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Referat

In dieser Arbeit werden Zufallsfeld-Ising-Modelle mit einem eingefrorenen di-
chotomen symmetrischen Zufallsfeld für den eindimensionalen Fall und das Bethe-
Gitter untersucht. Dabei wird die kanonische Zustandssumme zu der eines einzel-
nen Spins in einem effektiven Feld umformuliert. Im ersten Teil der Arbeit werden
das mulktifraktale Spektrum dieses effektiven Feldes untersucht, Übergänge im
Spektrum erklärt und Ungleichungen zwischen lokalen und globalen Dimensions-
begriffen bewiesen, die eine weitgehend vollständige Charakterisierung des multi-
fraktalen Spektrums durch eine Reihe von Schranken erlauben. Ein weiterer Teil
der Arbeit beschäftigt sich mit einer ähnlichen Charakterisierung des Maßes der
lokalen Magnetisierung, das aus dem Maß des effektiven Feldes durch Faltung
hervorgeht. In diesem Zusammenhang wird die Faltung von Multifraktalen in
einem allgemeineren Rahmen behandelt und Zusammenhänge zwischen den mul-
tifraktalen Eigenschaften der Faltung und denen der gefalteten Maße bewiesen.
Im dritten Teil der Dissertation wird der Phasenübergang von Ferro- zu Para-
magnetismus im Modell auf dem Bethe Gitter untersucht. Neben verbesserten
exakten Schranken für die Eindeutigkeit des paramagnetischen Zustands werden
im wesentlichen drei Kriterien für die tatsächliche Lage des Übergangs angegeben
und numerisch ausgewertet. Die multifraktalen Eigenschaften des effektiven Felds
im Modell auf dem Bethe-Gitter schließlich erweisen sich als trivial, da die inter-
essanten Dimensionen nicht existieren.
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Abstract

In this work random field Ising models with quenched dichotomous symmetric
random field are considered for the one-dimensional case and on the Bethe lat-
tice. To this end the canonical partition function is reformulated to the partition
function of one spin in an effective field. In the first part of the work the multi-
fractal spectrum of this effective field is investigated, transitions in the spectrum
are explained and inequalities between local and global generalized fractal di-
mensions are proven which allow to characterize the multifractal spectrum bei
various bounds. A further part of the work is dedicated to the characterization
of the measure of the local magnetization which is obtained by convolution of
the measure of the effective field with itself. In this context the convolution of
multifractals is investigated in a more general setup and relations between the
multifractal properties of the convolution and the multifractal properties of the
convoluted measures are proven. The phase transition from ferro- to paramag-
netismus for the model on the Bethe lattice is investigated in the third part of the
thesis. Apart from improved exact bounds for the uniqueness of the paramagnetic
state essentially three criteria for the transition are developped and numerically
evaluated to determine the transition line. The multifractal properties of the
effective field for the model on the Bethe lattice finally turn out to be trivial
because the interesting dimensions do not exist.
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Chapter 1

Introduction

Whenever different fields of physics have a common intersection, interesting re-
sults are obtained from the interaction of the different typical methods of the
intersecting fields. The random field Ising models considered in this work are
a typical example. They combine aspects of the theory of disordered systems,
multifractality in discrete dynamical systems and statistical physics of Ising-type
spin models.

Disorder effects are present in practically all experimental systems. Crystals have
misalignments and vacant sites, materials have impurities of foreign atoms, the
different types of atoms in alloys are not evenly but randomly distributed or the
structure of a material is even completely random like in structural glasses, to
name but a few. For a long time the disorder was treated as a perturbation of
ideally ordered and therefore less complicated situations. For example, scatter-
ing of electrons at impurities in otherwise strictly periodic crystals was treated in
this way leading to corrections for transport coefficients. In the same way defects
were seen to lead to modified material constants.

The view of disorder as a small secondary effect changed dramatically with
the discovery of the Anderson localization [And58, LR85] in which disorder ef-
fects lead to a metal-insulator transition. The disorder therefore can change the
properties of a material qualitatively not only quantitatively. In addition, the
effect occurs already at small amplitudes of the disorder such that it is definitely
not accessible by perturbative methods.

Other famous effects of disorder are, e. g., non-zero ground state entropies,
critical slowing down and aging effects in spin glasses [BY86, FH91, Rya92].
With the years disordered systems have thus become a field of research on its
own.

Sets with non-intuitive properties have been known in mathematics at least since
the introduction of the Weierstraß function [Wei72], the Cantor sets [Can83,
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4 Introduction

Can32] and the Peano curves [Pea90, Pea73] at the end of the 19th century. The
also well-known Koch curve was introduced somewhat later [vK04]. Tools like the
Hausdorff dimension [Hau19] to characterize dimensional aspects of such strange
sets have also long been known.

It was the merit of Benôıt B. Mandelbrot to observe that similar sets appear
practically everywhere in nature, especially in physics, and to promote this idea
through his by now famous book [Man83]. Some examples of the occurrence
of fractal sets are snow flakes, cloud and rock formations, coast lines and even
star and galaxy distributions in the universe. In theoretical physics the typical
examples are strange attractors in dynamical systems [Ott93], the structure of
turbulent flows and pattern formation in diffusion limited aggregation.

In the wake of Mandelbrot’s observation the new field of fractal geometry
arose. The main ingredients of this theory are various notions of fractal dimen-
sions of point sets in R

n as, e. g., the well-known Hausdorff dimension, box count-
ing dimensions and packing dimensions. For an introduction cf [Fal90, Bar93].

Often not only fractal sets but also measures on these sets are encountered
like, e. g., the natural measure on chaotic attractors [FOY83, GP87], escape rates
from chaotic repellers [ST86, Tél86, Tél87], dissipation fields of turbulent flow
[BPPV84] or the harmonic measure in diffusion limited aggregates [HMP86]. To
obtain a more comprehensive description of these systems the fractal geometry
of sets was generalized to a multifractal geometry of measures. In particular,
one-parameter sets of generalized box dimensions Dq, q ∈ R, [HP83, GP83] and
the so-called f(α)-spectrum, α ∈ R, [HJK+86] were introduced. By now, multi-
fractal generalizations for practically all fractal dimensions exist [Ols95].

The Ising model [Cip87, Dom74, LB99] was proposed as a simple model of sta-
tistical mechanics to describe the phase transition between paramagnetic and
ferromagnetic behaviour. It was first proposed by Lenz [Len20] and solved for
the one-dimensional case by Ising [Isi24]. As the one-dimensional model has no
phase transition for finite temperatures Ising was deeply disappointed and com-
pletely retired from research in physics to become a highschool teacher. In the
meantime the Ising model named after him became popular for all kinds of ap-
plications. With Onsager’s exact solution [Ons44] of the two-dimensional Ising
model [MW73, Bax89] one of the few known exact solutions of models with phase
transitions was found. Even though most properties of the three-dimensional
model [Wu82] are well known on a numerical level [FL91, CPRV99] an exact
solution of this model or higher dimensional models has not been found.

