Short Course: Computation of Olfaction Lecture 2

Lecture 2: Connectionist approach Elements and feedforward networks

Dr. Thomas Nowotny University of Sussex

Connectionist approach

- The connectionist approach is an approach of minimal assuptions:
 - Neurons have two states "on" (1) or "off (0)
 - Time can be discretized in discrete steps
 - Neurons are either connected (1) or not (0)

At time t

 $egin{pmatrix} w_{ij}(t) & & & & & \\ \hline x_i(t) & & & x_j(t) \end{matrix}$

At time t+1

$$x_i(t+1)$$
 $x_j(t+1)$ $x_j(t+1)$

McCulloch-Pitts neurons

In a connectionist approach, neurons are described by the McCulloch-Pitts neuron model:

$$x_i(t+1) = \Theta\left(\sum_{j=1}^N w_{ij}(t)x_j(t) - \theta\right)$$

$$x_i(t) \in \{0,1\}$$
 - state of neuron i at time t

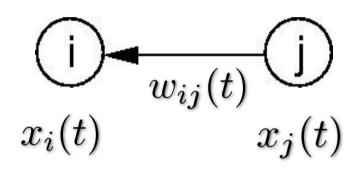
$$w_{ij}(t)\!\in\{0,1\}$$
 - state of connection (synapse) from neuron j to neuron i at time t

$$w_{ij}(t) \in \{0,1\}$$
 - state of connection (synapse) from neuron j to neuron i at time t
$$\Theta(x) = \left\{ \begin{array}{ll} 1 & x>0 \\ 0 & \text{otherwise} \end{array} \right.$$
 - Heaviside function

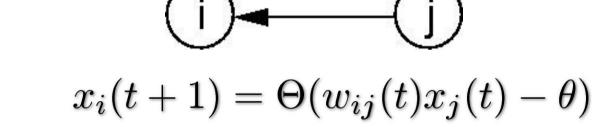
$$heta \in \mathbb{N}$$
 - firing threshold

McCulloch-Pitts neurons

At time t



At time t+1



Note:

- Need to take values from previous time step
- The notation of $w_{ij}(t)$ may seem awkward at first:

$$w_{ij}(t) = w_{i \leftarrow j}(t)$$

Connectionist approach

- Advantages
 - Can be used even if details are not known
 - Remains valid if knowledge about details changes
 - Can often be applied to many systems, even if details differ

Connectionist approach

Disadvantages

- Some things are awkward to implement (e.g. mutual inhibition in layers)
- Some things are almost impossible to include (e.g. sub-threshold oscillations)
- Does not include intrinsically active neurons well
- Intrinsic neuron dynamics not described (e.g. refractory period)

– ...

McCulloch-Pitts neurons are hyperplanes

The equation
$$\sum_{j=1}^N w_{ij} x_j = \theta$$
 defines a plane in N dimensional space.

For example N=2:

$$w_{i1}x_1 + w_{i2}x_2 = \theta$$

$$\Leftrightarrow x_2 = -\frac{w_{i1}}{w_{i2}}x_1 + \frac{\theta}{w_{i2}}$$

$$\Leftrightarrow y = ax + b$$
 $\left(a = -\frac{w_{i1}}{w_{i2}}, b = \frac{\theta}{w_{i2}}\right)$

"McCulloch-Pitts neurons fire to the right of a hyperplane and are silent on the left."

Random connections

 In connectionist approaches connections are often chosen to be random ("generic"):

$$w_{ij} = \begin{cases} 1 & \text{with probability } p_c \\ 0 & \text{with probability } q_c = 1 - p_c \end{cases}$$

 Similarly input neurons are often assumed to fire with a fixed probability

$$x_j = \begin{cases} 1 & \text{with probability } p_{\text{in}} \\ 0 & \text{with probability } q_{\text{in}} = 1 - p_{\text{in}} \end{cases}$$

Propagation of probabilities

 With random connections and random input firing, other neurons i have a probability to fire

$$P(x_i = 1) = P(\sum_{j=1}^{N} w_{ij} x_j \ge \theta)$$
$$= \sum_{k=\theta}^{N} P(\sum_{j=1}^{N} w_{ij} x_j = k)$$

Statistical independence

Definition of statistical independence:

Event A is independent from event B if and only if

$$P(A \cap B) = P(A) \cdot P(B)$$

Conditional probabilities:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Read: "P of A given B"

Bayes theorem

Why these definitions make sense: If A and B independent,

$$P(A | B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A)P(B)}{P(B)} = P(A)$$

Bayes theorem:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Total probability from conditional probability

