Mathematical Concepts (G6012)

Computing Machines

Thomas Nowotny

Chichester I, Room CI-105

Office hours: Mondays 10:00-12:00
T.Nowotny@sussex.ac.uk




Last time: Regular languages

* Aregular language can be defined like this
(over an alphabet S ):
— The empty language is regular
— The singleton language {a} is reqular (a € S)

—If A and B are regular languages, then AU B
(union) and A o B (concatenation) and Ax
(Kleene star) are regular.

— No other languages are regular



BB Example: Determine
whether a language Is regular

Take the Alphabet S = {a} and language £ = {a, aa}
Is £ a regular language?

Need to show that it can be constructed by legal
operations (o, U, x ) from (a) regular language(s)

Start: Singleton language A = {a} is regular by
definition

The language B = {aa} can be generatedas B = 40 A
Finally, L = AUB

This proves that L is a regular language.



Regular expressions

* Regular expressions can be used to define
regular languages

* Aregular expression describes the legal
word in a language by a matching
operation:



Regular expressions

— ‘a matches the symbol ‘a’ in the alphabet
— The ‘|’ denotes alternatives (Boolean (x)or)
— Brackets ‘(* and ‘)" are used for grouping

— "%’ matches zero or more of the preceding
symbol

— "+" matches one or more of the preceding
symbol

— "“?” matches 0 or 1 of the preceding symbol



Precedence of operators

Highest ()
Medium ? T+
Lowest |



FINITE STATE AUTOMATA
(FSA)



Introduction

 FSA are examples of a model of
computing or an (abstract) computing
machine

* Models of computing are how computer
scientists make sense of the world

* Many models of computing have been
suggested

« FSA are in a sense the most simple ones



FSA: General Characteristics

* Discrete inputs & possibly outputs

« System in one of a finite number of
internal configurations

« State encodes information about all past
inputs needed to determine behaviour of
system on subsequent inputs



Typical example 1

 Control mechanism of an elevator
* Input is requests for service
o State is current floor & direction of motion

* Does not record history of satisfied
requests

» Unsatisfied input is unordered collection of
requests



Typical Example 2

* Lexical Analysis:
Transform a string of characters into a
sequence of (legal) tokens:

“x+501 = foo’

$

(id(x),plus,num(501),equals,id(foo)

(This is something a compiler needs to do)



Focus on (language) parsing

We are interested in the following type of
machine (for now):

Input string

v

Machine — Computation

N

accept reject




Definition of a (deterministic)
Finite State Automaton (FSA)

« An FSA consists of a finite number of states q,,
d+,dy, --., 4, and an input “tape” with input
symbols or tokens

« The FSA s in one state at a time, there is one
Initial state and at least one final state

« Symbols on the input tape are consumed one by
one

* For each state there is a finite set of rules for
input-dependent state transitions (these depend
only on the current state and the current input)



Graphic Representation

Initial state s Input token
(incoming 1
arrow) _Transition

rule

Final state
(double line)



ldea of FSA

» Description of a decision process
* |s a string acceptable or not”?

 All acceptable strings form a language (as
we have discussed before)



How It works

Automaton:

Input tape:
What words does
this automaton

T T accept?




Protocol of a computation

We can document the computation | just
showed as a list of states and input positions:



op

op

Initial state

Final state —
machine halts



Outcomes of a FSA computation

* Accepting computation:
Computation in which the machine
reaches a final state and reads all the
iInput.

* Non-accepting computation:
Computation in which either the machine
gets stuck before end of input or finishes
In a non-final state.



What's accepted -

* An automaton defines a language:
Set of all strings which when given as
iInput give rise to an accepting computation

* The family of languages accepted by any
FSA:
Collection of all languages which some
finite state machine accepts. — Turns out
to be the family of regular languages



Some comments

» Getting stuck:

— no more input available or
— no transition rule applies

 |nput read:

— Must read past end of the input before
accepting a string

* Two choices only:
— Every input is either rejected or accepted



More examples:

d
—
R

b

* Accepts any string that has alternating a's and b’s
that begins and ends with an a

- More precisely: {a(ba)” : n > 0}
« Using Regular Expression notation: a (ba)”*



More examples

OaraOar

Accepts only one string: ab
More precisely: {ab}

Regular expression: ab

No cycles gives a finite language



Adding a cycle

a

Accepts ab followed by strings of a's — 0 or
more

More precisely: {ab(a)” :n > 0}
Regular expression: aba*

Needs states to remember that the first a and b
were found



Another example

oY

Accepts any string of a's
More precisely: {a" : n > 0}
Regular expression: a*

Initial state can also be a final state



Several final states

(>a

Accepts any string of a’s, except aa
More precisely:{a" : n > 1 and n # 2}
Regular Expression: (a)|(aaa+)

There can be more than one final state



Indeterministic
@ FSA

 Either a then b’'s then c, or a then ¢’s then b.

« More precisely:{ab"c:n > 0} U {ac"b:n > 0}
* Regular expression: (ab*c)|(ac™)
 Nondeterministic!



Non-determinism

 What does it mean??

— Machine has a choice of more than one legal
move

— Machine is able to explore all options
 Significance
— Important theoretical idea

— Nondeterminism arises with many
computational models



Deterministic versus
nondeterministic FSA

* Deterministic FSA: There is never any
choice in the computation

* Equivalence (!):

— Nondeterministic FSA are equivalent to
deterministic FSA, i.e. for every FSA there is
an equivalent deterministic FSA

— Prove by means of a construction:



Construction

 \What do we need to do?

— Create deterministic machines that simulate
nondeterministic machines

 Let’'s have a closer look at our
nondeterministic example...



Example revisited

Suppose we see an a first



Example revisited

Suppose we see a ¢ next



Example revisited

Suppose we see a ¢ next



Example revisited

And finally we see a b



Example revisited

The input is consumed and we are in a final
state



Simulating indeterminism

* Finiteness is crucial:
— Finite number of states
— Finite number of possible sets of states
— 2" possible subsets of n objects

— Use subset to record all possible states that
could be reached

— Run all computations of a nondeterministic
machine in parallel



Simulating indeterminism

* Build new deterministic machine
— One state for every subset
— New transitions based on original machine

— Next state determined by what original
machine would do



Our example




BB Constructing a deterministic
machine

° States: {qO}= {q1’q2}! {q2’q3}5 {q1’q4}’ {q3}!
{94}

» Transition from {q,} to {q,, 9.} on a

» Transition from {q,,9,} to {q,9,} on ¢
* Transition from {q,,q9,} to {g5} on b

» Transition from {q,,9,} to {g,,q;} on b
* Transition from {q,,q5} to {q,} on C



BB Constructing a deterministic
machine

* Initial state is { q;, }
* Any set containing g or q, is final



Equivalent deterministic FSA

C
Q=0
c U
O=D
NG ) (e)
b
b



Stepping back ...

» What did we just do?
—We showed something very general
— Two classes of machines are equivalent
—Based on a general simulation
—This is an important idea