The Ising model became even more popular when it was formulated with
random couplings or in an external random field [Bel98, Nat98]. Well known
models of the spin glasses mentioned above are, e. g., the Edwards-Anderson
model [EA75] and its mean field version the Sherrington-Kirkpatrick [SK75] or
Thouless-Anderson-Palmer [TAP77] model which are variations of a random ex-
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change Ising model.

The random field Ising models considered in this work combine all three as-
pects. They are Ising models, are disordered by a quenched external random field
and the probability distributions of, e. g., the local magnetization with respect
to the disorder probability space turns out to be a multifractal. In particular,
models with symmetric dichotomous random field will be considered for a one-
dimensional chain (chapter 3 and chapter 4) and on the Bethe lattice (chapter
5). The absence of loops in both geometries is essential for the iterative relations
used. Random exchange spin glass models on the Bethe lattice can be analysed
with similar iteration relations [CCC+90, CCST90].

In early work on one-dimensional disordered systems [Dys53, Sch57, Hal67] vari-
ations of transfer matrix methods were used to obtain quantities like the cumu-
lative density of states [Hal67] or the frequency spectrum of coupled oscillators
[Sch57]. The one-dimensional random field Ising model however can be reformu-
lated to a one-spin system in an effective field [Ruj78, GR84, BG78, BA83] which
is characterized by a contractive random iterated function system of first order.
This simplifies its treatment considerably in comparison to standard transfer ma-
trix methods which can only be formulated as iterated function systems of second
order.

The random iterated function system obtained has a unique invariant mea-
sure [Hut81, BZ87a, BZ87b, AC90] which is the probability measure of the effec-
tive field in the thermodynamic limit. Similar random iterated function systems
also appear in the context of learning in neural networks [vHKK88, BvHK+93,
RSW93].

The distribution function corresponding to the invariant measure is a so-
called devil’s staircase [GR84] for discrete random fields with large amplitude
but is smooth for continuous random fields [And86] or small amplitudes. The
same transition from a devil’s staircase to a smooth distribution function was
also found in quasi-one-dimensional Ising models [NMO85]. In terms of fractal
geometry the transition is from a fractal support of the invariant measure for
discrete random field distributions and sufficiently large random field amplitude
[SB87, Sat87, BZ88b] to a set of dimension one for small field amplitudes. As
already stated above, models with continuous random field distributions do not
exhibit a fractal support of the invariant measure in a strict sense. Strongly
peaked continuous distributions with peaks of width δ lead however to invariant
measures with a support resembling a fractal set down to a scale of the order of
δ but are not fractal below that scale [And86].

The ground state energy per spin and the ground state entropy per spin had
been calculated with transfer matrix methods early on [DVP78]. It turns out
that the ground state has a residual entropy which can be explained by flips
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of microscopic spin clusters [BPZ90]. Similar frustration effects have also been
observed in the one-dimensional Ising chain in a quasi-periodic potential [Luc87].
The connected correlation functions at zero temperature for the random exchange
Ising model were later also obtained [Igl94].

The Dq-spectrum was numerically calculated for the invariant measure of
the effective field [BS88, BvHK+94, BL92] soon after its introduction [HP83]
while other authors concentrated on related concepts like the order q free energy
[TFI89, TFI90] or correlation functions [LN89]. For some combinations of the
temperature and the random field strength the limits D∞ = limq→∞ Dq and
D−∞ = limq→−∞ Dq could even be calculated analytically [Eva87]. The Dq-
spectrum undergoes several transitions [BL92, BvHK+94, PBL95] in dependence
on the random field strength, cf also figure 3.2. The transitions for small random
field were explained by changes of the pointwise dimension at the boundary of the
support of the measure and these pointwise dimensions were explicitly calculated
[BL92].

The most striking transition is the collapse of the Dq-spectrum for q < 0 at

some critical field strength h
(2)
c , cf figure 3.2. It was explained on a phenomeno-

logical level by the disappearance of deep cuts in the measure density [BvHK+94]
observed in numerically generated measure densities [BL92]. Similar transitions
have been found in the superposition of multifractals [Rad93, Rad95, SS97].
The disappearance of deep cuts was later explained by the analysis of the or-
bit structure of the random iterated function system defining the effective field
[PBL95, Pat97].

After some introduction into the notions of multifractal geometry in chapter 2
and into the one-dimensional random field Ising model in the first part of chapter
3 the explanation of the transition at h

(2)
c is made more precise in sections 3.3 and

3.4. To this end the concept of orbits and their pointwise dimension is discussed
in detail and it is proven that the pointwise dimension of the invariant measure at
the points of periodic orbits which do not touch the overlap exists. Furthermore,
the explicit formula for the pointwise dimension of periodic orbits given in [Pat97]
is rigorously proven.

The condition determining the critical field strength for the transition which
results from the analysis of the orbit structure is solved to an explicit form.

Generalizing the arguments formerly applied to the periodic {+−} orbit in

order to explain the transition at h
(2)
c to a certain family of orbits, a hitherto

unnoticed further transition in the Dq-spectrum for q < 0 is explained. The con-

dition for the corresponding critical field strength h
(2a)
c is solved numerically. The

new transition was detected through numerical calculations of the Dq-spectrum
with increased numerical precision also performed as part of this work.

The last section in chapter 3 is dedicated to the investigation of general re-
lations between pointwise dimensions and Dq-spectra. Two different types of
general inequalities are proven. Applied to the invariant measure of the effective
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field the inequalities provide bounds which characterize the Dq-spectrum very
precisely and allow to calculate D−∞ and D∞ explicitly. This generalizes the
results of [Eva87].

The original Dq-spectrum [HP83] turned out to be not well-defined for q < 0.
The problem was fixed by the introduction of an improved multifractal formalism
[Rie95]. Surprisingly, most earlier results remain or sometimes even just become
valid in the improved formalism. Throughout this work the improved formalism
is always used if it does not coincide with the classical definition. The main
results of chapter 3 have been published in [NPB01a].

It should not go unmentioned that there is still a considerable amount of other
ongoing research on aspects of the one-dimensional random field Ising model.
Examples are the investigations of the randomly driven Ising magnet [HR99a,
HR99b], of the dynamical Ising model [SC00] and of mathematical aspects such
as the uniqueness of Gibbs states and the structure of ground state revisited
in the formalism of Gibbs measures [BRZ96]. Other authors concentrate on
disordered quantum Ising spin chains which is a separate field in its own right, cf
e. g. [IJR99, KJTI99] and related work.

The mathematical research on (random) iterated function systems has also
been a quite active field. Some examples are the investigation of parabolic it-
erated function systems [SSU98a, SSU98b, SSU00], multifractal formalism for
self-similar functions [Sli99] and multi-scaled multinomial measures [GR00] and
measures on self-affine sets [Fal99]. A connection to domain theory has been
established [Eda95, Eda96, Eda97] and wavelets can be used for the analysis of
multifractal properties as well [MBA94, ABJM97, ABJM98]. A related field is
the investigation of Bernoulli convolutions [PSS00] with respect to multifractal
aspects [LP94, LP96a, LP96b, Pat97].

