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I Connectionist approach

I * The connectionist approach is an approach of
minimal assuptions:

- Neurons have two states “on” (1) or “off (0)
— Time can be discretized in discrete steps
- Neurons are either connected (1) or not (0)

At time 1 Attime ¢ +1
w;j(t) wij(t+1)
eV e
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I McCulloch-Pitts neurons

I In a connectionist approach, neurons are described by
the McCuIIoch-Pitts neuron model:

I zi(t+1) = wa )zi(t) — 6

x;(t) € {0,1} - state of neuron i at time t

w;;(t) € {0,1} - state of connection (synapse) from
neuron | to neuron i at time t
1 >0

0 otherwise - Heaviside function

o(z) = {

§ ¢ N -firing threshold
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I McCulloch-Pitts neurons

At time Attime ¢+ 1
O  O—D
zi(t) zi(t) @it +1) = Owi;(t)a;(t) — 0)
Note:

* Need to take values from previous time step
* The notation of wi; (t) may seem awkward at first:

wij (t) = wi—;(2)

Dr. Thomas Nowotny, IE
Centre for Computational Neuroscience and Robotics
University of Sussex



I Connectionist approach

I * Advantages

- Can be used even if details are not known
I - Remains valid if knowledge about details changes

— Can often be applied to many systems, even if
details differ
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I Connectionist approach

I » Disadvantages

- Some things are awkward to implement (e.g. mutual
I iInhibition in layers)

- Some things are almost impossible to include (e.qg.
sub-threshold oscillations)

- Does not include intrinsically active neurons well

- Intrinsic neuron dynamics not described (e.g.
refractory period)
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I McCulloch-Pitts neurons are hyperplanes

N
I The equation Z wi;Zj = 60 defines a plane in N

j=1
I dimensional space.
“McCulloch-Pitts neurons
For example N=2: fire to the right of a hyper-
plane and are silent on the
W;i1T1 + Wijexe =0 loft ”
eft.
Wil v
S T = — 1
W;2 w;2
Sy=axr+b (a:—wﬂ,b: 9)
W;2 w;2

Dr. Thomas Nowotny, IE
Centre for Computational Neuroscience and Robotics

University of Sussex



I Random connections

I * |[n connectionist approaches connections are
often chosen to be random (“generic’):

I . _ [ 1 with probability p.
1 0 with probability g. =1 — p,

» Similarly input neurons are often assumed to
fire with a fixed probability

o 1 with probability pi,
71 0 with probability ¢;n = 1 — pin
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I Propagation of probabilities

I * With random connections and random input
firing, other neurons i have a probability to fire

I P(mil)P(iwwx]>9)
N N
= ZP(ZMUCUJ — k)
k=60 =1
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Statistical independence

Definition of statistical independence:

Event A is independent from event B if and only if

P(AN B) = P(A) - P(B)

Conditional probabilities:

P(AN B)
P(B)

Read: “P of A given B”

P(A|B) =
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Bayes theorem

Why these definitions make sense: If A and B independent,

P(A|B) = = (1;4(;;8) - (ﬁ)(];gB) — P(A)

Bayes theorem:

P(AN B)
P(B)

P(A|B) =
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I Total probability from conditional
probability

N
I If we have disjoint events X, and ZP(Xz-) =1
i=1
N
then  p(Y) = ZP(Y|X7:)P(X2')
i=1

(Proof on the board)

Dr. Thomas Nowotny, lls
Centre for Computational Neuroscience and Robotics

University of Sussex



Binomial distribution

If x; € {0,1}, i=1,..., N areindependent random
variables with distribution {p,1 — p} then the probability

distribution for the sum is

P(iwi = k) = (Z)pk(l —p)N*

Quick proof: The sum is k if we put k “1” into the N Z;

x; [1]ofJof1]o]1]o]1]1]o0]o0]1
k N—k
P= p.q-q-p-q-p-q-p-p-q9-9-p =p (1 —p)
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I Proof of binomial distribution

|
I There are N — N ways to put the “1” and “07,
k k(N — k)!

I and all are mutually exclusive, therefore

P(§i$ik)(5)d%1pyfk

The binomial distribution is often denoted as

P(ﬁéx,:k):bwa)
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Binomial distribution properties

0.2

0 5 10 15
k

More on this: Lab session.

Dr. Thomas Nowotny,

e Expectation value

e Standard deviation
JZQJ:V:1 Ti

v Np(1—p)

Expectation value and
maximum are not the
same
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I Feedforward networks

I n layers

N neurons

activity
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I Feedforward networks

N
* Denote x@ :=3% "z
I 1=0
* Assume that a; neurons fire in Layer |

* Then the probability of a neuron in layer j+1 to
fire is

Pl (q;) = P($§j+1) = 1| XD = q;) = Zbaj,pc(k)
k=86
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I Feedforward networks

I e Because the connections are chosen
independently,

| P(XUD = a1 | XD = aj) = by 1) (a) (a41)
|
\I}(a’j—kla a’j)

* Then, by definition of conditional probabilities

N
P(X(j—l_l) = a,j+1) = Z \I!(aj+1,aj)P(X(j) = aj)

a,j=O

* We get an iteration equation!
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n-1
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Iterated probability distribution
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Neurons either all fire, or all are silent in deeper layers.
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I Iteratively constructed networks (ICNs)

