagram of the classifier model derived from [5]. The system
consists of three layers: an input layer of Nin binary nodes, a hidden layer
corresponding to the mushroom body (MB) calyx and containing NKC =
50, 000 Kenyon cells (KC), and an output layer corresponding to the MB
lobes, each denoting a class identity. The connection from input to calyx
are random and from calyx to output are all-to-all and learning. The output
neurons compete by lateral inhibition exhibiting winner-take-all dynamics.

In the light of these observations, our model consists of three layers corresponding to
the AL (input layer), the calyx of the MB (hidden layer) and the output regions of the
MB (output layer) (see Figure 1).
The aim of this work is, in contrast to other recent work on GPU acceleration of artificial

neural networks [6, 9, 10, 11, 14, 17, 18, 24], to be strictly bio-mimetic and not adjust
the model in non-biologically plausible ways to increase performance. This restriction
applies both to increasing performance of the classification achieved by the system and to
increasing computational (speed) performance of the different implementations discussed
below.
We denote by xi and yi the ith unit in the list of Nin input nodes and the activity of

the ith unit in the layer of NKC hidden nodes, respectively. The model accepts binary
inputs, i.e., xi ∈ {0, 1}, i = 1, . . . , Nin.
We consider each KC unit as a McCulloch-Pitts (MP) neuron [25] defined by the input-

output relation:

yi = Θ

(
Nin∑
j=1

vijxj − θi

)
, i = 1, . . . , NKC (1)

where Θ(·) is the Heaviside step function and the θi ∈ R represent the individual firing
thresholds.
We further assume that all synaptic weights from the input to the hidden layer take bi-

nary values, i.e., vij ∈ {0, 1}, and are assigned randomly, yielding a random connectivity.
This constraint is adopted to reflect the non-specific structure of the MB as a connection-
ist system. In the construction of the network, we use a Bernoulli process that introduces
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an input-to-KC connection with a constant probability pc. Once the connectivity is de-
termined, the thresholds θi ∈ R, i = 1, . . . , NKC , are tuned to ensure that each of the
NKC units responds (i.e., outputs 1) for only a certain fraction of all inputs (condition-
ing phase). Specifically, this is achieved by initializing θi, i = 1, . . . , NKC , at a common
arbitrary value, and then gradually increasing them for cells that fire too frequently and
decreasing them for cells not firing enough until the requirement is met. Following the
construction and conditioning, the parameters vij and the thresholds θi are fixed for all
i ∈ {1, . . . , NKC} and j ∈ {1, . . . , Nin}, establishing the first layer as a fixed random
binary kernel.

We designate each one of the Nout output nodes to a particular class and determine
the recognized class as follows: First, the total input Ii for all Nout output neurons is
calculated as:

Ii =

NKC∑
j=1

tanh(wij/β)yi, i = 1, . . . , Nout, (2)

where the unfiltered weights wij are integer-valued output layer weights and β is a gain
parameter. Then, the output class assignment is made by z = argmax1≤i≤Nout Ii. Note
that, since this assignment is based on the argmax operator, only the ordering (not the
actual values) of Ii is required. Such an implementation of the lobe constitutes a realistic
abstraction (i.e., binary decision) of the stimulus that can be easily processed by further
layers, such as action generators (pre-motor areas), in the insect brain [23].

The key feature underlying the success of this system (and also the difficulty in imple-
menting it on a serial machine) is the large number of neurons (≈ 50000) in the hidden
layer. This layer has a very sparse activity (i.e., very few “on” units at any given time)
which boosts the separability of patterns. Since there are no recurrent (feedback) connec-
tions within this layer nor from other layers, the output of the massive number of hidden
units can be calculated in parallel.

2.2. Training. The MB is a learning classifier that adapts to new stimuli (even to new
classes of stimuli) while in actual performance, thus its training and performance should
co-occur online. The feedback required for such adaptation is provided in the form of a
low-resolution reinforcement signal, similar to the reward signals a natural environment
provides to an insect.