It has long been regretted that most results focused on the effective field which
is not a directly measurable physical quantity even though it is related to the
local magnetization at the boundary of the Ising chain, cf chapter 3. Therefore,
chapter 4 is dedicated to the investigation of the measure of the local magnetiza-
tion which in principle can be measured e. g. by neutron scattering. As the local
magnetization is essentially the sum of two effective fields from the left and from
the right [GR84, BZ87a, BZ88b] its measure is essentially the convolution of the
invariant measure with itself, cf also [AB83].

To exploit the extensive knowledge of the properties of the effective field for
the local magnetization, the relations between the multifractal properties of two
measures and the multifractal properties of their convolution are investigated.
There are two main results. Firstly, the pointwise dimension at the boundary
of the support of the convolution is the sum of the pointwise dimensions at the
corresponding boundaries of the two convoluted measures. Secondly, the Dq-
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spectrum of the convolution is bounded from above by the sum of the Dq-spectra
of the convoluted measures.

The results are applied to the measure of the local magnetization. Together
with the bounds and numerical results for the effective field of chapter 3 a precise
characterization of the Dq-spectrum of the measure of the local magnetization is
achieved.

The numerically generated spectrum is in perfect agreement with the ana-
lytical bounds. Some difficulties arise in a certain parameter range leading to
numerical instabilities in the preferred algorithm of the new natural partition.
These effects can be understood in terms of the band structure of the approxi-
mations to the measure densities of the effective fields used to approximate the
measure of the local magnetization. It turns out that the numerical instability is
of principal nature and indicates a sensitive dependence of the Dq-spectrum for
q < 0 on the temperature and the random field strength.

From an experimentalists point of view however, the scale of observation is al-
ways bounded from below. Therefore, it is adequate to use box counting methods
which also have a minimal resolution defined by the smallest box size in contrast
to the methods based on new natural partitions which can have arbitrary small
scale already at finite iteration depths. Following this approach, the Dq-spectra
are calculated by box methods in the problematic regions which leads to mean-
ingful results. All obtained results can qualitatively be understood in terms of
overlap structures of the natural partition of the effective field in the process of
the convolution.

As a byproduct of the numerical calculation of Dq-spectra, approximations of
the invariant measure densities for various values of the random field strength h
are obtained. One can directly see a gradual transition from a strongly peaked
monomodal distribution for small random field amplitude to a strongly peaked
bimodal distribution for large random field strengths. This resembles a phase
transition from paramagnetic to ferromagnetic behavior. Because it is only a
local effect and the symmetry is not broken it is not a physical phase transition
though. After the quenched average over all random field configurations the
magnetization is always zero.

Sums of independent random variables appear in a wide variety of applica-
tions. Therefore, the general results on the convolution of multifractals obtained
in chapter 4 are also of interest beyond the characterization of the local magne-
tization of the one-dimensional random field Ising model. The main results are
submitted for publication [NB01].

The reason of Ising’s disappointment, the absence of phase transitions at finite
temperature in the one-dimensional model, is of course not lifted by the intro-
duction of a random field. In order to study disorder effects on phase transitions
or even disorder-driven phase transitions one needs to consider models with a
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different underlying geometry. The Bethe lattice or Cayley tree is uniquely char-
acterized by the two properties that it is a graph with constant vertex degree and
that it contains no loops. The latter property allows to reformulate the random
field Ising model on the Bethe lattice to a (generalized) random iterated function
system in close analogy to the one-dimensional case [Bra80, Bru84, Pat97]. In
contrast to the one-dimensional case the iterated function system is no longer
necessarily contractive. The loss of contractivity leads to a phase transition from
paramagnetic to ferromagnetic behaviour in dependence on the temperature and
the strength of the random field.

The research on the Ising model on the Bethe lattice with and without random
fields has not been as extensive as for the one-dimensional model. There are only
seemingly disconnected sets of works on this subject.

Early work considered correlation functions of spins in the classical Ising
model on the Bethe lattice without external field [Fal75, vHT74, Mat74, MHZ74,
Egg74] which has also been investigated for the model with homogeneous exter-
nal field recently [IH98, HI98]. It was shown that the magnetic susceptibility
diverges below a critical temperature thus giving rise to phase transition. This
phase transition was also found in the model with random field [Bru84] which will
be discussed in more detail below. Later, the possible phase diagram topologies
were investigated numerically [SMCB94].

Recently, the phase diagram of analogues of the anisotropic next nearest neigh-
bours Ising model [AS97, AS99] and the phase diagram of the standard Ising
model on a two layer Bethe lattice [HIO99] were considered. The ground state
structure has also attracted some interest. Examples are the investigation of
the residual entropy and hysteresis loops [DSS97, Shu01] as well as of the single
spin flip dynamics [SSD00] at zero temperature. The Ising spin glass (random
exchange Ising model) on the Bethe lattice also is still under investigation [MP01].

After the treatment of the purity of the paramagnetic limiting Gibbs state
of the Ising model without random field [Ble90, BRZ95] the uniqueness of Gibbs
measures compatible with the Ising Hamiltonian with dichotomous random field
has been investigated [BRZ98]. Among other results the authors were able to give
an exact upper bound for the uniqueness of the Gibbs measure for all random
field configurations and a tighter upper bound for the uniqueness of the Gibbs
state for almost all random field configurations. The latter can be improved by
iterating the original argument. This is explained in detail in section 5.1 and
the resulting bound is presented. Though being a considerable improvement of
the earlier result the bound is still far from the region where the transition is
suspected.

As mentioned above, Bruinsma also investigated the phase transition in the
random field Ising model on the Bethe lattice. He proposed a lower bound for the
existence of a stable ferromagnetic phase [Bru84]. In section 5.2 three numerical
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criteria are developed to detect the position of the phase transition numerically.
In subsection 5.2.1 the expectation value of the local magnetization is calculated.
The regions in which the magnetization is increasing with increasing distance
to the boundary are identified as regions with a stable ferromagnetic and an
unstable paramagnetic phase whereas the regions with decreasing magnetization
have at least a stable paramagnetic phase. The investigation of the average
contractivity in subsection 5.2.2 also results in the identification of two such
regions leading to an upper bound for the stability of the paramagnetic state. The
analysis of the average contractivity goes back to [Pat97]. Finally, the calculation
of the dependence of the effective field at the center of the Bethe lattice on
boundary conditions which are close to zero in subsection 5.2.3 gives an estimate
on the stability of the paramagnetic phase with respect to small perturbations
at the boundary. This also results in an upper bound on the stability of the
paramagnetic phase. All estimates for the transition line are in good agreement
with each other but significantly disagree with Bruinsma’s bound.

As Bruinsma’s argument rests on the differentiability of the density of the
invariant measure which was only proven for small h and near Tc there are two
possible interpretations. Either Bruinsma’s bound is not true outside the proven
region of validity and the transition from ferromagnetic to paramagnetic be-
haviour takes place at the smaller random field values found in the numerical
investigation or there is a region of coexistence of stable ferromagnetic phases
with a stable paramagnetic phase implying a phase transition of first order in
this region. The second scenario seems less likely as the random iterated func-
tion system is less contractive for small boundary conditions than for large ones
such that it is to be expected that the paramagnetic state becomes unstable
before ferromagnetic phases emerge.

