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Models in insect olfaction

● Bazhenov et al. Model of cellular and network mechanisms for 
odor-evoked temporal patterning in the locust antennal lobe 
Neuron, 2001, 30, 569-581

● Bazhenov et al. Model of transient oscillatory synchronization in 
the locust antennal lobe Neuron, 2001, 30, 553-567

● Linster et al. Computational diversity in a formal model of the 
insect olfactory macroglomerulus Neural Comput, 1993, 5, 228-
241

● Linster & Smith Computational model of the reponse of honey 
bee antennal lobe circuitry to odor mixtures: Overshadowing, 
blocking and unblocking can arise from lateral inhibition Behav 
Brain Res, 1997, 87, 1-14

● Galán et al. Odor-Driven Attractor Dynamics in the Antennal 
Lobe Allow for Simple and Rapid Olfactory Pattern 
Classification Neural Comput, 2004, 16, 999-1012
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Models in insect olfaction

● Laurent et al. Odor encoding as an active, dynamical 
process: Experiments, computation, and theory Annu Rev 
Neurosci, 2001, 24, 263-297

● Huerta et al. Learning classification in the olfactory system 
of insects Neural Comput, 2004, 16, 1601-1640

● Nowotny et al. Self-organization in the olfactory system: 
Rapid odor recognition in insects Biol Cybern, 2005, 93, 
436-446

● Nowotny et al. Decoding temporal information through 
slow lateral excitation in the olfactory system of insects J 
Comput Neurosci, 2003, 15, 271-281

● And many others
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Reminder: Main olfactory pathway anatomy

Antennal lobe Mushroom bodyAntenna

Box volume ~ number of cells
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Olfactory Receptors
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nt

Odorant Receptor

From Linda Buck: Nobel lecture

Odors evoke different,
but overlapping 
patterns of receptor
activity 
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Early processing

● Each olfactory receptor neuron expresses one 
receptor type

● All olfactory receptor neurons of the same type 
converge onto the same glomerulus

● Projection neurons receive inputs from one 
glomerulus

Odors are encoded as overlapping patterns of projection neuron activity.
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Local field potential

● There is a complex temporal dynamics in the AL
● One of the striking charact-
  eristics is the emergence of
  oscillations (measured in form 
  of a local field potential (LFP):

Stopfer et al., 
Nature 1997

(we will talk about dynamics
 more in the next lecture)
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Feedforward inhibition

However, the complex activity in the AL is transmitted
in a peculiar way:
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AL dynamic patterns transmitted in 
“snapshots”

Perez-Orive et al.,
Science (2002)

The Local Field Potential
corresponds to a periodic 
20 Hz inhibition onto 
KCs in the MB

This “cuts the activity into snapshots”.
These are likely processed separately (!)
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Back to pattern classification

We have seen, that we can take the simple view
for now that the task of the downstream system 
from the AL is the classification (recognition) of 
“snapshots” of activity patterns.

This is a classical task in machine learning/
artificial neural networks!
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A classical pattern recognition solution

A simple perceptron rule:

Train A to respond to odor X
(call it class 1)

Plastic
synapses

in
pu

t

ou
tp

ut … and hope that A does not
respond to any other odor
(call it class -1)
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What do you mean: “hope”?

“Hebbian” connections

- Firing can be guaranteed for the right input.
- We have no control over the response to unknown inputs

McCulloch-Pitts neuron
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The perceptron is a linear classifier

The hyperplane is
adjusted through
the training and 
Hebbian learning
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Support Vector Machines (SVM)

Cortes and Vapnik 1992,95: Support vector machine:

Here the hyperplane
is adjusted to maxi-
mise the margin
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Linear Classification can fail

Dimension = number of neurons

Activity neuron x1

A
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x 2

There is no line that 
can separate green 
from red.
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Thomas Cover, 1965

Cover, T. (1965). Geometric and statistical properties of systems 
of linear inequalities with applications in pattern recognition. IEEE 
T Elect. Comput., 14, 326.

“Classification is much more probable if the input
is first cast into a high-dimensional space by a 
non-linear transformation.”

This can be done by using a non-linear “Kernel function”
instead of the scalar product           .
When used like this it is known as the “kernel trick”.

M. Aizerman, E. Braverman, and L. Rozonoer (1964). 
"Theoretical foundations of the potential function method in pattern 
recognition learning". Automation and Remote Control 25: 821–837
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A related concept: MLP

If used with a large hidden layer, multi layer
perceptrons (MLP) can also be seen as a 
related concept. The extra layer and nonlinear 
response of the neurons in it are the kernel/
nonlinear transformation.