If we have disjoint events X_i and $\sum_{i=1}^{n} P(X_i) = 1$

then
$$P(Y) = \sum_{i=1}^N P(Y \mid X_i) P(X_i)$$

(Proof on the board)

Binomial distribution

If $x_i \in \{0,1\}, \ i=1,\dots,N$ are independent random variables with distribution $\{p,1-p\}$ then the probability distribution for the sum is

$$P\left(\sum_{i=1}^{N} x_i = k\right) = \binom{n}{k} p^k (1-p)^{N-k}$$

Quick proof: The sum is k if we put k "1" into the N x_i

Proof of binomial distribution

There are
$$\binom{N}{k}=\frac{N!}{k!(N-k)!}$$
 ways to put the "1" and "0",

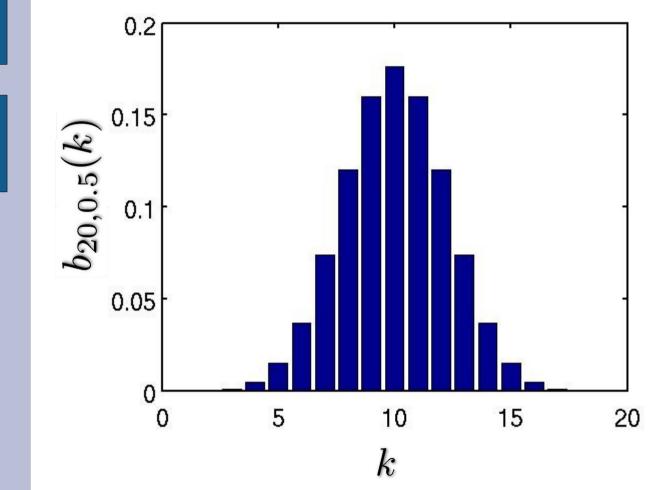
and all are mutually exclusive, therefore

$$P\left(\sum_{i=1}^{N} x_i = k\right) = \binom{N}{k} p^k (1-p)^{N-k}$$

The binomial distribution is often denoted as

$$P\Big(\sum_{i=1}^{N} x_i = k\Big) = b_{N,p}(k)$$

Binomial distribution properties



More on this: Lab session.

Expectation value

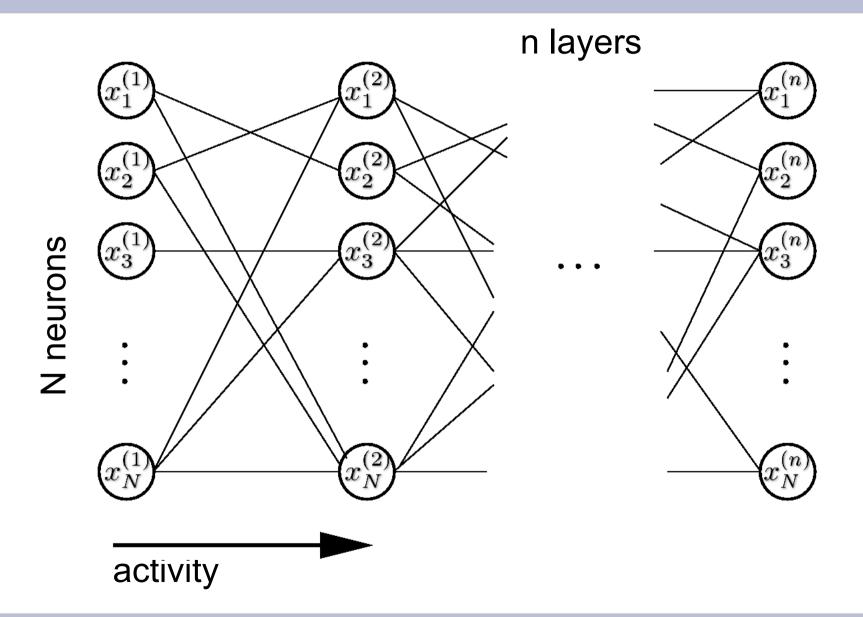
$$\mathbb{E}\sum_{i=1}^{N}x_{i}=N\cdot p$$

Standard deviation

$$\sigma_{\sum_{i=1}^{N} x_i} = \sqrt{Np(1-p)}$$

Expectation value and maximum are *not* the same

Feedforward networks



Feedforward networks

• Denote
$$X^{(j)} := \sum_{i=0}^{N} x_i^{(j)}$$

- Assume that a_j neurons fire in Layer j
- Then the probability of a neuron in layer j+1 to fire is

$$p^{(j+1)}(a_j) := P(x_i^{(j+1)} = 1 \mid X^{(j)} = a_j) = \sum_{k=\theta}^{a_j} b_{a_j, p_c}(k)$$