The successful characterization of the multifractal properties of the effective
field as well as the local magnetization in the one-dimensional case motivates to
treat the measure of the effective field for the model on the Bethe lattice in a
similar way. It turns out however that the measure of the effective field for this
model is a left-sided multifractal, i. e., that the generalized box dimensions Dq

do not exist for negative q. Therefore, the transition in the fractal dimension of
the support is the only one of the transitions discussed for the one-dimensional
case also existing on the Bethe lattice. The left-sidedness of the measure of the
effective field and the transition in D0 are discussed in section 5.3. The Dq-
spectrum for positive q is obtained numerically.

The results of chapter 5 are submitted for publication [NPB01b]. All results
are summarized in the conclusions in chapter 6 and some outlook is given.



Chapter 2

Multifractal measures

In fractal geometry point sets in R
n are characterized by fractal dimensions such

as box counting dimensions, packing dimensions and the Hausdorff dimension.
When considering strange attractors of dynamical systems however one encoun-
ters not only a point set (the attractor) but also a measure supported by this
set (the natural measure). Other examples are the effective field and the local
magnetization of the random field Ising model considered in this work. They are
not only characterized by the set of values they can take on but also by the proba-
bility measure governing the occurrence of the possible values. A measure is only
very roughly characterized by the fractal dimension of its support. It is therefore
important to find quantities which also characterize the varying strength of the
measure on different parts of its support. Ideas like this led to the development
of generalized versions of practically all fractal dimensions.

2.1 Generalized fractal dimensions

The generalization of the box counting dimension are the generalized box di-
mensions or generalized Rényi dimensions Dq with parameter q ∈ R which are
based on the idea of Rényi entropies [Rén60, Rén61, Rén70]. They were first in-
troduced by Hentschel and Procaccia [HP83], Grassberger and Procaccia [GP83]
and Grassberger [Gra83] in the following way.

Definition 2.1 Classical generalized box dimensions Let µ be a bounded
Borel measure on R

n, {bε
i}i∈N a mesh of cubes of side length ε covering R

n and
q ∈ R, q 6= 1. Then the lower and upper classical generalized box dimensions of
µ are defined as

Dcl
q (µ) :=

1

q − 1
lim inf

ε→0

log
∑

i∈N
µ(bε

i )
q

log ε
and (2.1)

D
cl

q (µ) :=
1

q − 1
lim sup

ε→0

log
∑

i∈N
µ(bε

i )
q

log ε
. (2.2)

11
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Figure 2.1 a) Typical Dq-spectrum. It was obtained for the measure of the
effective field of the one-dimensional random field Ising model through the method
based on the new natural partition, cf appendix A.1 at iteration depth 10 and
β = J = h = 1. b) Typical f(α)-spectrum generated as the Legendre transform
of the τ(q) obtained from the Dq-spectrum of figure a.

For the case q = 1 the limit q → 1 of (2.1) and (2.2) yields

Dcl
1 (µ) = lim inf

ε→0

∑

i∈N
µ(bε

i ) log µ(bε
i )

log ε
and (2.3)

D
cl

1 (µ) = lim sup
ε→0

∑

i∈N
µ(bε

i ) log µ(bε
i )

log ε
(2.4)

which is used as the definition of Dcl
1 and D

cl

1 respectively. If the upper and the

lower dimension coincide then Dcl
q := Dcl

q = D
cl

q is the classical generalized box
dimension of µ.

The sums in definition 2.1 and all similar sums in this work tacitly only extend
over boxes bε

i with µ(bε
i ) 6= 0. Figure 2.1a shows a typical Dq-spectrum.

When calculating limits of the form encountered in (2.1) through (2.4) it
is often useful to restrict the calculation to admissible sequences. A sequence
(εn)n∈N is admissible if all εn > 0 and k′ ≥ εn+1/εn ≥ k for some 1 > k′ ≥ k > 0.
For admissible sequences it is not difficult to show that if the second limit exists,
so does the first and

lim
ε→0

log f(ε)

log ε
= lim

n→∞

log f(εn)

log εn

(2.5)

for any function f : R → R, cf e. g. [Fal90, 3.1].
It took quite a while until it was noticed that for q < 0 the generalized box

dimensions of definition 2.1 are not well-defined. The effect can easily be seen in
the following example taken from [LN99].
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Example 2.1 Let µ be the Lebesgue measure restricted to [0, 1] and bεn

i := [iεn, (i+
1)εn] where εn = (1 − 2−n)/n, i ∈ N. The sequence (εn)n∈N is admissible. The
interval bεn

n has measure µ(bεn
n ) = 2−n and thus

∑

i∈N
µ(bεn

i )q > 2−nq such that
for q < 0

D
cl

q ≥ Dcl
q =

1

q − 1
lim inf

ε→0

log
∑

i∈N
µ(bε

i )
q

log ε
(2.6)

=
1

q − 1
lim inf
n→∞

log
∑n

i=0 µ(bεn

i )q

log εn

= ∞ . (2.7)

On the other hand, if choosing εn = 1/n instead, one obtains Dcl
q = 1 for all

q < 0 as one rather would have expected. By adequate choice of the box sizes
one can obtain any value in the interval [1,∞].

The example shows that Dcl
q depends on the choice of the boxes with which it

is calculated and that this effect already occurs for the most simple measures.
The problem was solved by Riedi [Rie95] by proposing an improved multifractal
formalism. Obviously, the main difficulties are caused by boxes with unnaturally
small weight caused by an only marginal overlap with the support of the measure.
This can be excluded by the use of enlarged boxes.

Definition 2.2 Improved generalized box dimensions Let µ be a bounded
Borel measure on R

n and {bε
i}i∈N a mesh of cubes of side length ε which cover R

n

and are centered around points {xi}i∈N. Let {bε

i}i∈N be cubes centered around the
same points {xi}i∈N but of side length ε (1+δ) with some fixed δ > 0. Furthermore,
define

µi :=

{

µ(b
ε

i ) (if µ(bε
i ) > 0)

0 (otherwise)
. (2.8)

Then the lower and upper improved generalized box dimensions of µ for q ∈ R,
q 6= 1 are defined by

Dq(µ) :=
1

q − 1
lim inf

ε→0

log
∑

i∈N
µq

i

log ε
and (2.9)

Dq(µ) :=
1

q − 1
lim sup

ε→0

log
∑

i∈N
µq

i

log ε
. (2.10)

For the case q = 1 the definition is accordingly

D1(µ) := lim inf
ε→0

∑

i∈N
µi log µi

log ε
and (2.11)

D1(µ) := lim sup
ε→0

∑

i∈N
µi log µi

log ε
. (2.12)

If the upper and the lower dimension coincide then Dq(µ) := Dq(µ) = Dq(µ) is
the improved generalized box dimension of µ.
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Although the modification of the definition of the Dq-spectrum at first glance
seems to be more of conceptual nature than of practical interest, it turns out
that it is also very important for numerical approximations. This is due to the
fact that already at finite box sizes ‘misplaced’ boxes can strongly affect the
results such that numerical estimates can strongly depend on the choice of boxes.
The Dq of definition 2.2 however are independent of the orientation and position
of the mesh cubes as well as the choice of the factor of enlargement δ.

