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Course outline

● Lecture 1: Olfaction – The sense of smell
● Lecture 2: The connectionist approach I: Tools

    Lab session 1: Statistical modeling
● Lecture 3: The connectionist approach II:

   Modelling insect olfaction;
                 Hopfield's model of olfaction
    Lab session 2: Hopfield's olfaction model

● Lecture 4: Rate models of the antennal lobe;   
                 Heteroclinic dynamics

● Lecture 5: Heteroclininc Dynamics in a model                
      with Hodgkin Huxley neurons;
                 The pheromone sub-system
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Course material & Lab sessions

● You will learn twice as much if you practice 
some of what we talk about

● The sessions are Wednesday, 10:00-13:00
and Thursday, 10:00-13:00

● I have put up the schedule and a reading list on 
my homepage: 
http://www.informatics.sussex.ac.uk/users/tn41

● You will also find the material for the Labs there 
(but I will also bring printouts for these!)

http://www.informatics.sussex.ac.uk/users/tn41
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Short Course: Computation of Olfaction
Lecture 1

Lecture 1: Introduction
Olfaction – the sense of smell

Dr. Thomas Nowotny
University of Sussex



Dr. Thomas Nowotny, 
Centre for Computational Neuroscience and Robotics

Olfactory space

● To smell is the process of detecting volatile 
chemicals

● The “olfactory space” of all possible stimuli is 
very different from other senses:
– Many “chemical degrees of freedom”
– No clear similarity structure
– No absolute scale of concentration
– No clear definition of objects

Let's have a closer look:
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Olfactory space – degrees of freedom

●Visual space

● 2 (3) spatial dof
● Frequency (color)
● Intensity

Auditory Space

● Frequency
● (2 (3) spatial dof)
● Intensity

● Number of aromatic atoms
● Number of hydrophobic atoms
● Number of carbon atoms
● Number of hydrogen atoms
● Number of oxygen atoms
● Sum of the atomic polarizabilities
● Number of rotatable single bonds
● Fraction of rotatable single bonds
● ...

Schmuker et al. (2006) list about
90 chemical descriptors, so-called
“odotopes”:

Intensity (inhomogeneous)
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Olfactory space – structure

● No clear neighborhood 
structure

●Visual space

● Euclidean distance
  of points
● Distance of colors in 
  frequency space

Auditory Space

● Frequency distance
● (Euclidean distance
    of sound sources)
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Olfactory space – human perception

Enantiomers of
carvone 

caraway
smell

spearmint
smell

L. Turin, F. Yoshii, Structure odor relations: a 
modern perspective, 
http://www.flexitral.com/research/review_final.pdf

Musky odors
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Theories of odor perception

● There are (at least) two theories of odor 
perception:

● Odotope theory: The odotopes (e.g. Functional 
groups) determine smells

● Vibrational theory: The resonance spectra of 
chemicals as witnessed by infrared 
spectrometry determine smells

... From Human Psychophysics both seem 
wrong.
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Olfactory space: Additional complexity

● “Odors” are typically complex mixtures of 
chemicals, e.g., the smell of coffee is believed 
to have about 1000 components, similarly, the 
smell of a rose etc.

● Animals (and humans) can, however, also 
recognize the components in a mixture (to 
some extent)

● Odors need to be recognized over large ranges 
of concentrations; However it is known that this 
ability sometimes breaks down
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Olfactory systems

Let's now check on the existing
olfactory systems and what

 is known about them
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Olfactory system - humans

Olfactory
receptor
neurons 
(ORN)

Air flow

Olfactory
bulb (OB)

Olfactory
epithelium
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Olfactory system – insects 
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Two olfactory systems

● There are two separate olfactory systems the 
general olfactory system and the pheromone 
system

● In mammals:
– General: Olfactory epithelium – olfactory bulb – 

Piriform cortex
– Pheromone: Vomeronasal organ – acessory 

olfactory bulb – amygdala / hypothalamus
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Two olfactory systems

● In Insects:
– General: Antenna – antennal lobe – mushroom 

body/ lateral protocerebrum
– Pheromone: Antenna – Macroglomerular complex 

– lateral protocerebrum

We will first focus on the general olfactory system
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Olfactory transduction pathway (mammal)

●Stages
●

● Mucus, odor binding
  proteins
● Olfactory receptor
  neurons

● Mitral cells/ granule
  cells in the olfactory
  bulb
● Piriform cortex
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Olfactory transduction pathway 

● Sensillum on the 
antenna (sensillum 
lymph, OBP)

● ORN
● Glomeruli, projection 

neurons (PN), local 
neurons (LN)

● Mushroom body, 
lateral protocerebrum

● Olfactory epithelium 
in the nose (mucus, 
OBP)

● ORN
● Glomeruli, mitral cells, 

granule cells 
(periglomerular cells)

● Piriform cortex

Insect Mammal
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Antenna and sensilla