In our model, the locus of learning is the output layer weights wij. Learning is imple-
mented by a local Hebbian-type learning rule that is gated by a reward signal. Specifically,
the synaptic weights wij are adjusted according to the following two rules. If the input
was recognized correctly, i.e., a positive reward signal was received, then

wij(n+ 1) =

{
wij(n) + 1, η < p+, yj = 1, i = zn, Imax ≤ kI2nd
wij(n)− 1, η < p−, yj = 0, i = zn, Imax ≤ kI2nd.

(3)

Otherwise, if recognition was not correct and no reward was received, then

wij(n+ 1) =

{
wij(n)− 1, η < p+, yj = 1, i = zn
wij(n), otherwise

(4)

where η ∈ [0, 1] is a uniformly distributed random variable and n ∈ N denotes (discrete)
time. In other words, a synaptic weight wij is increased by 1 with probability p+ when
a reward signal is received and if (i) the j-th KC is active, (ii) the recognized class is
z = i, and (iii) the total input to Ii is not greater than the sub-maximum output node’s
input I2nd times a constant margin k > 1. The third rule provides a safeguard against
over-training.



3830 T. NOWOTNY, M. K. MUEZZINOGLU AND R. HUERTA

In the opposite direction, the synapse strength wij is decreased in two cases:
Case 1: When a reward signal is received, wij is decreased by 1 with probability p− if (i)
the j-th KC is not active, (ii) the active output neuron (recognized class) is i, and (iii)
the total input Ii is not greater than the sub-maximum output node’s value I2nd times a
constant margin k > 1;
Case 2: When no reward is received, wij is decreased by 1 with probability p+ if (i) the
j-th KC is active and (ii) the output neuron i was the result of the classifier. In all other
cases, the original value of the synaptic weight is retained.
This set of rules prescribes an incremental learning procedure and can be applied on-the-

fly, i.e., while the classifier is actually performing. Note, that the only form of supervision
utilized in training is whether an input stimulus is recognized correctly or not, i.e., whether
a reward signal is received or not. The algorithm, therefore, falls in the category of
reinforcement learning. The performance of the resulting classification system has been
investigated in detail in [5].

2.3. Benchmark problem: The MNIST data set. A large data set is necessary to
illustrate the learning algorithm under heavy memory usage, which is one of the main
limitations of the current GPU systems. The MNIST database of handwritten digits
meets these conditions [22]. This database contains 60, 000 training samples and 10, 000
test samples of handwritten digits in the form of 28×28 gray scale pictures. It is a popular
benchmark in the pattern recognition community.
In the following, we use thresholded black-and-white versions of the images, and both

the original images and their inverse for reasons explained in our earlier work [5].

2.4. Parallel and serial implementations on GPU and CPU. For the same MNIST
task, we devised 8 different parallel CUDA implementations, two conventional serial im-
plementations, and an OpenMP parallelized version of the more successful of the two
serial implementations of the classification algorithm1. These were then tested separately
on the MNIST classification problem and ranked with respect to their speed.
The need for parallelism in the algorithm arises primarily in the evaluation of the 50, 000

binary units in the hidden layer of the architecture. Recall that this layer is not subject
to training; the computational challenge is the evaluation of such an expansive binary
kernel.

2.4.1. CUDA implementation. We programmed a simple CUDA kernel evaluating a single
binary unit. Each such unit receives inputs from a random subset of the 28×28×2 = 1568
input neurons, which each represent one of the 784 pixels of the black-and-white image of
the input digits or of the 784 pixels of the inverse image. Therefore, within the kernel, the
states of the 1568 input neurons, and which inputs the KC unit is connected to, need to be
known. We used the maximum of 512 threads per parallel block (a hardware constraint
in TeslaTM C870), and thus evaluated 512 KC units in parallel. Each thread downloads
its connections into local memory. Then, the threads download the state of input neurons
to shared memory in a parallel fashion (each thread downloading at most 4 states) and
calculate the resulting output (0 or 1). This value is written back to the device memory.
The process of downloading input states, calculating the KC unit’s state, and writing it
back to device memory is repeated for a set of N = 1000 inputs at a time. Figure 3
illustrates the main steps of the KC evaluation kernel.
We devised a variety of implementations that differed in the storage format and mem-

ory handling of the data, including bit-wise storage of KC patterns in chars or ints and