See: F. Rosenblatt (1962) “Principles of Neurodynamics”.
New York: Spartan books.
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Nonlinear trafo / kernel / hidden layer 
“trick”

Dimension = number of neurons

Activity neuron x1
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Typical kernels (transformations) used

Polynomial (homogeneous): 

Polynomial (inhomogeneous): 

Radial Basis Function (general): 

Gaussian RBF: 
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Hypothesis: The locust uses this idea

Antenna Antennal
lobe

Mushroom
body Mushroom

body
lobes

But we will use a random kernel (random connections)
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Classify one pattern from the rest

Random input patterns
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Classify one pattern from the rest

Random connections 
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Classify one pattern from the rest

McCulloch-Pitts neurons
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Classify one pattern from the rest

“Hebbian” connections
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Classify one pattern from the rest

Induce a spike for 1 trained pattern
Don’t do anything for 99 others

McCulloch-Pitts neuron
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Example result: Classification needs 
sparse code

“Have many, but only
 use a few”

… and nature uses it!

Perez-Orive et al., Science (2002)

Total number of Kenyon cells Ny

P
ro

ba
bi

lit
y 

of
 p

ro
pe

r
cl

as
si

fic
at

io
n 

P
(z

=0
 | 

X 2
…

10
0)



Dr. Thomas Nowotny, 
Centre for Computational Neuroscience and Robotics

Classify classes of inputs

● 10 classes of inputs, 10 patterns each class
● “Winner-take-all” ouputs:

The output neuron with the strongest input 
spikes

● Simulations in “Drosophila size”
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There are “optimal design parameters”

∃ Optimal  

of active Kenyon cells
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Summary: Connectionist model

● Random connectivity is enough for 
classification

● This suggests support vector machines with 
random kernels and local, “Hebbian” learning 

● An optimal, sparse level of activity is 
postulated and observed in biology

● These systems are freely scalable & our 
analysis provides the parameters of choice

● These systems are extremely robust



Dr. Thomas Nowotny, 
Centre for Computational Neuroscience and Robotics

Shortcomings

● The winner-take-all competition between output 
neurons has to be implemented artificially

● Gain control in the MB has to be implemented 
artificially

These issues can be resolved with more realistic
spiking neuron models.
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Spiking neuron models

McCulloch-
Pitts

Spiking
neurons
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“Rulkov model”

The figure on the last slide and the movies wer generated
with the “Rulkov Model”:
The membrane potential is a discrete mapping from one
time step to the next:

We will go into more detail in the lab session. 
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Spiking neuron model

● Unlike in the previous models, we now 
implement competition in the MB lobes by all-to-
all inhibitory synapses

● Learning is now entirely unsupervised
● The system does not even know that there are 

classes and how many there are.
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Created with neuranim
http://sourceforge.net/projects/neuranim

Process of recognition: Naïve locust

100 Output neurons:
All-to-all inhibition

2500
Kenyon
cells

Antennal lobe:
100 projection
neurons

Random
connections

“Hebbian”
connections
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Experienced locust

Created with neuranim
http://sourceforge.net/projects/neuranim
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Quantification

Pairwise Humming distance of patterns normalized by
activity:

Note:            is between 0 and 1.



Dr. Thomas Nowotny, 
Centre for Computational Neuroscience and Robotics

Quantitative Analysis

1 3 95 7 1 3 95 7 1 3 95 7 1 3 95 7
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Quantitative Analysis

Antennal
lobe

Mushroom
body

Naïve system
output

Experienced
system output
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Self-organization of output responses

● In principle, all or any of the output neurons can 
respond at any given time

● Which do, and which don't depends on the 
competition between them.

● A priori it is unclear how many will respond
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Automatic detection of input set structure
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Summary

● More realistic biophysical models demonstrate 
that the system can self-organize to recognize 
odors

● The system detects the structure of the input 
pattern set autonomously
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Benchmarking

● To address criticism that synthetic data is hard 
to judge we benchmarked against a standard 
pattern recognition problem:

● MNIST data set of handwritten digits
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Benchmark: MNIST database

256 level grayscale

28 pixels

28
 p

ix
el

s

• Centering (x and y) & size normalisation 
• 60000 – training
• 10000 - testing
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Using the ‘locust olfactory brain for digit 
recognition

Huerta and Nowotny,
Neural Computation (2009)

0 1 2 3 4 5 6 7 8 9

28

28

“mushroom
 body”
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Note ...