Feedforward networks

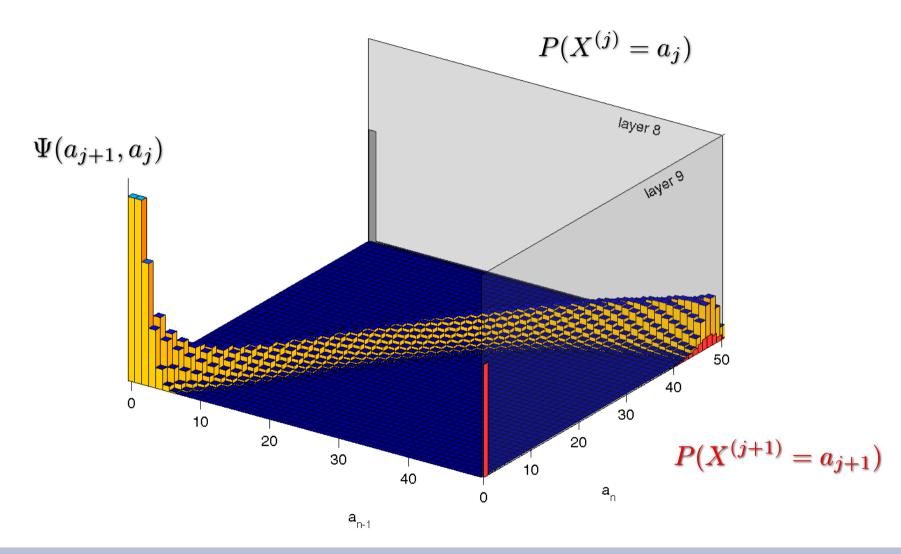
Because the connections are chosen independently,

$$P(X^{(j+1)} = a_{j+1} | X^{(j)} = a_j) = \underbrace{b_{N,p^{(j+1)}(a_j)}(a_{j+1})}_{\Psi(a_{j+1}, a_j)}$$

Then, by definition of conditional probabilities

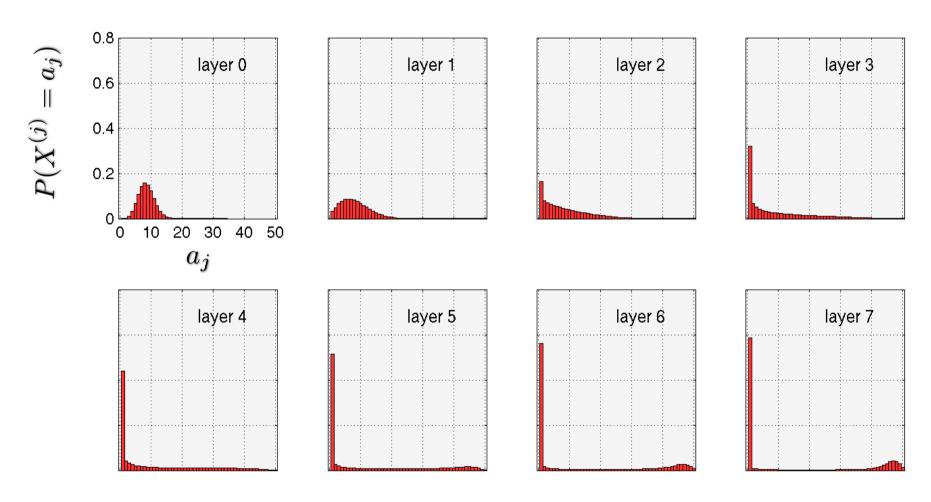
$$P(X^{(j+1)} = a_{j+1}) = \sum_{a_j=0}^{N} \Psi(a_{j+1}, a_j) P(X^{(j)} = a_j)$$

We get an iteration equation!



