Mathematical Concepts (G6012)

Lecture 22

Thomas Nowotny

Chichester I, Room CI-105
Office hours: Tuesday 15:00 - 16:45
T.Nowothy@sussex.ac.uk

mailto:A.K.Seth@sussex.ac.uk

REVISIONS

FUNDAMENTALS

Numbers

e There are several number systems:
N _the natural numbers

Z — the integers

Q - the rational numbers

R - the real numbers

C-t

ne complex numbers e g
. ' bset of”
e They contain each other /'S PR

NCZcQcRCcCC

Summation notation (>_ notation)
/upperlimit

3
Definition: Z%’ =1t X2+ T3

- 1=1 . o Note: Incre-
summation index lower limit ment always
by 1!
It is like a “for” loop: |a=0; /
for (j=1;j<=3;j=j+ 1) {
a= a+xj
}

The empty sumis O

Product notation

5

Definition: H Gj i=ajy-a2-ag-aq-as
J=1

Think about a for loop, but multiplication inside,
Instead of summation:

p=1;
Example: for (j=1;j <= 5: j= + 1) {
Hj:1.2.3.4.5 } p=p*a,

j=1

The empty productis 1

Manipulating sums

LS e e (bracketing is
o> =) (Z%) implied but

doesn’t matter)

_ — [N (sums can be
o Z Z Lij “swapped”)

k - Z Ti = Z k- x; (Co‘r‘nmon factS)rs can
a1 - be “pulled out”)

Manipulating sums

* All these rules are the same that you learned
in school without the sigma-notation, e.g.

k-(x1+x2)=k-x21+ k-2

* |fin any doubt, use “...” and do what you
learned earlier

* This also applies to products

PROOF BY CONTRADICTION

Principle

We want to demonstrate that statement A is
false

We assume that A is true

We show that “A true” implies “B true”, where
B is known to be false

This is called a contradiction which can only be
resolved if A actually is false

That completes the proof.

Another example

* Claim: For two positive real numbers a and b,
a+b>2Vab

* Proof: Assume a+b < 2Vab
= (a+b)* < 4ab
a® + b% + 2ab < 4ab
a’ +b*—2ab< 0
(a —b)* <0 Contradiction!

R

PROOF BY INDUCTION

Principle

We would like to show a claim P(n) for all
natural numbers n.

If we can show that P(1) is true
And we can show P(n) implies P(n+1)
Then P(n)is true for all n.

Recipe: Induction

Write down the claim you are trying to prove

Induction start: Show the claim is true for n=0
(or n=1 depending on problem)

Induction assumption: Assume the claim is
true for n. Write it down for n as a reminder.

Induction step: Show that the claim is true for
n+1 using that it is true for n

Another example
Claim: 6"-1 is divisible by 5 for all n

Induction start:
n=0: 6°1 =0 which is divisible by 5.

Induction Assumption:
6"-1 is divisible by 5 for n, i.e. 6"-1 = 5k for some k
€ N. Or, equivalently, 6" = 5k+1

Induction Step:Induction step: |
6"t _1—=6.6"""1 Use assumption here

=6(5k+1)—1=6-5k+6—1
=6-5k+5=5(6k+1)

This is divisible by 5!

Tips to remember

Sometimes it is easiest to “work from both sides”
to complete the Induction Step

You must use the assumption, otherwise it’s not a
proof by induction (and likely will not work).

Therefore, when doing the Induction Step, look
for an opportunity to use the assumption

All three parts must be there: Start, Assumption
& Step — otherwise it is meaningless

SETS

Summary

Notation to define a set
Cardinality

Relationships between sets: Subset,
subsetEqual, superset, supersetEqual

Set operations: Union, intersection,
subtraction, complement

Intervals

Dictionary of set theory

Symbol Meaning Symbol |Meaning
€ Elementof | {...} Set of elements
C, C Subset \ Subtract, “without”
D, D Superset ¢ Complement
M Intersection | card | Cardinality
U Union 0 Empty set

[a,b] Interval (a,b |]a,b[Interval (a,b

Included) excluded)

Brackets do matter

* Different brackets mean completely different

things!

z,y]

All numbers of R
between x and vy,
iIncluding x and .
Infinitely many
numbers!

{z,y}

Literally, just the
numbers x and .
2 numbers

REGULAR EXPRESSIONS

Fundamentals on Languages

Alphabet= set of symbols

Word= a sequence of symbols
Singleton word= word with one symbol
Language= set of words

Regular language= language assembled from
singleton words using

— Union
— Concatenation
— Kleene *

Some examples for the operations

Alphabet Language Language
S = {a,b} A = {a,aa} B = {b,bb}
* Union:

AU B = {a,aa,b,bb}
* Concatenation:

A o B = {ab, abb, aab, aabb}
* Kleene star:

Ax = {a, aa, aaa, aaaa, ...}

Regular expressions

* A regular expression describes the legal words in
a language by a matching operation:

