Maths for Computing

Lecture 2

Thomas Nowotny Chichester 1, Room CI 105 <u>t.nowotny@sussex.ac.uk</u>

Please note

- Last retrieval date on Friday after coursework is due (only 1 day lateness allowed)
- This is due to University regulations

Last time ...

Read: "is contained in" "is subset of"

... we learned about

 $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$

- ... and how asking for closure with respect to certain operations leads from one set to the next.
- We ended learning that $\sqrt{2}$ is not a rational number (proof today), the set including those is called real numbers, or \mathbb{R} .

Last time ...

• I wrote things like

$$2 = \frac{a^2}{b^2}$$

$$2b^2 = a^2$$

= sign denotes equality. Do not use in any other sense! ⇒ denotes "implies" i.e. if LHS is true then RHS is true. Does not imply the inverse.

I.e.: Symbols of logic

• I am using symbols of logic:

 $\implies \text{ means "implies", for example } a > 5 \Rightarrow a > 3$ In general, the opposite need not be true: $a > 3 \neq a > 5$

If both directions are true, it's called equivalent:

$$a = 3 \Leftrightarrow 2a = 6$$

means "equivalent"

$\sqrt{2}$ is not a rational number

- I will show a proof on the black board
- It is called "proof by contradiction"
- In a nutshell, it works like this:
 - Assume Fact A (we do not know whether it is true)
 - Show Fact A ⇒ Fact B and we know B is false.
 - This is a contradiction and proves Fact A was false to begin with.

BB: $\sqrt{2} \notin \mathbb{Q}$: Proof by contradiction

• Assume $\sqrt{2}$ is rational, i.e. $\sqrt{2} = a/b$, where *a* and *b* are integers, expressed in lowest terms, i.e. irreducible form.

• Then,
$$2 = a^2/b^2$$
, and $a^2 = 2b^2$

- Since b^2 is an integer, a^2 is even.
- Since the square of any odd number is odd, and a^2 is even, then a must be even.
- So we can write a = 2c, then $b^2 = 2c^2$, hence b^2 is even and, as before b is even.

BB: Proof continued ...

- If both a and b are even, a/b wasn't expressed in lowest terms!
- This is a contradiction.

$\sqrt{2}$ is not a rational number!

\mathbb{R} : More about real numbers

- We can think of
 R as those numbers consisting of unending decimal places, e.g., 512.37988032274658 ... (no end)
- The real numbers that are not rational are sometimes called "irrational numbers", $\mathbb{R} \setminus \mathbb{Q}$
- True or false:
 - If the decimal representation is finite, the number is rational? True
 - If the decimal representation does not end, the number is irrational? False
 - If the number is irrational, the decimal representation does not end? True

More about real numbers

- In computers, the distinction between Q and ℝ doesn't matter so much. Why not?
- We can visualise $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}\,$ on a line BB
- Notation: \mathbb{R}_+ are all $x \in \mathbb{R}_-$ with x > 0
- Similar: \mathbb{Q}_+
- Why did mathematicians not stop with $\mathbb R$?

BB Number line

Putting numbers on the number line is possible because we have the ordering ">" on all numbers in \mathbb{R} .

\mathbb{C} : The complex numbers

- Squares of real numbers are positive. I.e. there is no solution to $x^2 = -1$
- Introduce the "imaginary number" i with:

$$i^2 = -1 \quad \Leftrightarrow \quad i = \sqrt{-1}$$

- Complex numbers cannot be ordered along a line, they require a plane. BB
- (Complex numbers are algebraically closed.
 BG)

(insert your own multiplications and additions etc)

BG Algebraic closure

 \mathbb{C} is called algebraically closed because all polynomial equations have a solution within \mathbb{C} :

$$x^n = y$$

Has a solution $x \in \mathbb{C}$ for all $n \in \mathbb{N}$ and $y \in \mathbb{C}$

(actually, it always has n solutions)

\mathbb{C} : The complex numbers

• Every complex number can be written as

 We can operate on complex numbers like usual (BODMAS), with the additional rule

$$i^2=-1$$
 , Examples: BB

BB Examples of calculating with complex numbers

$$5 + 3i - (3 + i) = 5 - 3 + 3i - i = 2 + 2i$$

$$(5+3i) \cdot (3+i) = 5 \cdot 3 + 5 \cdot i + 3i \cdot 3 + 3i \cdot i$$

= $15 + 5i + 9i + 3 \cdot (-1) = 12 + 14i$

$$\begin{aligned} (x+yi)^2 &= x^2 + x \cdot yi + yi \cdot x + yi \cdot yi \\ &= x^2 + 2xyi - y^2 \end{aligned}$$

Intuition test

- How many? \mathbb{N}_0
- How much? \mathbb{R}
- How long? \mathbb{R}_+
- Which percentage? \mathbb{Q}_+
- How far? \mathbb{R}_+
- How expensive in pounds? \mathbb{Q}_+
- Account balance in pennies?