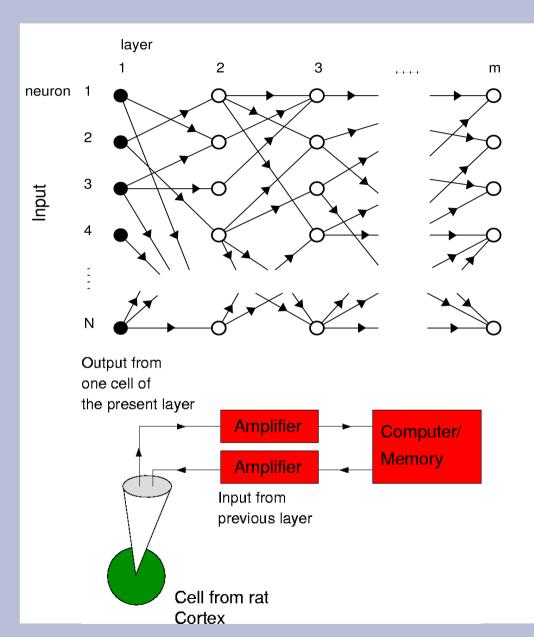
Dr. Thomas Nowotny, Centre for Computational Neuroscience and Robotics

Iterated probability distribution



Neurons either all fire, or all are silent in deeper layers.

Iteratively constructed networks (ICNs)

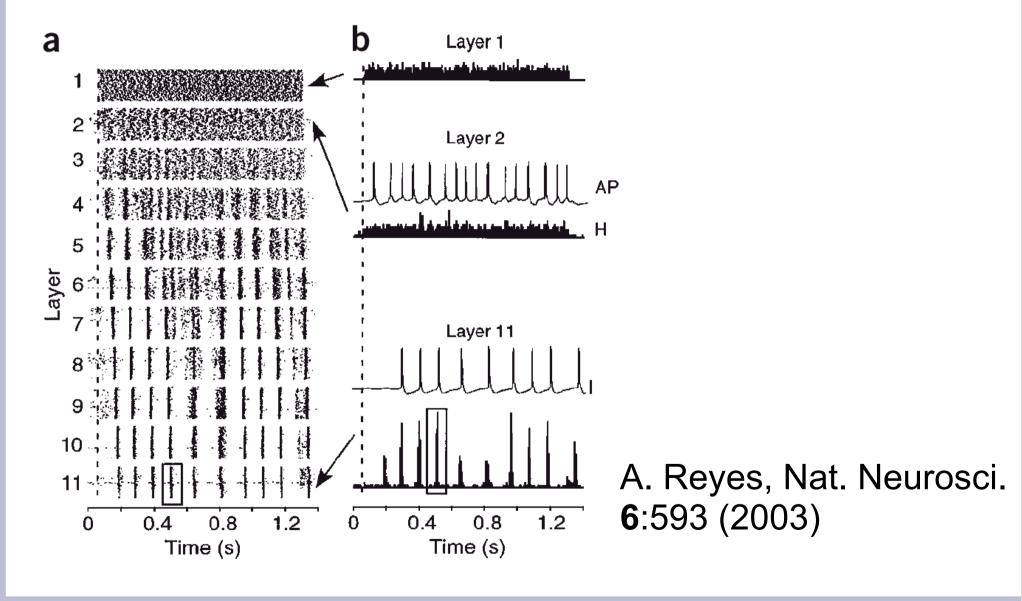


- One or a few cortical neurons
- Dynamic clamp synapses
- Strictly feedforward networks
- Connectivity is randomly chosen by the computer

