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DERIVATIVES



Slope, Derivative .

First for linear functions: N

f(z)=a-z LA

The slope or derivative is the ratio of the
change of f(x) and the change of x.

Ay f(z+ Az) — f(z)
Ax Ax
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BB




BB Calculating the linear
example

f(z) =15z

Ay f(z+ Az) — f(x)
Ax Ax

1.5-(x+Ax)— 15 x
Ax




Linear functions are easy ...
* Because the slope is the same
everywhere

* We can make Az any size we want and
get the same value



Generalisation for any smooth
function

* Locally any smooth function looks more
and more linear the further we zoom in:
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Derivative of a smooth function

 The derivative of a smooth function is the
value the ratio f(xz + Ax) — f(x)

Ax
converges to for smaller and smaller

Az, mathematicians write




In the form as for the limits
before

fz+1) - f(z)

Sequence an =




Alternative notations

f [f:R—R is a smooth function

z — f(x)

hen the derivative of f is denoted as

o\ df(z) df _ d
(=) = der  dx d:z:f




Note ...

The derivative f’(x) of a function is again
a function because we can calculate it for
any point x.



BB

Example - Derivative of f(z) = z°

d o, (z+Az)° —2?
%x - Al:}:IEO A1
. 2+ 2z Az + (Ax)? — 22
= lim
Ax—0 A7r

lim 2z + Az = 2x
Ax—0



Applications

* If f(x) is your distance from home as a
function of the time x. Then f’(x) is the
speed you are driving towards (or away
from) home.

* |f you take the derivative of the derivative
f”(x), that would be your acceleration.

(These are important for animating things!)



More Applications

* If f(x) describes the height of a hill, then
f’(x) is the steepness.

* f(x) is your total money as a function of
time, f’(x) is your instantaneous spending

rate.

* (your example here)



Derivative of a polynomial

 We saw: ]
f(x) =axr then f'(x)= —f(z) =a
* For f(z) =2? we saw just now f'(z) =2z

* Generally, for f(x) = 2"

the derivative is f'(z) = na""’



BG For those interested: General

f(z) = 2" Case
ia:” = lim s+As) —5
de™  Az—o0 Ax
n n—1 2\ _  .n
I Az + O((Az)*) — x
Azx—0 Ax

= lim na""!' + O(Azx) = na"!
Azx—0



Derivatives: Basic rules

Rule name m Derivative

Polynomials f(z) = z" F(z) = e

Constant factor ¢(z) = a f(z) ¢'(x) =a f'(x)

Sum and h(z) = h'(z) =
Difference f(x) + g(x) f'(x) + ¢'(x)



Examples: Polynomial rule

Example 1
1 _ 2 11
_ — 3 Np) = —p~ 2 — —
f(z) = Vz = o fl@)=307% =32
Example 2
- 1 _ —Nn / —n—1 —MN
g(x) = n =& g(x)=-—na """ = xn+1




Special functions

exp(x) = e exp(x) = e
log(z) = In(x) %
sin(z) cos(x)

cos(x) — sin(x)



Derivatives: Product rule

Function
h(z) = f(z) - g(x)
Derivative

h'(z) = f'(z) - g(x) + f(z) - ¢' ()



BG For those interested: Proof
of the product rule

f(z + Az)g(x + Azx) — f(x)g(z)

%f(x)g(a:) = lim

Ax—0 Axr
~ lim [f (z + Az)g(x) — f(x)g(x)
Az—0 A1
+f@+A@Mx+A@—f@+A@m@]
Ax
-, [ o)+ e ran BB TE 0

—>J?’r(a:) —9(z) —f(z) ~

= f'(z)g(z) + f(z)g'(z)



Examples for product rule

Example 1 Example 2
f(z) = sin(x) - cos(x) f(x) = 2 . exp(x)

f'(z) = cos(z)? —sin(z)*  f'(z) =
22 exp(x) + 2° exp()

Example 3 Example 4
f(z) =2~ sin(z) f(x) =2 cos(x) - cos(x)
fl(z) = f'(z) = —4sin(z) cos(x)

—x~ % -sin(z) + 2~ cos(x)



Function composition

g:A— B
x — g(z) fog:A—C
f:B—C then z — f(g(x))
z — f(z)

9 —_ —F<
@ € D

\fog/



Examples of composed

functions
f(x) = sin(z?)
g:R—-> Ry f=hog
a:r—>:132 SO...f>§@ 1]
h:Ry —-R

vosin@  9°h@) = (in(@)’



Chain rule

Function
h(a:):f(g(a:)) h=fog

Derivative

hW(z) = f'(9(z)) -g'(x)  h'=flog-g



Example for chain rule

Example 1 Example 2
f(z) = sin(z”) f(z) = log(22®)
f'(z) = cos(z>)3z" () :L4$
212
Example 3 Example 4
f(z) = exp(z™") f(z) = (exp(z))

f'(@) = exp(a™")(—27?) f'(z)=
(eXp(ﬂ?)) *exp(x)
= —exp(z)



Derivatives in more than 1
dimension

f(xy,22) = (x 1)2 + (22 )2

5000 _ |

Partial derivative 4000 _

af 3000

— IS ta kl ng 2000 ~.
ax : 1000 ﬁ

the derivatveand ...
50 0 o =0

treat 1 as constant.