1The source codes of the three covered implementations are available at http://www.informatics.
sussex.ac.uk/users/tn41/code/MNISTonCUDA.html.
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Figure 2. CUDA memory model and its use in our implementation. All
input-output data passes through the device memory. In our case, these
are the input patters (inputs), the corresponding classes (digits), the state
of the hidden layer (KC), number of connections to the hidden layer (nc),
the input neurons each KC is connected to (c), the weights for the all-to-
all connections to the output layer (w), and random seeds for individual
random number generation in each kernel. Parts of these data are “pulled
down” to shared memory (the input digits) or registers (nc, k) while other
data is reorganized into local memory (the PN-KC connectivity c) to allow
faster, coalesced memory access. Note that memory access to registers is
very fast, to shared memory fast and to device memory, including the so-
called local memory, fairly slow. The right use of the memory spaces may
make or break a competitive algorithm.

Each thread copies

pixels to local memory

threshold the response

calculate the summed 
input to each KC

Pseudo code for hidden layer Kernel

3 or 4 of the input

determine thread index k
copy connectivity to local memory c[]
for i=1 ... N

end

for j=1 ... nc
sum= sum+AL[c[j]]

sum= 0
synchronize
pull pattern i to shared memory AL[]

end

if (sum > theta)

else KC[i][k]= 0
then KC[i][k]= 1

synchronize

Figure 3. Pseudo code for the hidden layer kernel. The input patterns
are pulled from device memory to shared memory in a parallel fashion, each
of the 512 kernels in a block copying 3 or 4 of the pixels. The connectivity
for each KC is copied once into local memory and used for N input digits
producing N KC patterns for each grid invocation.

assembled locally or in device memory as well as different order schemes how the 1000
patterns of 50000 KC values each are arranged in a 1D array. We ensured that only the
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k is the thread index

2
if (k == 2 ) l

for l=1 ... log (nThread)

for l=1 ... log (nThread)2

then sum[k]+= sum[k+2   ] l−1

B: Pseudo code for summing KC output

if (k == 2 ) l

then sum[k]+= sum[k+2   ] l−1

A: Pseudo code for KC output

determine DN index j

__shared__ sum[nThread]

if (KC[i] == 1)

synchronize

end

__shared__ sum[100]

sum[k]= inSum[j*100+k]
synchronize

synchronize

synchronize

end

then sum[k]= tanh(w[j][i]/gs)

else sum[k]= 0

determine KC index i

determine DN index j

Figure 4. Pseudo code for the kernels calculating KC output. First, out-
puts are calculated and summed in blocks of 500 (A). The resulting 100
partial sums of the inputs to each output neuron are then summed in a
separate kernel (B). Splitting the task into many small kernels like this
improved performance over a monolithic kernel that does it all at once.

combinations of storage types and strategies were used that avoided explicit memory con-
flict by design such that the classification performance of all implementations is identical,
i.e., the algorithm is executed correctly in all cases.
The second stage of the algorithm, the evaluation of the outputs (i.e., the activity

in the third layer) and the modification of connections according to the learning rule
are performed in three additional CUDA kernels. Intensive testing revealed that in this
case, batch-processing is not advantageous, mainly because there is no benefit in storing
connectivity locally with the all-to-all connections from the hidden layer to the output
layer.
In brief, in the first kernel grid, which is invoked in blocks of 500 threads, each kernel

reads the state of a KC from device memory, and the corresponding contribution of one
synapse is deposited into shared memory. These values are then summed in a cascade to
give the summed output of 500 synapses per block. A second kernel grid then performs
the remaining summation over 100 partial sums of synaptic input to each of the 10 output
neurons. Figure 4 illustrates the code of these two kernels.
The determination of the winner MB lobe in the competition of the 10 output neurons is

performed on the CPU, and a third kernel grid then updates the synapses to the winning,
active output neuron according to the learning rules (3) and (4).
All implemented algorithms were tested on the NVIDIAr TeslaTM C870 system and

are compatible with the constraints of its particular technical specifications.