One or a few cortical

I - neurons
2 * Dynamic clamp
’ synapses

I ) 0\ 7@ « Strictly feedforward
: networks
T I

« Connectivity is randomly
chosen by the computer

Input
Output

Qutput from
one cell of
the present layer

nputrom A. Reyes, Nat. Neurosci.
6:593 (2003)

Cell from rat
Cortex
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I Reyes main results

Layer 11

il
4 Ht}/ MUJJM A. Reyes, Nat. Neurosci.

dl ~G4 08 12 6 04 o8 712  6:593 (2003)
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I Interpretation of At

I  McCulloch Pitts

n neurons: At is the
I ne integration time of the

L]
SRR EEE

gl neurons

- ;'. . * Our analysis: At is the
Ehe o width of an isolated

TR “synchronized event”

__‘Fﬁ]]j[[mm At = 5-10 ms

490 500 510 520
Time (ms)
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I Threshold estimate for Reyes’ neuron

I Din
0.8
0.4 n=20
I 200

g
<7
£

N=200
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10

Estimated threshold is =5
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Firing rate as a function of the layer

McCulloch-Pitts model Reyes ICN
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Firing rate as function of the layer

McCulloch-Pitts model Reyes ICN
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Application to the Insect olfactory system




I AL-MB projections are ffwd

KC
PN 00000

./......

® 000000
I O o0000®0®
O
o o0 N
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O N ce0000
@ .X N A
\\\

50000 KC

830 PN

P(npn = k) = bg30,ppy (F)

P(nke = k) =?
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Example calculation: Probability
distribution of the number of active KC

Probability for a Kenyon cell to be active,
given n =k projection neurons fire:

k
AW k—1
P =1lne=k) = 3 (| )phealpr)™ =P,
[=60
Yi - KC number i (a McCulloch-Pitts neuron)
Nz - number of active PNs in the AL

@ - firing threshold of the KCs

Py«—z - probability of a given KC to be connected to a

given PN
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Example calculation: Probability distribution
of the number of active KC

Probability for the number of active Kenyon cells,
given the number of active PN

N —
P, =rlne =) = (V)P - B

Then the unconditioned probability is

Ny

P(ny =r1) =) P(ny=r|ng =k) P(n, = k)
k=0

N, - Total number of KC N, - Total number of PN
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N

( ) py*—:tpa:) (1 py*—mpa:)N =)
+=Py =6

therefore

P(ny = k) = (JZy)pz(l - py)N”—k

Warning: Wrong ... why?



I Activity in the MB: sparse connections

I N, =830, N, = 50000, Oxc =17, py—z = 0.05,p; = 0.2

I B
)
10
Ay,
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Activity in the MB: dense connections

N, =830, N, = 50000, Oxc = 105, pyy = 0.5,p; = 0.2

C
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k

Dr. Thomas Nowotny, IE
Centre for Computational Neuroscience and Robotics

University of Sussex



I Example calculation: Expectation value of
the number of active KC

I The expectation value for the number of active KC is
Ny

I Eny, = 1-P(ny =1)
[=0

Leading (after some simplification) to

Eny = ... = NyDePyes

(This is what we would naively expect; the naive expectation
breaks down for P(ny =) though ...)
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MB activity

PN =K

number of active KC

Expectation value for the
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I Confusion and ground state

I » Similarly one can calculate the “probability of
confusion”

I P(confusion) := P(y; = ya2 | T1 # Z2)

* And the probability of quiescence at ground
state

P(nKC > NO | PPN = pbaseline)
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Minimum conditions for successful
operation

We can formulate minimal conditions for successful
operation, e.g.:

1. 10 < Engc < 500

2. Pconfusion 3 0.001

3. P(nke > 20|ppn = 0.13) < 0.01

( ppny = 0.13 corresponds to baseline activity level)
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Dense connections seem impossible!

Dark blue - none are fulfilled, blue - 3. is true, light blue - 2. is true, cyan
- 2. and 3. are true, yellow - 1. and 3. are true, orange - 1. and
A 2. are true, and red - all three are true.

Pc 0.3

_ 20 40 60 80 100 120
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Substract the expected input from the input to each
KC (feedforward inhibition)

NpN

Yi = 9( Y wijz; —0—ape nPN)
j=1



This can be fixed by gain control
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I (Specific) Summary

I » Synchrony in feedforward networks is a generic
effect of connectivity

* McCulloch-Pitts approach is good enough to
understand it

* For the AL-MB projections the analysis shows
severe problems with dense connections

* Appropriate gain control may mediate those
problems
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I (General) Discussion

I * McCulloch-Pitts description can be quite
powerful

* |t might even give interesting results In
unexpected areas (here synchronization)

* On the other hand, clearly it is not for everything
* |Interpretation needs to be done carefully
e Quantitative agreement is rare
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Further reading

T. Nowotny and R. Huerta Explaining synchrony in
feedforward networks: Are McCulloch-Pitts neurons

good enough? Biol Cyber 89(4): 237-241 (2003)

A. Reyes, Synchrony-dependent propagation of firing
rate in iteratively constructed networks in vitro, Nature
Neurosci. 6:593 (2003)

T. Nowotny et al. How are stable sparse
representations achieved in fan-out systems? (in
preparation)
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I Next time

I » Connectionist models of recognition and
learning in the olfactory system of insects

I « Spiking models of insect olfaction
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