Sometimes the quantity τ(q) := (1− q)Dq is also used. This definition follows
[Fal90, Rie95]. Note that other authors choose a different sign cf e. g. [HJK+86].
It is know that τ(q) is continuous in q, convex and non-increasing if finite valued,
cf [Rie95]. Therefore, Dq is also continuous in q except for possibly at q = 1. If
D1 exists and is finite though, the limits limq↗1 Dq and limq↘1 Dq are identical
and Dq is everywhere continuous. Furthermore, it is not difficult to see that it
also is non-increasing, cf appendix B.1. For q > 0 definitions 2.1 and 2.2 are
equivalent and will be used interchangeably throughout this work whereas for
q < 0 always the improved formalism will be used.

The generalized box dimension D0 is by definition the usual box counting
dimension of the support of the measure under consideration. In this sense the
Dq are direct generalizations of the usual box counting dimension.

Another important property of the Dq-spectrum is its invariance with respect
to bi-Lipschitz maps in the following sense.

Definition 2.3 Induced mapping of Borel measures Let f : R
n → R

n be
a Borel measurable function. Then f also defines a function f# on the Borel
measures on R

n by

f#(µ)(X) := µ(f−1(X)) (2.13)

where X is an arbitrary measurable set. For more details cf e. g. [Bau90].

Lemma 2.4 Invariance of Dq with respect to bi-Lipschitz maps Let µ
be a bounded Borel measure on R

n and f a bi-Lipschitz map on R
n, i.e. there

exists a number L > 1 such that L−1‖y − x‖ ≤ ‖f(y)− f(x)‖ ≤ L‖y − x‖. Then

Dq(f#(µ)) = Dq(µ) . (2.14)

The proof is given in [Rie95]. It is easy to see that it is sufficient that the
function f is bi-Lipschitz on the support of the measure µ which will be the case
in the treatment of the measure of the local magnetization of the one-dimensional
random field Ising model in chapter 4.

An entity related to the Dq-spectrum but measuring the local scaling proper-
ties rather than the global singularity structure of the measure is the pointwise
dimension. It sometimes also is called local dimension, Hölder exponent or sin-
gularity.
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Definition 2.5 Pointwise dimension Let µ be a bounded Borel measure on R
n

and x ∈ supp µ. Then the upper and lower pointwise dimension of µ at x are
given by

Dp(x; µ) = αµ(x) := lim inf
ε→0

log µ(Bε(x))

log ε
and (2.15)

Dp(x; µ) = αµ(x) := lim sup
ε→0

log µ(Bε(x))

log ε
. (2.16)

In the usual case that both values are identical Dp(x; µ) := Dp(x; µ) = Dp(x; µ)
is the pointwise dimension of µ at x.

The intuition behind the definition of the pointwise dimension is that the lower
the value of Dp(x; µ) is the stronger the measure µ scales at the point x. For exam-
ple, a Dirac measure δ(x) at x ∈ R has the pointwise dimension Dp(x; δ(x)) = 0,
the Lebesgue measure on R has Dp(x; λ) = 1 at any x ∈ R and a measure on
R with vanishing density at x has Dp(x; µ) ≥ 1. The definition of the pointwise
dimension does not need to be refined with enlarged boxes as unnaturally small
overlaps with the support of the measure are a priori excluded.

The pointwise dimension is if not invariant then at least ‘covariant’ with
respect to bi-Lipschitz maps.

Lemma 2.6 Covariance of Dp with respect to bi-Lipschitz maps Let µ
be a bounded Borel measure on R

n and x ∈ supp µ such that Dp(x; µ) exists.

Furthermore, let f : R
n → R

n be a bi-Lipschitz map. Then

Dp(f(x); f#(µ)) = Dp(x; µ) . (2.17)

The result is also true for the upper and lower pointwise dimensions separately
if they are not equal. The covariance of Dp will also play an important role in
chapter 4. The proof is given in B.2. As for the invariance of the Dq-spectrum
with respect to bi-Lipschitz maps it is sufficient that the function f is bi-Lipschitz
on the support of the measure µ.

An alternative to the Dq-spectrum is the so-called f(α)-spectrum which is
more popular in the mathematical community. It was first introduced by Halsey,
Jensen, Kadanoff, Procaccia and Shraiman [HJK+86] but various different and
not always equivalent definitions have been used since then. The following defi-
nition was taken from [Fal90].

Definition 2.7 f(α)-spectrum Let µ be a bounded Borel measure on R
n and

{bε
i}i∈N the usual mesh of cubes covering R

n. For any α ≥ 0 let Nε(α) := #{i :
µ(bε

i ) ≥ εα}, i. e. the number of boxes which have at least measure εα. If the
twofold limit exists it defines

f(α) := lim
δ→0

lim
ε→0

log(Nε(α + δ) − Nε(α − δ))

− log ε
. (2.18)
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This definition is also sometimes referred to as the coarse multifractal spectrum,
cf [Fal97].

The definition already suggests the interpretation that f(α) characterizes the
fractal dimension of sets with a given pointwise dimension. In many examples
this can be made precise in the sense that

f(α) = DH({x ∈ R
n : Dp(x; µ) = α}) (2.19)

in which DH denotes the usual Hausdorff dimension of point sets in R
n. Some

authors use this as a definition of fH(α) and refer to it as the fine multifractal
spectrum.

The Dq-spectrum and the f(α)-spectrum are in some sense equivalent as for
many examples they are Legendre transforms of each other. This is sometimes
called the multifractal formalism [Rie95, LN99].

Theorem 2.8 For large classes of measures, including self-similar and self-affine

measures with certain disjointness conditions of the support and cookie cutters1

without overlap, τ(q) = (1 − q)Dq is the Legendre transform of f(α), i.e.

τ(q) = inf
α≥0

(f(α) − q α) . (2.20)

The proof of this statement for different classes of measures can be found in
[Ols95, Rie95, RM95, LN99, Fal90, Fal97, PW97] and related articles. On the
other hand there are also exceptions, cf e. g. [RM98]. In typical examples the
f(α)-spectrum is differentiable in α, concave and identically zero outside some
interval [αmin, αmax]. Exceptions to this rule are the so-called left-sided measures,
cf [MEH90, HGH00]. For differentiable f(α) and τ(q) the Legendre transform
can be written as

τ(q) = f(α(q)) − q α(q) with α(q) = − d

dq
τ(q) . (2.21)

From this one easily deduces f(α(1)) = α(1) = D1 and f(α(0)) = D0 such that
the typical f(α)-spectrum has the form shown in figure 2.1b.

As it inspires one of the numerical techniques to obtain Dq-spectra used below
the definition of DH

q according to [HJK+86] should also be mentioned.

