Mathematical Concepts (G6012)

Introduction

Thomas Nowotny Chichester I, Room CI-105 Office hours: Tuesdays 15:00-16:45 T.Nowotny@sussex.ac.uk

Smile ...

- I will record all lectures and make recordings available on Study Direct
- Don't worry only I will be visible in the recordings

We do record attendance – please fill in the attendance sheet

Notes

- Taking notes? Yes, but don't copy the slides: Slides will always be provided
- Note taking is good to
 - Note down questions
 - Note down something you understood that is not on the slides
 - Note down if you need to think about something later
 - Try something while I am doing it on the blackboard / camera

About the Blackboard / Camera

- I will use the blackboard to develop stuff, because it is easier to follow along
- Most of the stuff I do on the blackboard is in the lecture notes.
- But I will also use the blackboard to answer questions in detail – some of that material might not be in the notes

Blackboard

- In the slides I will mark content that I have prepared for the blackboard with BB, and there are (sometimes hidden!) slides with the content (also, sometimes added after lecture)
- Lectures will be final & available on study direct on the evening of the day they were given.
- If you see the mark BG it is additional BackGround

Course structure

 2 Lectures/week (1 hour each), 1 hour "Seminar" in 5 groups, 2 "Problem Sets"

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12
Mon												
Tue	L1 S1	L3 S2	L5 S3	L7 S4	L9 S4	L11 S5	L13 S6	L15 S7	L17 S8	L19 S9	L21 S10	L23 S11
Wed	S 1	S2	S 3	S4	S4	S 5	S 6	S7	S 8	S 9	S10	S11
Thu	L2	L4	L6	L8	L10	L12 <mark>P1</mark>	L14	L16	L18	L20	L22	L24 P2
Fri	S 1	S2	S 3	S4	S4	S 5	S 6	S7	S 8	S 9	S10	S11

Problem sets due on Thursdays, 16:00 in the School Office

Course Content

- What is this course going to cover?
 - Basic minimum maths skills that you will need to study computer science effectively
 - "Models of computing": Automata theory

Topics

Math Fundamentals

Introduction Numbers Set theory, intervals Proof by induction Vectors and matrices Norms and distances **Functions Differentiation & Integration** Numerical integration Probability theory **Statistics**

Automata

Regular Expressions Finite state models Pushdown automata Turing machines The RAM model

Seminars

- Are there to **answer questions**
- Will cover more examples
- Will discuss coursework solutions
- Will discuss problems similar to coursework problems and similar to unseen exam
- Lab classes will be given by myself and GTAs. Attendance will be recorded.

Assessment

- Problem sets: 50%
 - 2 sets, due weeks 6 and 12
 - 25% weighting each.
- **Unseen exam**: 50%
 - In the January assessment period.

Coursework: Problem sets

- Problem sets for course work will be posted online on Study Direct.
- You should work on the problems on your own and in your own time and submit problem sets on Thursdays before 16:00 in the School office.
- "Last retrieval date" will be the Friday (one day late) after the coursework was due
- Model answers will be available from Tuesday

Matlab

- Matlab can be very useful
- But: You will *not be required* to use matlab in this course
- You are welcome to use it to cross-check your workings but expected to do them on your own first
- I might occasionally provide an example you can run in matlab for demonstration or additional exercises that may be fun

How to use Matlab ...

- Matlab is installed on all Informatics computers
- Start -> All programs -> Matlab R2013a*
- I have put a small tutorial on study direct
- Built-in Matlab help is excellent

*search for "matlab" in "Start" if you can't find it

Textbook(s)

- Everyone learns differently
- In principle, you can do this module without textbook. I will provide online resources and full lecture notes on Study Direct.
- If you do like to work with a textbook: I have reserved copies of three books in the library:

Textbook(s)

- David Makinson: Sets, Logic and Maths for Computing (Undergraduate Topics in Computer Science), Springer 2nd ed. (2012)
 (for the first parts and some of the Calculus)
- John A. Vince: Mathematics for Computer Graphics (Undergraduate Topics in Computer Science), Springer (for the linear Algebra, i.e. vectors and matrices)
- John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman: Introduction to Automata Theory, Languages, and Computation, Addison-Wesley (for the automata content)

Important

- Please check your email regularly (daily) as important messages may be distributed exclusively by email
- Please do not collude or plagiarise when working on assessed coursework*
- If you are having difficulties please let me know sooner rather than later

*If in any doubt about this, see <u>sussex.ac.uk/academicoffice/resources/misconduct</u> and links therein.

NUMBER SYSTEMS

What is a number?