Male 
moth

Female 
moth

Anten-
nae

Sensillae

Antenna
detail (moth)
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Sensillum detail
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Sensillum recording

● One can record from single
  sensillae

● If the ORN respond to a
  stimulating chemical, one sees
  strongly elevated firing (bar = 
  odor stimulation)
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Electrical transduction in odor receptors

● About 350 odor receptor genes known in humans, 
1000 in mice, about 43 in Drosophila

● Receptors are expressed in ORNs

ORN

Mucus /
sensillum
lymph Cells are activated by

a second messenger
cascade

The influx of Na+ makes
the spikes.
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Response profile of receptors
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Odorant Receptor
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Glomerular map (honeybee)

S. Sachse, A. Rappert, C. G. Galizia, Europ. J. Neurosci. 
11: 3970 – 3982 (1999)
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Ca imaging of activity in glomeruli

S. Sachse, A. Rappert, C. G.
Galizia, Europ. J. Neurosci. 
11: 3970 – 3982 (1999)

Ca imaging in the olfactory
bulb of honeybee.
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Glomerular response maps
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Glomerular activity maps (moth)

1-Hexanol (+/-) Linalool

Grey – active glomeruli:
Different odors activate different sets of glomeruli
which can be overlapping.
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Olfactory pathway - connectivity

Confirmed by Linda Buck and Richard Axel in mammals and
Drosophila (using genetic tools):

● Each receptor neuron – 
  one receptor type

● No spatial organization of
  receptor neurons

● Each ORN type projects
  to the same glomerulus

● Projection neurons (PN)
  typically sample only
  one glomerulus



Dr. Thomas Nowotny, 
Centre for Computational Neuroscience and Robotics

Projection neurons (moth)

● Projection neurons (PNs)
  are usually uniglomerular

● A: Three stained PN
 
● B: PN arborizing in g2

● C&D: PNs arborizing in
  g1 and g3 at different 
  magnification

X.J. Sun L.P. Tolbert, 
J.G. Hildebrand, J. Comp.
Neurol. 379:2–20 (1997)
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Local neurons (moth)
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Local neurons
(LN)
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Local neurons 

● Local neurons (LN) have been found in all 
species

● “local” means no axon to brain structures 
outside the antennal lob (AL)

● LN are spiking neurons in most insects (moths, 
honeybees, flies, ...)

● LN are non-spiking in locust
● LN can be excitatory or inhibitory
● Some LN arborize in specific glomeruli, others 

in a few, some everywhere
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Antennal lobe circuitry

● The connectivity shown before is a minimal 
picture, reality is much more complicated:
– There are LNs
– LNs can be excitatory or inhibitory
– LNs receive inputs from ORN, PN and other LN
– LNs project to PN, LN, within and between 

glomeruli
● The circuits can look very different between 

species (whether they are functionally dif-
ferent is an open question), e.g. Locust: 1000 
microglomeruli; Moth, Honeybee, Fly, etc: Few 
(10s) of macroglomeruli



Dr. Thomas Nowotny, 
Centre for Computational Neuroscience and Robotics

Mushroom body

● Mushroom body are the secondary olfactory 
information processing center

● Many, small Kenyon cells
● Much less output cells in 

the lobes
● Have been implied heavily

in learning and memory

e.g. Dubnau J et al. Disruption of neurotransmission in 
Drosophila mushroom body blocks retrieval but not 
acquisition of memory. Nature. 2001 May 
24;411(6836):476-80
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Locust

● One of the best characterized system due to the 
work of Gilles Laurents lab

● Let's use this as an initial overview how things 
may work

● We will later build real models based on these 
ideas

Antennal lobe Mushroom bodyAntenna
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PN responses to odor stimulation (locust)
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Complex slow patterning

Javier Perez-Orive, et al., Oscillations and Sparsening of 
Odor
Representations in the Mushroom Body, 
Science 297: 359 (2002)
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PN responses (locust)

● Different for different odors
● Not just tonic elevation of firing rate during odor 

pulse
– Sub-structure in the firing 
– Late or early onset
– Some PN are inhibited rather than excited
– Some PN react with inhibition first, then rebound
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LN responses

● Non-spiking in locust
● Spiking in other insects (bee, moth)
● Are excited by ORN, PN
● Not as well studied as PN
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KC in the mushroom bodies

Javier Perez-Orive, et al., Oscillations and Sparsening of 
Odor
Representations in the Mushroom Body, 
Science 297: 359 (2002)
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Local field potential (LFP) (locust)

Similar oscillations have also been observed in most species,
in particular mammals/ humans
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Summary

Complex
Dynamics

Sparse
Coding

Gain
Control?

Learning
& Memory
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Next time ...

● I will discuss the connectionist approach to 
modeling neuronal systems

● We will use it on an interesting example 
(synchrony in feedforward networks)

● Wednesday: Connectionist modeling of the 
olfactory system of insects

List of references
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