A. Reyes, Nat. Neurosci. **6**:593 (2003)

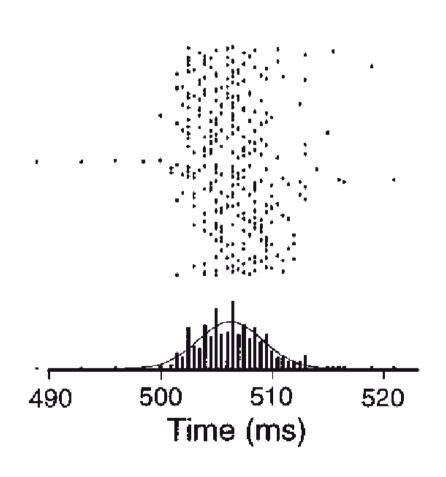
Output

Reyes main results



Dr. Thomas Nowotny, Centre for Computational Neuroscience and Robotics

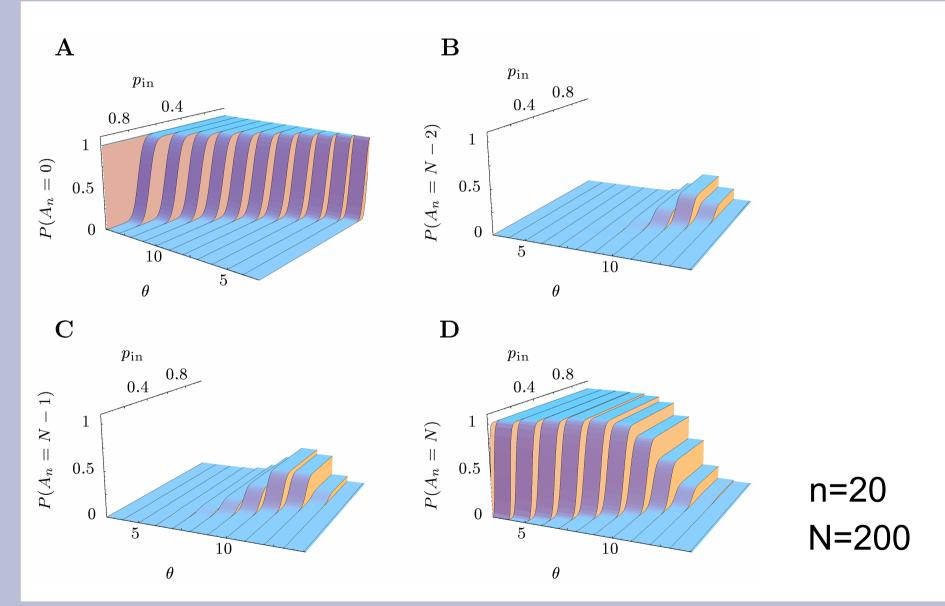
Interpretation of ∆t



- McCulloch Pitts
 neurons: ∆t is the
 integration time of the
 neurons
- Our analysis: ∆t is the width of an isolated "synchronized event"