- Leopold Kronecker: "God created the natural numbers, and all the rest is the work of man."
- There are several **number systems**:
 - \mathbb{N} the **natural** numbers
 - \mathbb{Z} the integers
 - \mathbb{Q} the **rational** numbers
 - \mathbb{R} the **real** numbers
 - $\mathbb C$ the complex numbers
 - ... (e.g. quaternions)

\mathbb{N} : The natural numbers

- ℕ = {1,2,3 …}, operations "+", "-", "-", "/"
- If one adds or multiplies two natural numbers, the result is another natural number:

" \mathbb{N} is **closed** under addition and multiplication."

 N is not closed under subtraction or division: 3-5 ∉ N 1/3 ∉ N

Formal definition

 \mathbb{N} can be generated with a successor relation:

Any natural number may be obtained from 1 by applying the 'successor relation' [S(n) = n+1] a finite number of times.

If 0 is included one (often) writes \mathbb{N}_0

\mathbb{Z} : The integers

- $\mathbb{Z} = \{ \ldots, -2, -1, 0, 1, 2, \ldots \}$
- \mathbb{Z} stands for 'Zahlen', German for 'numbers'.
- Unlike $\mathbb N$, the integers $\mathbb Z$ are closed under subtraction.
- But, something is lost: It is not true that any integer can be obtained from 1 by applying the 'successor relation' [S(n) = n+1] a finite number of times.
 - Rather, both successors *and* predecessors must be considered.

Q: The rational numbers

- Q = all those numbers that can be written in the form *a I b*, where *a* and *b* are integers *a* = "nominator", *b* = "denominator"
- Unlike \mathbb{Z} , \mathbb{Q} is closed under division (so long as $b \neq 0$).
- Unlike $\mathbb Z$ and $\mathbb N$, $\mathbb Q$ has an ordering ("less than" or "greater than" relation) but no successor relation:

Between any two rational numbers there is another. Proof: **BB**

Quick refresher: Manipulating fractions (rational numbers)

- Multiplying: $\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}$
- Dividing: $\frac{a}{b} / \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} = \frac{a \cdot d}{b \cdot c}$

Quick refresher: Manipulating fractions (rational numbers)

• Addition & Subtraction:

BB Between and two rational numbers lies another

• Given two rational numbers, we can write them $\frac{a}{b}$ and $\frac{c}{d}$ and assume without

loss of generality that $\frac{a}{b} < \frac{c}{d}$.

• We can rewrite these as

$$\frac{a}{b} = \frac{ad}{bd} < \frac{cb}{db} = \frac{c}{d}$$

BB Between and two rational numbers lies another

• But then we also know $ad \leq \frac{ad + cb}{2} \leq cb$

• ... and therefore
$$\frac{ad}{bd} \leq \frac{ad+cb}{2bd} \leq \frac{cb}{bd}$$

• In other words $\frac{ad+cb}{2bd}$ is between $\frac{a}{b}$ and $\frac{c}{d}$

\mathbb{R} : The real numbers

- There are many numbers that you know that are not rational numbers
- They have quite simple "physical (geometrical) interpretations"
- Can you think of any?

\mathbb{R} : The real numbers

 There are many numbers that have physical interpretations but which are not rational numbers.

Proof by contradiction:

• $\sqrt{2}$ is not a rational number: **BB**

BB: Lemma on even numbers

Lemma: "x is even" implies " x^2 is even" Proof:

Assume x is odd, i.e. x = 2n + 1 for $n \in \mathbb{Z}$

Then,

$$x^2 = (2n+1)^2 = 4n^2 + 4n + 1 = 2(2n^2 + 2n) + 1$$

Therefore, x^2 is odd.

Inverting "x is odd" implies " x^2 is odd", we obtain: "x is even" implies " x^2 is even".

q.e.d.

BB: Note

- We have used logic in the last part, the socalled contra-positive:
 A implies B is equivalent to (not B) implies (not A)
- In symbols:

$$(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$$

BB: $\sqrt{2} \notin \mathbb{Q}$: Proof by contradiction

• Assume $\sqrt{2}$ is rational, i.e. $\sqrt{2} = a/b$, where *a* and *b* are integers, expressed in lowest terms (in irreducible form).

• Then,
$$2 = a^2/b^2$$
, and $a^2 = 2b^2$

- Since b^2 is an integer, a^2 is even.
- Since the square of any odd number is odd, and a^2 is even, then a must be even.
- So we can write a = 2c, then $b^2 = 2c^2$, hence b^2 is even and, as before b is even.

BB: Proof continued ...

- If both a and b are even, a/b wasn't expressed in lowest terms!
- This is a contradiction.

$\sqrt{2}$ is not a rational number!