Definition 2.9 Generalized Hausdorff dimensions Let µ be a bounded Bo-
rel measure on R

n, {Sε
i }i∈N a disjoint ε-covering of supp µ, i. e. εi := |Sε

i | ≤
ε ∀ i ∈ N, and pε

i := µ(Sε
i ). Let Γ(q, τ, {Sε

i }, ε) :=
∑

i∈N
pq

i · ετ
i and

Γ(q, τ, ε) :=

{

sup{Sε
i }

Γ(q, τ, {Sε
i }, ε) (q ≥ 1, τ ≤ 0)

inf{Sε
i }

Γ(q, τ, {Sε
i }, ε) (q ≤ 1, τ ≥ 0)

. (2.22)

1Non-linear analog of Cantor sets, cf [Fal97]
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Finally, Γ(q, τ) := limε→0 Γ(q, τ, ε). Then there is a unique function τ(q) with

Γ(q, τ) =

{

∞ (τ < τ(q))
0 (τ > τ(q))

(2.23)

and the generalized Hausdorff dimension is defined by

DH
q :=

1

1 − q
τ(q) . (2.24)

The missing cases q ≥ 1, τ ≥ 0 and q ≤ 1, τ ≤ 0 in (2.22) are of no significance
as for any choice of {Sε

i }, Γ(q, τ, {Sε
i }, ε) tends to 0 and ∞ for ε → 0 respectively

in these cases.

For q = 0 the definition is exactly the definition of the Hausdorff dimension of
the support of the measure µ, i. e. DH

0 (µ) = DH(supp µ) and therefore DH
q is a

generalization of the Hausdorff dimension as suggested by the notation. Already
the usual box counting dimension and the Hausdorff dimension are not equivalent.
Therefore, Dq and DH

q are in general not equivalent but in full analogy with the
dimensions of point sets they coincide in many examples. Like the improved
generalized box dimensions Dq correspond to the coarse multifractal spectrum
f(α), the generalized Hausdorff dimensions DH

q correspond to the fine multifractal
spectrum fH(α). In chapter 3 and 4 the idea of a stationary partition function
Γ(q, τ, ε) for decreasing ε will be used for numerical estimates of DH

q .
There are also generalized dimensions based on packing dimensions which are

similar to the improved generalized box dimensions Dq presented here. For more
details cf [Ols95, LN99, Fal97].

2.2 Random iterated function systems

Typical examples of multifractal measures are invariant measures of iterated func-
tion systems and random iterated function systems. A random iterated function
system consists of N measurable functions fi : R

n → R
n and N probabilities

ρi > 0,
∑N

i=1 ρi = 1. The functions fi are applied iteratively to an initial value
x0, each fi with probability ρi, i. e. xn = fi(xn−1) with probability ρi.

Viewing xn as a random variable on R
n this iteration induces an iteration

for the probability measure µn of xn which is the Frobenius-Perron or Chapman-
Kolmogorov equation

µn(X) =
N

∑

i=1

ρifi#µn−1(X) =
N

∑

i=1

ρiµn−1(f
−1
i (X)) (2.25)

for any Borel measurable set X. The equation is sometimes formulated with a
Frobenius-Perron operator, µn(X) = Fµn−1(X). F is a linear operator on the
vector space of bounded Borel measures on R

n.
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It is sometimes convenient to use densities and in the case of measures on
R distribution functions as well. The densities will be denoted by pn and the
distribution functions by Pn. The Frobenius-Perron equations for these read

pn(x) =
N

∑

i=1

ρi
pn−1(f

−1
i (x))

∣

∣f ′
i(f

−1
i (x))

∣

∣

and Pn(x) =
N

∑

i=1

ρi Pn−1(f
−1
i (x)) . (2.26)

A measure µ is invariant with respect to — or a fixed point of — the Frobenius-
Perron equation if µ = Fµ. Such invariant measures are typically multifractal
measures.

An important tool to investigate the convergence of the sequence of mea-
sures µn of a random iterated function system to an invariant measure µ and of
the uniqueness of the invariant measure is the Hutchinson metric introduced by
Hutchinson [Hut81].

Definition 2.10 Hutchinson metric Let µ and ν be Borel probability measures
on R

n. Then the Hutchinson metric is defined by

dHutch(µ, ν) := sup
{∣

∣

∫

fdµ −
∫

gdν
∣

∣ : Lip(f) ≤ 1
}

(2.27)

where Lip(f) is the Lipschitz constant of f : R
n → R.

The Hutchinson metric is indeed a metric and the induced topology is equivalent
to the weak topology of measures for probability measures with compact support,
cf [Hut81].

The following theorem is useful for characterizing the measure of the effective
field of the one-dimensional random field Ising model.

Theorem 2.11 Existence and uniqueness of the invariant measure
If all fi, i = 1, . . . , N , are contractions then the Frobenius-Perron operator F
is a global contraction with respect to the Hutchinson metric and by virtue of

Banach’s fixed point theorem a unique invariant measure µ exists.

The proof can be found in [Hut81] for the case of similitudes but directly gen-
eralizes to arbitrary contractions fi in an obvious way. The uniqueness of the
invariant measure implies ergodicity in the sense that the invariant measure can
not be decomposed into two non-trivial invariant measures. Furthermore, the
support of the invariant measure is the attractor of the random iterated function
system.

The definitions and relations presented in this chapter are of course only a
tiny fraction of the existing multifractal theory and the theory of iterated function
systems. Nevertheless the material presented should be sufficient to understand
the investigations of the random field Ising model in the following chapters.



Chapter 3

Multifractal properties of the
effective field of the
one-dimensional random field
Ising model

In this chapter the one-dimensional random field Ising model with quenched
disorder is considered. For N spins the Hamiltonian is

HN({s}N) = −J
b−1
∑

i=a

sisi+1 −
b

∑

i=a

hisi (3.1)

with a < 0 < b and b − a + 1 = N . The symbol si denotes the classical spin at
site i taking values ±1, J is the coupling strength between spins and hi is the
random field at site i. The random fields are independent identically distributed
random variables with probability density

ρ(hi) =
1

2
δ(hi − h) +

1

2
δ(hi + h), h ∈ R

+, (3.2)

i. e. the random fields are h or −h with probability 1
2
.