Summary

- There are several **number systems**:
 - \mathbb{N} the **natural** numbers
 - \mathbb{Z} the integers
 - Q the rational numbers
 - \mathbb{R} the **real** numbers
 - \mathbb{C} the **complex** numbers
- They contain each other

Read: "is contained in" "is subset of"

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$$

Summary

- The different number systems are closed under different operations
- Symbols introduced on the way:
 - - i "imaginary unit" defined by $i^2=-1$

Further reading

 If you are interested how things are represented in the computer, try:

Truss, J. (1999) Discrete mathematics for computer scientists (2nd edition). Addison-Wesley. Chapter 1.

SUMS AND PRODUCTS

Notations

infix notation: a + b (used in maths) prefix notation: +(a, b) (sometimes used in computer science)

For sums of many operands (i.e. numbers, variables), there is an additional notation:

Summation notation (Σ notation)

BB Some alternative notations

$$\sum_{i \in \{1, \dots, N\}} x_i = \sum_{i=1}^N x_i$$

$$\sum_{i \in \{1,...,N\}, i \neq 2} x_i = \left(\sum_{i=1}^N x_i\right) - x_2$$

$$\sum_{\substack{i \in \{1,...,N\}\\j \in \{1,...,M\}}} x_i x_j = \sum_{i=1}^N \sum_{j=1}^M x_i x_j$$

Summation notation

Summation notation is extremely convenient and is used everywhere.

Note: Empty sums are zero:

$$\sum_{k=2}^{1} k^2 = 0$$

Examples: **BB**

BB "Normal" examples

$$\sum_{\substack{i=1\\5\\j=3}}^{4} 3 \cdot i = 3 + 6 + 9 + 12$$

$$\sum_{\substack{j=3\\j=3}}^{5} \sum_{k=1}^{2} j \cdot k = \sum_{\substack{j=3\\j=3}}^{5} (j \cdot 1 + j \cdot 2)$$

$$= 3 \cdot 1 + 3 \cdot 2 + 4 \cdot 1 + 4 \cdot 2 + 5 \cdot 1 + 5 \cdot 2$$

= 3 + 6 + 4 + 8 + 5 + 10

BB More examples

 $= 3 \cdot 1 + 3 \cdot 2 + 4 \cdot 1 + 4 \cdot 2 + 5 \cdot 1 + 5 \cdot 2$

= 3 + 6 + 4 + 8 + 5 + 10

Note how the order of expansion does not matter! Reason:

$$a + (b + c) = (a + b) + c$$
 (Associativity)
 $a + b = b + a$ (Commutativity)

Product notation

Definition:
$$\prod_{j=1}^{5} a_j := a_1 \cdot a_2 \cdot a_3 \cdot a_4 \cdot a_5$$

Think about a for loop, but multiplication inside, instead of summation.

Example:
$$\prod_{j=1}^{5} j = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 = 120$$

Product notation

Product notation is somewhat less common but also still used frequently (and useful)

Note: Empty products are 1:

$$\prod_{i=5}^{1} x_i = 1$$

This makes a lot of sense:

Empty sum

If the loop is never executed -> sum is 0.

Empty product

If the loop is never executed -> product is 1.

Why one implies the other: **BB**

BB ... and why one implies the other

For $a, b \in \mathbb{R}$

$$a \cdot b = \exp(\log(a \cdot b)) = \exp(\log(a) + \log(b))$$

$$\prod_{i=1}^{n} x_i = \exp\left(\sum_{i=1}^{n} \log(x_i)\right)$$

If the product is empty, then the sum is empty and

$$\prod_{i=1}^{n} x_i = \exp(0) = 1$$

Summary

Sum: $\sum_{j=1}^{3} x_j := x_1 + x_2 + x_3$, empty sum is 0. Product: $\prod_{j=1}^{5} a_j := a_1 \cdot a_2 \cdot a_3 \cdot a_4 \cdot a_5$, empty product is 1

Multiple sums or products:

$$\sum_{j=3}^{5} \sum_{k=1}^{2} j \cdot k$$

... order of evaluation does not matter