— ‘a’ matches the symbol ‘@’ in the alphabet
— The ‘|’ denotes alternatives (Boolean (x)or)

— Brackets ‘(“ and ‘)’ are used for grouping

— ‘%’ matches zero or more of the preceding symbol

— ‘+’ matches one or more of the preceding symbol

— ‘“?” matches 0 or 1 of the preceding symbol

Precedence of operators

Highest ()
Middle ?* +
Low concatenation

Lowest |

Quick test (common mistakes)

e ab+ =777
1. (ab)+
2. a(b+)

e ab*|ba* =777
((ab)*)[((ba)*)
(a(b*)) [(b(a*))
a(b*|b)a*
((((ab)*)|b)a)*

B w e

FINITE STATE AUTOMATA

Finite State Automata (FSA)

Finite number of states
One Initial state

One ore more final states
Input tape

Transitions defined by an input symbol that is
“consumed”

IN

DSA: Graphic Representation

Initial state /Input token

(incoming 1

arrow) __Transition
rule

Final state

nut tape (double line)

0O|]11]0

FSA and regular expressions

FSA accept regular languages
Reqgular expressions define regular languages

® For any regular expression we can find a FSA
that accepts the corresponding language

(.351
a*... I. I

Some pointers:

More hints

S

a+. I. a .
NOS
2 @‘@

One more ...

(alb)...

Accepting computation

 FSA must be In a final state
* The input must have been consumed

Error states

* No rule applies for input symbol (stuck)

* Tape Is empty but not in a final state

Other things about FSA

e Deterministic/ indeterministic
* Input symbols are consumed/disappear
e Can use empty string for indeterministic FSA

Non-determinism

Occurs whenever the same “situation” has
several possible transitions

For FSA: A state has two rules with the same
input symbol or a rule with the empty string
which is not the only rule of the state.

Non-deterministic automata examine all
possible computations to find a successful one

For FSA we showed that non-deterministic FSA
are not more powerful than deterministic
ones

FINITE STATE TRANSDUCERS

FST

FST are like FSA with one addition:

Each input symbol is mapped to an output
symbol, i.e. we have two tapes: Input tape and
output tape

The output tape is filled left-to-right
Output tape has unlimited length

We allow the empty string as output, i.e. rules
like a/

Everything else as FSA, e.g. determinism, non-
determinism etc.

FST: Graphical Representation

. Input token
Initial state " _ Output token
(Incoming 1/a

arrow) _ Transition

rule

Final state
(double line)

Input tape Output tape

110]111]60

PUSHDOWN AUTOMATA

Pushdown (storage)

A special kind of list

Provides (in principle) unbounded storage
Last in, first out (LIFO)

Add/remove items only from one end (“top”)
Push — add an element to the top of PD

Pop —remove and element from the top of PD
No other editing or browsing allowed

Example

* It’s like a stack of paper where you stack stuff on the

top and take it away from the top:

push ‘a’

—

e Alternative notation:

push ‘@’

() — (8) — (aa) — (baa) —> (aa)

a

push ‘a’

—

push ‘@’

push ‘b’
—

push ‘b’

pPop

Pop

etc

Pushdown Automata (PDA)

FSA + pushdown storage (unlimited size)
Much more powerful than FSA

Can build a PDA to accept any context free
language (language defined by a context free
grammar see below for summary)

The empty string can be used both for input
and for pushdown

There is no output
Non-determinism adds power here

Graphical representation

Symbol
nput popped Symbol
pushed
N | y
a,€/1 b, 1/€

() ()
@ b, 1/€

Accepting computation

* Must be In a final state
* The input must have been consumed

* The pushdown must be empty

Error states

* No rule applies for input symbol (stuck)

» Cannot pop correct symbol (error)
(includes trying to pop a symbol other than €
from empty pushdown)

Context-free grammar

* |s defined through

— one or more no-final symbols (one of them initial
symbol), we always used ‘S’

— Productions (replacement rules)

* A context free grammar defines a context-free
language: All strings that can be produced by
it

 When asked to define a context-free grammar
for a particular language, it must produce all
words of the language and nothing else.

Example

Grammar given by S with productions
1. S+— aSb
2. S— ab

Generates the language {a"b"™ : n > 0}

While

1. S+~ aSb

2. S— €

Generates the language {a"b" : n > 0}

(one contains the empty string, the other not)

Example mistake

* Define a context-free grammar for
{a™b*" : n >0}

* Wrong solution:
1. S, aS
2. S bS

3. S €
* These rules generate all needed words, but
also a lot of illegal ones

Derivation tree

* Generating a word can be visualised as a tree:

/TN

n
o

QD QD
D~ _\U)
/o

Back to PDA: Protocol of Computation

* Can give “protocol of computation” by making
a list of

— States
— Input tape content
— Pushdown content

Example protocol of a computation

Input tape
State " Content of PD

(o, @aabb,€) = (q,, abb, 1)
— (q,, bb, 11)
= (qy, b, 1)
= (g, €, €)

Pushdown here represented as a string
of pushdown symbols