The canonical partition function ZN =
∑

{s}N
exp(−βHN({s}N)) can be re-

formulated to the partition function of the spin sa at the left boundary of the
chain in an effective field x

(N)
a . This reformulation was first introduced by Ruján

[Ruj78] and is explained in more detail in appendix B.3. It results in

ZN =
∑

sa=±1

exp β
(

x(N)
a sa +

b
∑

i=a+1

B
(

x
(N)
i

)

)

(3.3)

x
(N)
i = A(x

(N)
i+1) + hi, x

(N)
b+1 = 0 (3.4)

19
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where
A(x) = (2β)−1 log(cosh β(x + J)/ cosh β(x − J)) (3.5)

B(x) = (2β)−1 log(4 cosh β(x + J) cosh β(x − J)) . (3.6)

The initial condition x
(N)
b+1 = 0 corresponds to free boundary conditions. Equation

(3.4) defines a random iterated function system with functions {f− = A−h, f+ =
A + h} and probabilities ρ− = ρ+ = 1

2
. When viewing (3.4) as a random iterated

function system, xn instead of x
(N)
i will be used to denote the effective field

after n = N − i + 1 iterations of (3.4). The effective fields xn are random

variables on the probability space of the random fields and p
(x)
n (x) denotes their

induced probability density, P
(x)
n (x) =

∫ x

0
p

(x)
n (ξ)dξ their distribution function and

µ
(x)
n (X) =

∫

X
p

(x)
n their measures following the nomenclature of random iterated

function systems introduced in section 2.2. The Frobenius-Perron or Chapman-
Kolmogorov equation for the distribution functions then is

P (x)
n (x) =

∫

dh ρ(h)P
(x)
n−1

(

A−1(x − h)
)

=
∑

σ=±

1

2
P

(x)
n−1

(

f−1
σ (x)

)

(3.7)

where P
(x)
0 (x) = Θ(x). Here Θ : R → {0, 1} is the Heaviside function. The choice

of P
(x)
0 decodes the free boundary conditions corresponding to x

(N)
b+1 = 0. The

densities and measures obey corresponding Frobenius-Perron equations. As the
functions f− and f+ are global contractions for all T > 0, the Frobenius-Perron

equation has a unique invariant measure µ(x) and the measures µ
(x)
n converge

to µ(x) in the weak topology of Borel measures on R for any initial probability
measure µ

(x)
0 , cf section 2.2. The invariant measure µ(x) therefore is the measure

of the effective field x in the thermodynamic limit b → ∞ (n → ∞ in the notation
of the random iterated function system) for arbitrary boundary conditions and
the support of µ(x) is the attractor of the random iterated function system, cf
section 2.2.

The case T = 0 is discussed in detail in [BZ87b, BZ88b, BPZ90, Igl94] and
will not be considered in this work.

The effective field can directly be interpreted as the local magnetization at
the boundary because the latter is given by

mboundary = 〈sa〉 = tanh βx. (3.8)

The probability measure of the local magnetization at the boundary is thus
tanh β#µ(x) which has the same Dq-spectrum as the effective field itself because
x 7→ tanh βx is bi-Lipschitz on any bounded set and the support of the invariant
measure of the effective field is compact, cf lemma 2.4. The physically more inter-
esting magnetization in the bulk on the other hand has a much more complicated
structure and will be treated in chapter 4.
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Figure 3.1 a) Iterated function system in the non-overlapping case (β = J = 1,
h = 1.3). The first order bands do not overlap leaving the (first order) gap in the
support. The dotted lines are the asymptotic values of f+ and f− for x → ∞ and
x → −∞ respectively. b) Overlapping case (β = J = 1, h = 0.6). The first order
bands overlap in the middle forming the (first order) overlap O. The dotted lines
are again the asymptotic values of f+ and f−.

3.1 Basic properties and notations

Before the multifractal structure of the effective field is investigated in detail it
is necessary to delineate some basic properties of the random iterated function
system (3.4) and to fix some notations.

The functions f− and f+ are shown in figure 3.1. They are smooth, strictly
monotonically increasing, globally contracting and have unique attracting fixed
points x∗

− and x∗
+ respectively. Because of the symmetry of the distribution of

the random fields (3.2) and as A(x) = −A(−x) the fixed points are symmetric
to the origin, i. e. x∗

+ = −x∗
−.

It turns out to be extremely useful to introduce a symbolic dynamic for the
random iterated function system. Σn := {−, +}n denotes the set of n-tuples {σ}n

of symbols − and + and Σ the set of infinite sequences {σ} of such symbols.
Note that the n-tuples as well as the infinite sequences are ordered despite the
notation with curly brackets. This slightly non-standard notation was chosen for
consistency with earlier work, e. g. [BZ87a, BZ87b, BZ88b]. For a given {σ} ∈ Σ
the head of the n leftmost symbols is denoted by {σ}n and is viewed as an element
of Σn in the obvious way.

The notation f{σ}n
is used for the composition f{σ}n

(x) = fσ1 ◦fσ2 ◦ . . .◦fσn
(x)

of the functions f+ and f−. For any n-tupel {σ}n ∈ Σn the composite function
f{σ}n

is smooth, strictly monotonically increasing and globally contracting be-
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cause f− and f+ have these properties. It thus also has a unique fixed point
x∗
{σ}n

∈ I.
With the notation of composite functions the n-th iterate of the Frobenius-

Perron equation (3.7) can be written as

P (x)
n (x) =

∑

{σ}n

1

2n
P

(x)
0

(

f−1
{σ}n

(x)
)

(3.9)

which in the limit n → ∞ is a path integral in the space of symbolic dynamics.
The interval I := [x∗

−, x∗
+] is called invariant interval and fulfills f−(I) ∪

f+(I) ⊆ I. The images I{σ}n
:= f{σ}n

(I) of the composite functions f{σ}n
are

called bands of order n and play an important role in the analysis of pointwise
dimensions of the invariant measure µ(x). The fixed points x∗

{σ}n
are elements

of the corresponding bands I{σ}n
. Let now {σ} ∈ Σ be some fixed symbolic

sequence. As f±(I) ⊂ I and f{σ}n+1 = f{σ}n
◦fσn+1 the higher order band I{σ}n+1 =

f{σ}n
(fσn+1(I)) is contained in I{σ}n

and inductively I{σ}m
⊆ I{σ}n

for m > n.
If the first order bands do not overlap, i. e. I− ∩ I+ = ∅ then the (first order)

gap is denoted by ∆ := I\(I− ∪ I+) = [f−(x∗
+), f+(x∗

−]. If they do overlap the
(first order) overlap is denoted by O := I−∩ I+ = [f+(x∗

−), f−(x∗
+)]. The structure

of the first order bands is repeated in higher orders such that if the first order
bands do not overlap neither do the higher order bands and if they overlap the
higher order bands also do. The first case is called the non-overlapping case and
the second one the overlapping case, cf also figure 3.1.

The limit limn→∞ f{σ}n
(x0) exists for any {σ} ∈ Σ and x0 ∈ I and does not

depend on x0. It therefore is meaningful to define x∗
{σ} := limn→∞ f{σ}n

(x0) and

the (constant) function f{σ} : I → I, f{σ}(x) = x∗
{σ}. By this definition x∗

{σ}

is the unique fixed point of f{σ}. If {σ} is periodic, i. e. {σ} = ({σ}n)∞ then
x∗
{σ} = x∗

{σ}n
. In this sense the fixed points x∗

{σ} to arbitrary sequences {σ} are a
direct generalization of the fixed points x∗

{σ}n
of finite iterations f{σ}n

.

In the same way as for every {σ} ∈ Σ the fixed point x∗
{σ} ∈ supp µ(x) exists

the reverse statement is also true. For any x ∈ supp µ(x) a symbolic sequence
{σ} ∈ Σ exists such that x = x∗

{σ}. In the non-overlapping case this relation is
one to one. For more details cf appendix B.5

3.2 Known transitions in the Dq-spectrum

In this section previous work on transitions in the Dq-spectrum of the invariant
measure µ(x) and its measure density is briefly summarized. For large random
field amplitude h the support of µ(x) is totally disconnected and is similar to a
multi-scale Cantor set [BZ88b].

