Mathematical Concepts (G6012)

Lecture 9

Thomas Nowotny

Chichester |, Room CI-105

Office hours: Tuesdays 15:00-16:45
T.Nowotnhy@sussex.ac.uk

mailto:A.K.Seth@sussex.ac.uk

BB: Translate the following non-deterministic
FSA systematically into a deterministic FSA

Non-deterministic FSA
b

A
(e)—(—(>)

BB Systematic translation of non-

deterministic to deterministic FSA Non-deterministic ESA

1. Start:

2. "b” transistions out of gy

b

PN
(=)

5o}

3. “a” transistions out of qy:

? We can get with a from q, to
Qo Or g,

OO-

BB Systematic translation of non-

deterministic to deterministic FSA Non-deterministic FSA
b

4. ‘a’ transitions from (q,,q;):

We can get with ‘a’ from q, @ @

to q, or g,; we don't get
anywhere with ‘a’ from qg;
hence, we have total target a

setof (4p,0,): | a

A
O

5. ‘b’ transitions from (q,,q,):) a

We can get with ‘b’ from q, O
to gy, we get with ‘b’ from q;

a b
to q,; hence, total target set @ @ @
of (01, d2):

BB Systematic translation of non-

deterministic to deterministic FSA Non-deterministic FSA
b

6. ‘a’ transitions from (q,,d.,):

We can get with ‘a’ from q, to q, @ @

or g,; we don't get anywhere with
‘a’ from q,; hence, we have total
target set of (q,,9,): a

4. b’ transitions from (q,,0,):

We can get with ‘b’ from q, to q;
we get nowhere with ‘b’ from q,;
hence, total target set of q:

BB Systematic translation of non-

deterministic to deterministic FSA Non-deterministic FSA
b

6. Final state:

Q).
Every state that contains a final @ @

state Is final: Here (q,,d.,):

That'’s the final deterministic
automaton done!

Properties of Pushdown
Automata
« Family of languages:

— PDA accept the same family of languages as
can be expressed by Context Free
Grammars

— In other words they accept exactly the
Context Free Languages

— Context Free Grammars are used to describe
(define) programming language syntax

— (Also equivalent to BNF and syntax charts)

Context-Free Grammar

* |s define by “productions” or “production
rules”:

1.S+— aShb
2.S—ab
« Are applied repeatedly, e.g

S » aSb » aaShb —» aaabbb
| | |

1. 1. 2.

* Generates a’s followed by same number
of b’s

Derivation tree

* Generating a word can be visualised as a

tree: / ? \

n
o

QD QD
D~ \U)
/o

Other example

 Productions:

S — aSa
S - bShb
SH €

* Generates the palindrome language
{SS*|S € {a,b}",n > 0}
where the R denotes the reverse of the

string

Derivation tree example

/TN
VN
a/z\a

Pushdown Automata: Limits of Power

 Can be achieved:

— Language of palindroms

— Counting two symbols

— Programming languages (deterministically)
— Natural Languages?

 What can’t be done:
— Copy language {SS'|S € {a,b}",n > 0}
— Counting symbols beyond 2
— (Crossing dependencies)

Performance consideration

* When syntax-checking programs,
— PDA based checking can take O(n3) time

— This can be very slow for large programs

— However, If the PDA Is deterministic, time Is
only O(n)

Stacks vs Pushdowns

* Most people would not make a distinction

* |f a distinction Is made
— Pushdown strictly push-pop
— Stack can be inspected read-only

« Stack automata are a more powerful but
little known type of machine

TURING MACHINES

Turing Machines (TM)

« Are a very simple extension to finite state
machines

 The main change is to allow editing the input
tape

* No limit on the size of the tape

« Tape 2-way Infinite (like the integers)

alal|B|blala]|*|B

* (We will use the symbol B for blank positions)

Transitions in TM

* Current state

* New state

« Symbol currently read

* New symbol to replace the read symbol

 Direction to move the tape head (left (L), right

(R), stay (S))

_ output
input 'p move

/
@)

uolyeindwo)
g T &
m m m
m m m

Blblalal|b
BlaJalalb
*
Bla|blal|b

Jo

Uo

B

B

01

B

B

B

B

Bla|b|b|Db

Bla|b|b]a

Bla|b|b]a

finished

What did it do?

 baab became abba

* This machine swaps a to b and b to a until
it findsa*

Another
example

What does it do?

oF
Jo
01

01
op

op
s
oF

oF
oF
Jo

01
op

op
op
oF

oF
oF
oF

Jo
44

44
44
44

|Blalalal*|alala|B|B| . .. s

FInal State

Initial State was:

[B]aJalal*[B[B][B[B[B] do
*

 The machine makes a copy of n a’'s and
puts them behind the *

Multiplication

* We can use this machine to do “unary
multiplication”

1 Blajajlal*|ala|%|B|B|B|B|B|B|B]... Jdo
T

« Multiply “number” before * by “number” between
*and % (3 times 2 here):

.[Blajaja|*|afa|%|alalafalala|B]... Ufinal
L

« Can be done by adapting the discussed
machine and using it repeatedly

Church/Turing Thesis

* Every computable function can be computed by
a Turing Machine

 |.e.: Turing Machines are universal computing
machines

« Every problem that can be solved by an
algorithm can be solved by a Turing machine

* Where Is the power coming from?
The read/write input/output tape !

More about TM

* The tape can be used to record any data
for later access

* There Is always space avallable after last
non-blank location

* There is no limit how often the tape Is
accessed

* Your PC is less powerful than a TM —
why? Because it has finite memory

Efficiency

 TM are universal but not efficient
* Progress can be really slow

* Looking up memory involves sequential
access — the opposite of efficiency

Managing complexity

* One can encapsulate useful functionality
In “separate” sub-routines

* Collection of states set aside for each
subroutine

 (similar to structured programming
approach)

 However, TM are mainly useful as a
theoretical concept, not for solving real
world problems!

Variations

e There are common variants of TM:

— Multiple tapes
— Single-side infinite tape
— Non-deterministic TM

* |t can be shown that these have all
equivalent power to the TM discussed
here.

Example: Non-deterministic TM

 To simulate non-deterministic TM:

— 3 tapes:

— One ta
— One ta
— One ta

pe for original input
ne for the choice sequence: (2,3,1,2)

e to run on current choice sequence

* For this to work we need to enumerate all
possible sequences of choices (ok, as
states are finite)

Another equivalence

* The "2 pushdown” automaton is equivalent
to the Turing Machine:

— One pushdown holds tape contents to left of
tape head

— One pushdown holds tape contents to the
right of tape head

— As tape head moves, symbols shift across
from one pushdown to another

More generally ...

 Chomsky Hierarchy (for language
classes):

— Type 0: Languages accepted by Turing
Machines

— Type 1: Languages accepted by Turing
Machines with linear bounded storage

— Type 2: Languages accepted by Pushdown
Automata

— Type 3: Languages accepted by Finite State
Automata

Alternative Characterization

* Equivalent grammar formalisms:

— Type 0: Languages generated by unrestricted
grammars

— Type 1. Languages generated by context-
sensitive grammars

— Type 2: Languages generated by context-free
grammars

— Type 3: Languages generated by regular
grammars

Equivalence and Inclusions