BB Partial derivative
of _ 0

o 2 2

o~ B ((:1:1) + (x2) )
_ 9 2, O o
— 8331 (331) | 8331 (332)
:2331—|—O=2£E1

8—f — 2$2

8$2



Interpretation
of

The partial derivative 7=— shows how much
833‘1

f changes when Z1 is changed.

The gradient gives the direction of the
steepest slope:

o0
8_3{; o 21’1
of |\ 2z

8:172



The gradient

Points to the
direction of AR
steepest o0, \‘tf,
ascent. -

Note — it is 2D
vectors In this case.



Applications

» Gradients are important for finding minima
(so-called gradient descent):
If you always go against the gradient, you
go the steepest way down.

* The gradient can tell you when you are in a
(local) extremum (minimum or maximum):
In this case the gradient is 0.



INTEGRATION



Area under a graph

« Car travelling at 70 mph
v (mph)

A

70

; . t (hours)

Area = distance traveled:
A=v -t =702 miles = 140 miles



What if we are interested in the
area under this curve:

flz)1




Try something we know about

4
A_ = _(2-Ax) - Ax
fla)t ;ﬂ )

f- (x); min{ f(z) : z € [z, 2 + Az]}

A_

| >

Ax T

This is called “lower Riemann sum”



Upper Riemann sum

C Fe(@) = max{f(2) : 2 € [+ Aa])




Mfl!




Riemann integral

For many functions

lim A_ = lim A,
Ax—0 Ax—0

The upper and lower Riemann sum become
the same for small steps.

Such functions are called “Riemann
integrable”, and



(Riemann) inte /@t_

A= lim A_ = lim A, Av

Azx—0 Ax—0 :
a b
is called “(Riemann) integral”
Notation: imi
- upper limit
b
A= [ f(x)dx

/ \ \ integration variable

(dummy variable)

Integral sign
lower limit



Example from first principles

/0 a:da::Alsch{O ;(Z-Aa:)-A:E
— i 1

:]\;I—{HOO ON.N:J\}Enoo]\mZZ

1 (NT(]\;T+ 1))




Main theorem of differential and
integral calculus

In principle, one could calculate integrals from
first principles, but fortunately...

Integration is the opposite
of differentiation!



Plausibility argument

Take a difference
Differentiation /

df(z) _ .. flz+ Azx) — f(z)
/ _
™ divide by Ax
Integration __— Sumitup
T T/Ax

i=0 |

multiply with Ax



Differentiation inverts integration

Area from 0O to b (cyan):

flx) ¢

/ f ) dx

Purple area from b to b+ADb:
F(b+ Ab) — F(b)

b

b+ Ab




Rules of Differentiation

Rule name m Derivative

Polynomials f(z) = z" F(z) = e

Constant factor ¢(z) = a f(z) ¢'(x) =a f'(x)

Sum and h(z) = h'(z) =
Difference f(x) + g(x) f'(x) + ¢'(x)



Become rules of integration

Rule name Funiction Derivative
Integral Function

Polynomials / f(t)dt =z" +C f(z) = ng™ 1
0

Constant /Om g(t)dt = a/om f(t)dt g(a:) = a f(CL‘)

factor

Sum and / hi)dt
Difference / f(t)dt + / (t)dt f(a:) g(a:)




Special functions

f@)=a" [ trat= e
exp(x) = e exp(x) = e
1
o log(z) = In(x)
cos(x) sin(x)

sin(x) — cos(x)



Integration constant

The "antiderivative”, “primitive integral” or “indefinite
integral” is only defined up to a constant:

d
4 p(a) - f(a)
%F(w) +C = f(x)



Practical tips

T Note how the
integration constant
does not matter here.



/abﬂx)dx:

Example:

Practical tips |

[F(z)]] = F(b)— F(a)

a

“anti-derivative”

1 4177 4 14
— = =3 - -=-2" =
x]Q 4
81 — 16 05




Example

1 1
2 dx = [Zafl + 2. 51'2}?
27

1



More Examples

/1 rexp(z?) dr = exp(a:Q)ﬁ = exp(4) — exp(1)

% ]og log( ) log(l) = log(2)

——

/1 sin(x = | — cos azﬁ = —cos(2) — (— cos(1))

= cos(1) — cos(2)