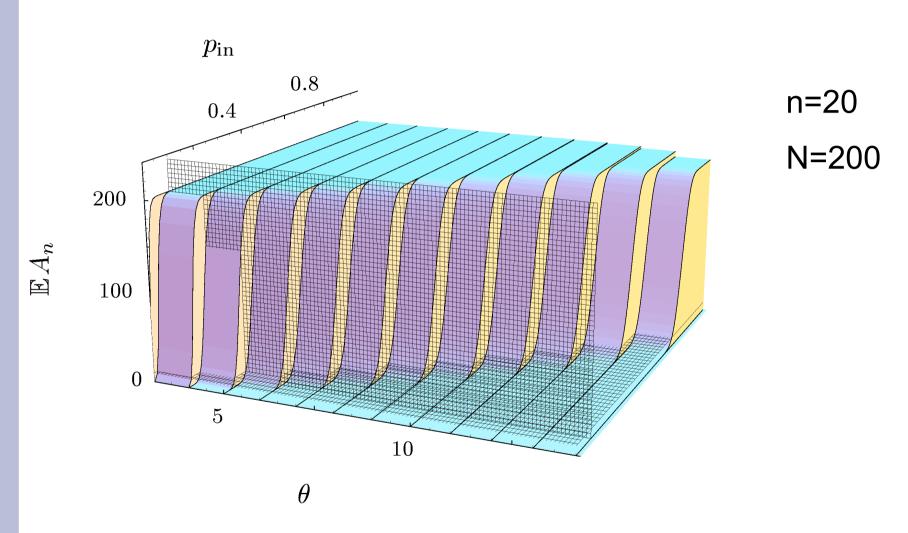
 $\Delta t \approx 5-10 \text{ ms}$

Properties of invariant measure



Dr. Thomas Nowotny, Centre for Computational Neuroscience and Robotics

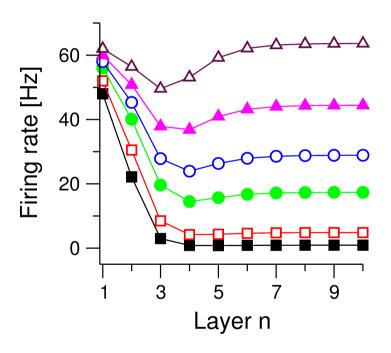
Threshold estimate for Reyes' neuron



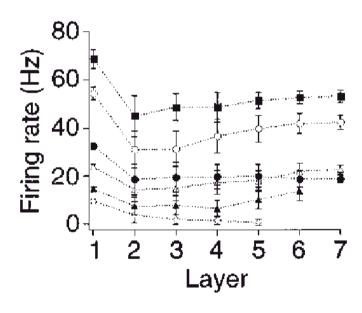
Estimated threshold is θ =5

Firing rate as a function of the layer

McCulloch-Pitts model

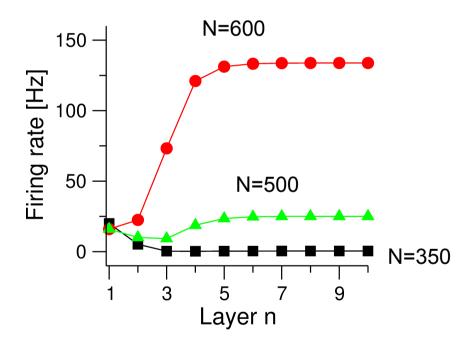


Reyes ICN

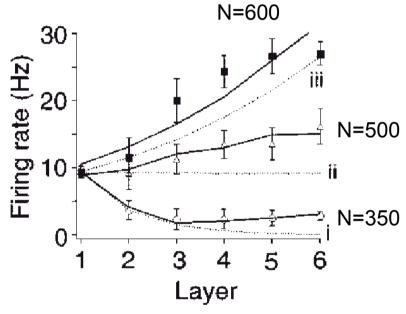


Firing rate as function of the layer

McCulloch-Pitts model

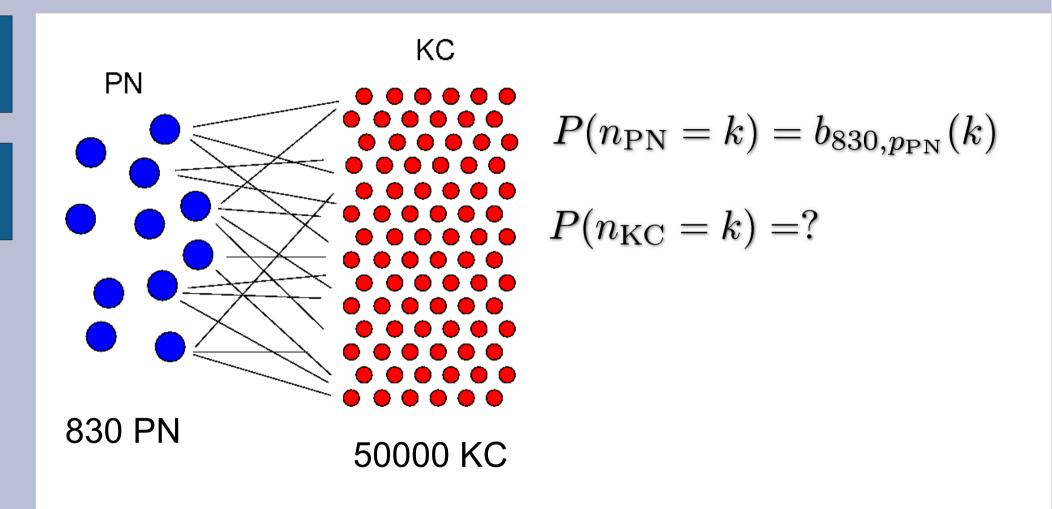


Reyes ICN



Application to the Insect olfactory system

AL-MB projections are ffwd



Example calculation: Probability distribution of the number of active KC

Probability for a Kenyon cell to be active, given n_x=k projection neurons fire:

$$P(y_i = 1 \mid n_x = k) = \sum_{l=\theta}^k {k \choose l} p_{y \leftarrow x}^l (p_{y \leftarrow x})^{k-l} =: P_y$$

 y_i - KC number i (a McCulloch-Pitts neuron)

 n_x - number of active PNs in the AL

heta - firing threshold of the KCs

 $p_{y \leftarrow x}$ - probability of a given KC to be connected to a given PN

Example calculation: Probability distribution of the number of active KC

Probability for the number of active Kenyon cells, given the number of active PN

$$P(n_y = r \mid n_x = k) = \binom{N_y}{r} P_y^r (1 - P_y)^{N_y - r}$$

Then the unconditioned probability is

$$P(n_y = r) = \sum_{k=0}^{N_x} P(n_y = r \mid n_x = k) P(n_x = k)$$

 N_y - Total number of KC N_x - Total number of PN

Aside: Why is this argument wrong?

$$\underbrace{P(y_i = 1)}_{:=p_y} = \sum_{j=\theta}^{N_x} \binom{N_x}{j} (p_{y \leftarrow x} p_x)^j (1 - p_{y \leftarrow x} p_x)^{N_x - j}$$

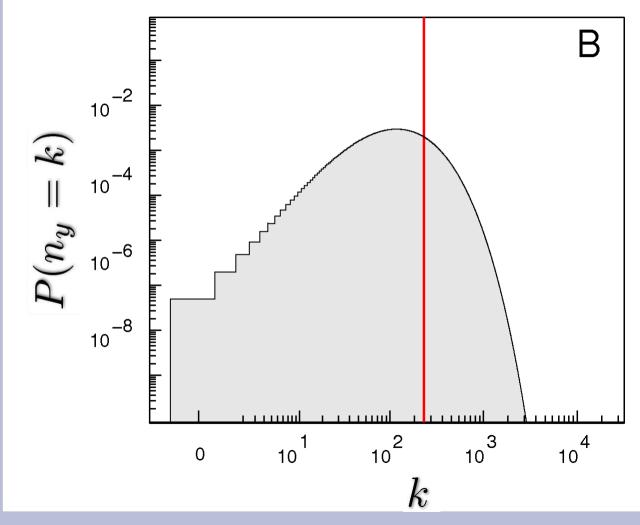
therefore

$$P(n_y = k) = \binom{N_y}{k} p_y^k (1 - p_y)^{N_y - k}$$

Warning: Wrong ... why?