This is actually not as strange as it may seem at
first glance:

The mushroom bodies have been implicated in
vision as well as in olfaction, they are likely a
multi-modal “learning centre”
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Classification performance

Number of training samples Number of Kenyon Cells
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Last step: hardware acceleration

The model is numerically demanding (on the order of 
60000 cells and a million synapses).

If we want to use it for applications we will need to
parallelize its operation to optimize the speed.

We have built a prototype on a GPU in the 
NVidia CUDA framework.
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NVidia CUDA

 “Common Unified Device Architecture”
 Allows main stream developers to use 

massively parallel graphics chips for general 
purpose computing 

x=1

x=4 x=5 x=6

x=2 x=3
Code split into “kernels”
A set of kernels form a “grid”
Grids are executed partially in 
parallel, partially in series
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Lastly: Implementation of the system on 
NVidia CUDA

TESLA S1070 GPU 
256 thread processors
1.5 GHz

Kenyon Cell Kernel Output Neuron Kernel

 - Download incoming c
 - 1000x
    * Download inputs
    * calculate 1000 ouputs
    * write back outputs

 - Download KC patterns
 - 1000x
   * Calculate output 
   * write back output
   * adjust synapses

512 parallel invocations,
50000 total

500 parallel
invocations
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CUDA memory hierarchy

Device memory (global for threads and host)

Shared memory (global for threads)

Local memory (local to each thread)

1 2 3 4 512...

Input digits
connectivity
output

Input digits

Connectivity
output
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Memory usage models 
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Summary of Timing results

Constant time requirement
(loading digits, connectivity,
 preprocessing, testing)

Time requirement proportional
to number of digits
 trained
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7 CUDA implementations

● KC as bits in array of bytes; input number locally
● Every 8th thread sets bits in a local byte-size
  buffer, copies this to device memory; unit number 

  locally
● As 1 but 32 bit integers
● As 2 but 32 bit integers 
● KC as byte-sized integers directly to the device
  memory; input number locally
● As 5 but reverse ordering scheme 
● As 5 but 32 bit integers



Dr. Thomas Nowotny, 
Centre for Computational Neuroscience and Robotics

Timing trials

Worst:  Assembling 32bit 
             locally

Best: Direct bytes to device;
         unit locally

CUDA

Host

Good: Unit local
Bad: Input local
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Summary of Timing results

Constant time requirement
(loading digits, connectivity,
 preprocessing, testing)

Time requirement proportional
to number of digits
 trained
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Discussion: CUDA implementation

 30 fold speed increase for KC evaluation 
(hidden layer)

 6 fold speed increase overall
 Optimization of memory access is extremely 

important
 Things will become truly interesting when a 

full classifier can be done in one kernel grid 
invocation (that fits onto the device)
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Part II

Brody & Hopfield

Model of olfactory processing
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Hopfield's model of olfaction

● This is not the Hopfield model
● This model is based on what Brody and 

Hopfield call “Many Are Equal”
● This is based on a fundamental mechanism of 

synchronization by sub-threshold oscillations
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Synchronziation by sub-threshold 
oscillations
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Synchronization by sub-thresold 
oscillations
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Recognition by coincidence detection

● This implies that neurons that receive the same 
constant input current fire at the same time

● Coincidence of spikes implies identical input.
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Key – lock principle
ne

ur
on

ne
ur

on

● Grey – constant bias current
  in each “mitral cell”

● Black – input current evoked
  by an odor input

● If the input “is right”, all 
  neurons receive the same
  input current and thus spike
  synchronously
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Hopfield's olfaction model

● The cortical cells
  connect to the
  mitral cell with the
  “correct bias”
● Odors are detec-
  ted when the cor-
  tical cell gets 
  synchronized
  input
● 400 ORN types, 
  each odor excites
  200
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Discussion

● Odors are recognized reliably across a large 
range of concentrations 
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Discussion

● Odors are recognized against a stronger 
background odor

● Odors in a mixture can be recognized 
separately (if the set of active glomeruli does 
not have too much overlap)

● Odors in a binary mixture with fully overlapping 
glomerulus set can sometimes be recognized 
as well (?)

You can look at these points more with the 
Exercises.
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