2.4.2. Serial and OpenMP implementation. Two serial versions of the system were im-
plemented in C (gcc version 4.3.3, Linux kernel 2.6.28-13) on a modern PC (with 3 GHz
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KC[k] holds the activi−
ty pattern in response
to input k

Calculate a batch of
N inputs at once

nc[i] is the number of
inputs presynaptic to
node i

end

if (sum > threshold)then KC[k][i]= 1

The pragma driective
controls parallelization

Pseudo code for hidden layer in OpenMP

end

#pragma omp parallel for private(i,j,k,sum)

for i= 0 ... nKC
sum= 0

for j= 0 ... nc[i]

sum+= w[i][j]*in[k][index[i][j]]

for k= 0 ... N

end

else KC[k][i]= 0

Figure 5. An OpenMP implementation of a single layer of binary units
for all input patterns. The pragma directive will evenly split the k loop into
pieces that run on each of the available CPU cores of the computer. The
private variables are those that are not shared by the spawned processes.
Parallelization of such simple serial codes is straightforward in OpenMP.

AMDr PhenomTM II X4 940 quad core processor and 8GB RAM) with different data
ordering of the 1000 times 50000 bit KC data. Apart from the parallelization-specific
code, the serial implementations are functionally identical to the CUDA implementa-
tions, including identical integer and floating point data types, the same random number
generator, and equivalent math functions. The serial implementations were compiled with
–O3 optimization option.

Finally, we parallelized the more efficient of the two serial implementations using the
OpenMP API [26] and tested its performance on the host’s quad-core CPU (3 GHz AMDr

PhenomTM II X4 940). OpenMP is a very easy-to-use add-on supported by recent versions
of the GNU C compiler. By introducing a few pragma directives into the code (see Figure
5 for example), it is possible to quickly turn a serial code into a parallel program. The
most basic approach to parallelize a C code is to split the ‘for’ loops into several threads.
In our particular case, we had to loop over different input patterns, all input layer units
xj, j = 1, . . . , Nin and all middle layer units yi, i = 1, . . . , NKC . The best approach is
to make long threads that require minimal synchronization. In the implementation, we
chose to spawn threads on the iteration over the input patterns, see Figure 5.

3. Results.

3.1. Timing of CUDA and CPU implementations. All implementations were tested
on the same data set and training protocol with an increasing number of 1000 to 191, 000
trained digits. The algorithm includes an initial conditioning (construction and KC-
adjustment) phase and the performance measurement phase, which lead to a constant
offset of the calculation times that otherwise grow linearly with the number of trained
input patterns. The results of the timing trials are given in Figure 6. The values shown
in the figure are of the best performing implementations for GPU, CPU and OpenMP
versions.

The best serial CPU implementation performs a factor 11.8 worse for conditioning and
classification performance measurement (the y-intercept of our linear time – sample num-
ber relationships) and a factor 7.7 worse for the time per trained sample (the slope of
the linear timing relationships) compared to the best performer in the CUDA group (see
Figure 6). The difference in speed-up between the conditioning and the training phases
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Figure 6. Timing results for the three different types of implementations.
We tested different versions of the CUDA implementation and single core
implementation. The values shown are for the overall best performing im-
plementation in each category. The execution time increases linearly with
the number of trained digits (data not shown). We calculated the slope
(dark gray) and the offset (light gray) of these linear speed dependencies.
The slope is the time needed for training per training sample and the off-
set is the time needed for initialization, conditioning of the hidden layer,
processing of the test set (performance measurement) and for input/output
operations. The intervals given as ±x above the bars, are confidence inter-
vals for the linear regression of the timing curves at a confidence level of
1%.

is due to the fact that in conditioning only the hidden layer is evaluated – the task where
parallelization has its greatest impact – while the actual training (and the performance
measurement) involve the whole network with the less parallelizable gathering and learn-
ing stages between the hidden layer and the output layer. If measured on its own, the
hidden layer kernel is 21 times faster than the CPU code.
The parallelized OpenMP CPU version performed markedly better than the serial CPU

implementation, reaching about a quarter of the speed of the CUDA version.