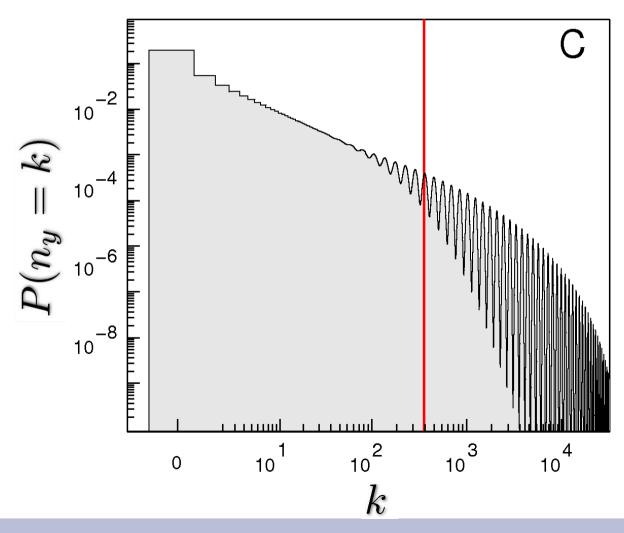
Activity in the MB: sparse connections

$$N_x = 830, \ N_y = 50000, \ \theta_{KC} = 17, \ p_{y \leftarrow x} = 0.05, p_x = 0.2$$



Activity in the MB: dense connections

$$N_x = 830, \ N_y = 50000, \ \theta_{KC} = 105, \ p_{y \leftarrow x} = 0.5, p_x = 0.2$$



Example calculation: Expectation value of the number of active KC

The expectation value for the number of active KC is

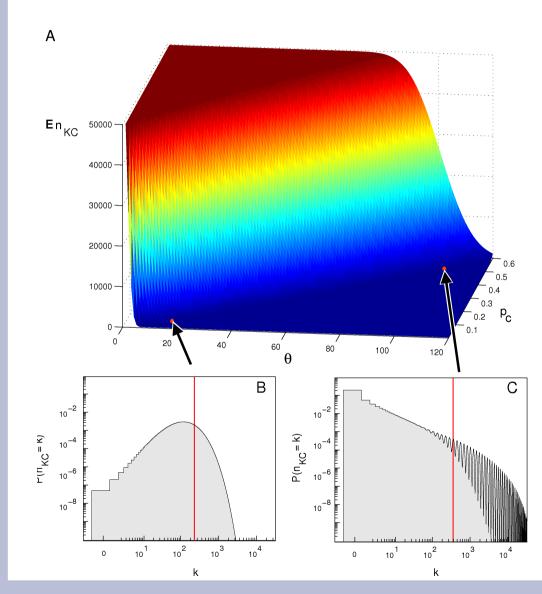
$$\mathbb{E}n_y = \sum_{l=0}^{N_y} l \cdot P(n_y = l)$$

Leading (after some simplification) to

$$\mathbb{E}n_y = \ldots = N_y p_x p_{y \leftarrow x}$$

(This is what we would naively expect; the naive expectation breaks down for $P(n_{y}\equiv l)$ though ...)

MB activity



Expectation value for the number of active KC

Dr. Thomas Nowotny, Centre for Computational Neuroscience and Robotics

Confusion and ground state

Similarly one can calculate the "probability of confusion"

$$P(\text{confusion}) := P(\vec{y}_1 = \vec{y}_2 \mid \vec{x}_1 \neq \vec{x}_2)$$

And the probability of quiescence at ground state

$$P(n_{\text{KC}} \ge N_0 \mid p_{\text{PN}} = p_{\text{baseline}})$$

Minimum conditions for successful operation

We can formulate minimal conditions for successful operation, e.g.:

1.
$$10 \le \mathbb{E}n_{KC} \le 500$$

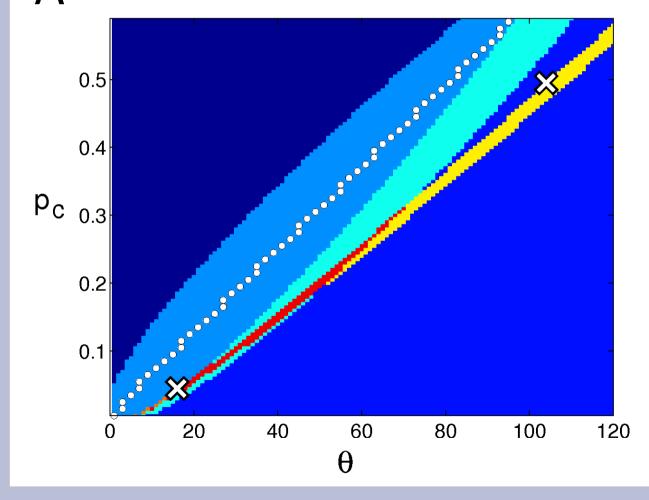
2.
$$p_{\text{confusion}} \leq 0.001$$

3.
$$P(n_{KC} \ge 20 \mid p_{PN} = 0.13) \le 0.01$$

($p_{PN}=0.13$ corresponds to baseline activity level)

Dense connections seem impossible!

Dark blue - none are fulfilled, blue - 3. is true, light blue - 2. is true, cyan - 2. and 3. are true, yellow - 1. and 3. are true, orange - 1. and 2. are true, and red - all three are true.



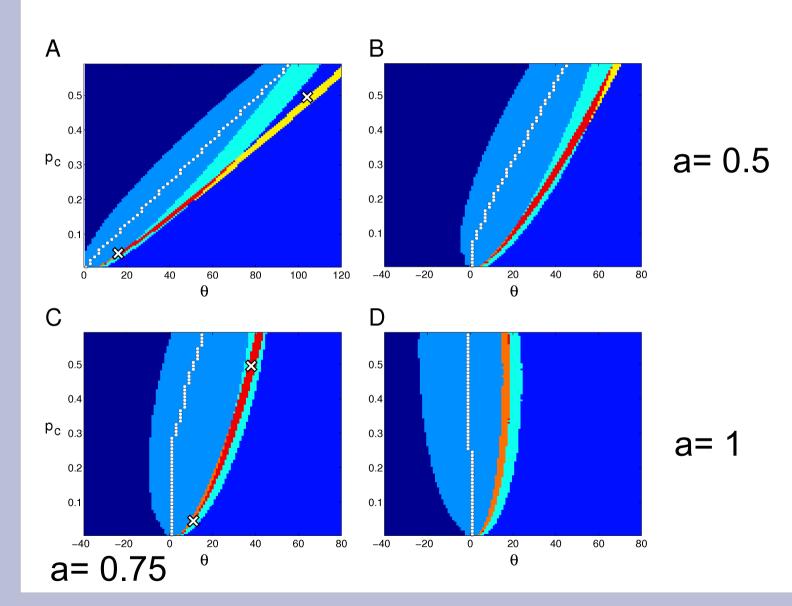
Dr. Thomas Nowotny, Centre for Computational Neuroscience and Robotics

Fix: gain control

Substract the expected input from the input to each KC (feedforward inhibition)

$$y_i = \Theta\left(\sum_{j=1}^{N_{\text{PN}}} w_{ij} x_j - \theta - a p_c n_{\text{PN}}\right)$$

This can be fixed by gain control



Dr. Thomas Nowotny, Centre for Computational Neuroscience and Robotics

(Specific) Summary

- Synchrony in feedforward networks is a generic effect of connectivity
- McCulloch-Pitts approach is good enough to understand it
- For the AL-MB projections the analysis shows severe problems with dense connections
- Appropriate gain control may mediate those problems

(General) Discussion

- McCulloch-Pitts description can be quite powerful
- It might even give interesting results in unexpected areas (here synchronization)
- On the other hand, clearly it is not for everything
- Interpretation needs to be done carefully
- Quantitative agreement is rare

Further reading

- T. Nowotny and R. Huerta Explaining synchrony in feedforward networks: Are McCulloch-Pitts neurons good enough? Biol Cyber 89(4): 237-241 (2003)
- A. Reyes, Synchrony-dependent propagation of firing rate in iteratively constructed networks in vitro, Nature Neurosci. 6:593 (2003)
- T. Nowotny et al. How are stable sparse representations achieved in fan-out systems? (in preparation)

Next time

- Connectionist models of recognition and learning in the olfactory system of insects
- Spiking models of insect olfaction