4. Discussion and Conclusions. All tested CUDA implementations were of similar
speed and substantially faster than the serial CPU implementation(s) while achieving the
exact same recognition performance.
When comparing CUDA implementations to OpenMP parallelization on a multi-core

CPU the picture is less clear. While the CUDA was significantly faster, we only tested
OpenMP on a quad core processor. At this point, we, therefore, cannot satisfactorily
answer the question which technology, GPU or multicore CPU, provides a better com-
putational environment. For the particular problem investigated here, the CUDA im-
plementation achieves four times the speed of the multicore implementation (OpenMP).
However, at current market prices a NVidiar GTX285 is priced at about $400 while the
AMDr PhenomTM II X4 940 Processor plus 1 GB of memory is valued slightly above
$200. Thus, one could argue that the price of computational power is presently only a
factor two different for both technologies. If one factors in the extended developer time
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for producing the CUDA-specific code, one may well call it a tie. Interesting challenging
problems lie ahead for these two approaches.

We also investigated a more traditional approach to general purpose GPU computing
using OpenGL and the Cg shader language. However, the use of random numbers in
the algorithm and the restrictions of this framework to rectangular, float-type texture
arrays for data storage and communication between shader invocations and the GPU
and CPU did not allow competitive performance. It is also worth noting that using a
traditional shader language framework requires even more restructuring and redesigning
of the algorithm than using the CUDA framework and, obviously, the additional effort is
magnitudes greater compared to an OpenMP parallelization. From our limited experience
for this particular application, we do not foresee a major future role for shader languages
in the general purpose computing arena in the medium to long term.

The kernel evaluation parallelized in this paper involves redundancy in the form of
many KC nodes that possibly convey no information about the class identity. In contrast
to the predominant view, we consider this feature as a “capacity” that can be utilized
for accommodating changes in class representations, as well as new classes. The CUDA
device memory constraint stands as the only limitation on this capacity.

GPU acceleration of artificial neural networks has recently been addressed by several
authors [6, 10, 14, 21]. In contrast to these works we here have focused on an algorithm
that is explicitly bio-mimetic [19], mimicking the olfactory system of insects. This implies
a few limitations.

Firstly, and foremost, the system is limited to biologically realistic, local processing
like random synaptic connections, Hebbian learning rules and mutual inhibition. More
abstract transformations like radial basis function kernels or more formal learning methods
based, for example, on gradient descent are excluded in this approach.

Secondly, we are not at freedom to optimize the size and connectivity of the modules
in the model (input, hidden and output layers and their connectivities) to suit the ar-
chitecture of the GPU system used. This reduces the reported speedup recognizably but
offers a more realistic view on what to expect from GPU acceleration when applying it to
a generic research question.

Besides GPU acceleration other approaches to hardware acceleration exist [27], includ-
ing the cell processor architecture [28] and field programmable gate arrays (FPGAs) [29].
The suitability of any of these technologies will depend on the particular problem to
be solved, the nature of the task (research or technical/commercial application) and the
balance between costs of development time and runtime. The CUDATM platform allows
implementing quick and efficient solutions to a diverse set of problems at a low cost.

In summary, we have given an additional proof of concept of the suitability of bio-
mimetic algorithms based on massively parallel computing and the new trend of ever
more parallel computing devices. These two appear to be a natural match. In the future,
more general tools for GPU acceleration of bio-mimetic systems similar to the system of
[19] have to be developed beyond the custom code solutions used in this proof of concept
study.

The brain computes multiple threads and not necessarily waits until all the computa-
tions are finished to take a decision. There is ongoing work on parallel implementations
considering not to synchronize threads and using partial evaluation [30]. This is likely
similar to what the multi-tasking ability of the brain rests on and would be an interesting
future extension of our work.
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