At a critical value h
(1)
c of h the support of µ(x) becomes connected for all

h ≤ h
(1)
c [NMO85]. The value of h

(1)
c is determined by the overlap condition for
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Figure 3.2 Generalized fractal dimensions Dq of the invariant measure of the
effective field for q = −20, −6, −3, −2, −1, 0, 1, 2, 4, 20 versus the amplitude h of
the random field for β = J = 1. The results were computed with the method of the

new natural partition, cf appendix A.1. At the critical values h
(n)
c , n = 1, . . . , 4,

and h
(2a)
c transitions take place in the Dq-spectrum. The details are explained in

sections 3.2 and 3.4. The solid line coinciding with the values of D1 for h > h
(1)
c

was obtained using D1 = D̂p and (3.37) evaluated as an R-integral, cf [Eda95].
The details are given in subsection 3.3.1.

the first bands, f−(x∗
+) = f+(x∗

−). This results in [BL92]

h(1)
c =

1

2β
arcosh

(

(e2βJ − 1)/2
)

. (3.10)

The transition can be seen in the densities p
(x)
n of the approximations µ

(x)
n of the

invariant measure µ(x) [BL92]. In the Dq-spectrum the transition is visible as the
point where D0 becomes 1, cf figure 3.2. The critical temperature beyond which
a transition of this type ceases to exist is given by the condition h

(1)
c = 0 leading

to

1

kBT
(1)
c

= β(1)
c =

1

2J
log 3 . (3.11)

All Dq with q < 0 collapse to the value 1 at a critical field strength h
(2)
c of the

random field. This has been explained by changes in the pointwise dimension of
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certain orbits [PBL95, Pat97] leading to the condition

f−(x∗
+) = x∗

{+−} at h = h(2)
c . (3.12)

The pointwise dimension of orbits and the explanation of this transition are
discussed in detail below.

The approximating densities p
(x)
n of the invariant measure diverge at x∗

± in

the limit n → ∞ for h > h
(3)
c and converge to 0 for h < h

(3)
c where h

(3)
c <

h
(1)
c is another critical random field amplitude, cf [BL92]. Divergence occurs for

f ′
±(x∗

±) < 1
2

and convergence to 0 for f ′
±(x∗

±) > 1
2
. Therefore, the critical value

h
(3)
c is [BL92]

h(3)
c =

1

β
arsinh

(

2−
3
2 (1 − 9e−4βJ)

1
2

)

. (3.13)

In terms of the pointwise dimension the corresponding condition is Dp(x
∗
±) = 1.

The transition can be observed in numerically generated densities p
(x)
n [BL92].

In [BvHK+93] it was shown that D−∞ = 1 at h
(3)
c and D−∞ > 1 for h < h

(3)
c .

Therefore, the transition also is visible in the Dq-spectrum as the value of h at
which D−∞ starts to grow beyond 1 again for decreasing h, cf figure 3.2. The

critical temperature for this transition is determined by h
(3)
c = 0 yielding

1

kBT
(3)
c

= β(3)
c =

1

2J
log 3 (3.14)

i. e. the critical temperature T
(3)
c is always the same as T

(1)
c .

The fourth known transition occurs at h
(4)
c ≤ h

(3)
c where the slope of the

approximating measure densities p
(x)
n at x∗

± converges to 0 for h < h
(4)
c and

diverges for h > h
(4)
c in the limit n → ∞. The condition for this transition is

f ′
σ(x∗

σ) = 2−1/2 [BvHK+94] resulting in [BL92]

h(4)
c =

1

β
arsinh

(

3 · 2− 5
2 − 1

2
− (3 · 2− 5

2 + 1
2
)e−4βJ

)
1
2 . (3.15)

In terms of the pointwise dimension the condition for the transition is Dp(x
∗
±) = 2.

The transition is visible in numerically generated densities p
(x)
n [BL92] but not in

the Dq-spectrum, cf figure 3.2. Again, D−∞ can be calculated analytically and

is D−∞ = 2. In fact, D−∞ can be calculated analytically for all h < h
(3)
c because

for this parameter region the scaling of the invariant measure at its boundary
is weaker than at any other point and it therefore is possible to give lower and
upper bounds on Dq which for q → −∞ converge to a common value, cf [Eva87]

and section 3.5. The critical temperature for the transition at h
(4)
c is determined

by h
(4)
c = 0 resulting in

1

kBT
(4)
c

= β(4)
c =

1

4J
(log(3 + 2

√
2) − log(3 − 2

√
2)) . (3.16)
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Note that the third and fourth transition discussed in this section only depend
on the measure at the boundary of its support and therefore are sometimes not
viewed as real multifractal effects.

3.3 Pointwise dimension of orbits

The points of supp µ(x) can be grouped into orbits in a natural way. This concept
is extremely useful in the investigation of the pointwise dimensions of the invariant
measure µ(x).

Definition 3.1 Orbit The orbit to a given sequence {σ} ∈ Σ consists of the
preimages f−1

{σ}n
(x∗

{σ}) of the corresponding fixed point x∗
{σ}.

In the case of a periodic sequence {σ} = ({σ}n)∞ the orbit consists of the n fixed
points of the finite compositions fπ{σ}n

where π denotes a cyclic permutation.
Any point x = x∗

{σ} is contained in at least all orbits {σ̃}n{σ} with arbitrary

head {σ̃}n and fixed tail {σ}. This implies that it belongs to at least countably
infinitely many orbits.

3.3.1 Pointwise dimension of orbits outside the overlap

The following technical lemma is very useful for the calculation of the pointwise
dimension at the points of a certain class of orbits.

Lemma 3.2 Let (x(n)

i ∈ I{σ}i
)i=1,...,n and (x̃(n)

i ∈ I{σ}i
)i=1,...,n be given for all n ∈

N and a fixed symbol sequence {σ}. Then, for any strictly positive differentiable

function φ,

lim
n→∞

1

n

n
∑

i=1

(

log φ(x(n)

i ) − log φ(x̃(n)

i )
)

= 0 . (3.17)

If the limit limn→∞
1
n

∑n
i=1 log φ(x(n)

i ) exists the lemma implies that it is inde-
pendent of the choice of {x(n)

i : i = 1, . . . , n; n ∈ N} provided each x(n)

i is an
element of I{σ}i

. The lemma will be used with φ = A′ below. The proof is given
in appendix B.7.

For periodic orbits which never touch the overlap O the pointwise dimension
exists and can be calculated explicitly.

Lemma 3.3 Let {σ} ∈ Σ be a periodic sequence {σ} = ({σ}n)∞ with period

n such that no point of the corresponding orbit is in the overlap. Then the

pointwise dimension at x∗
{σ} = x∗

{σ}n
exists and

Dp(x
∗
{σ}n

; µ(x)) =
− log 2

1
n

∑n
i=1 log A′

(

f−1
{σ}i

(x∗
{σ}n

)
) . (3.18)
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Proof. Let throughout this proof x∗ denote x∗
{σ}n

for simplicity of notation. Note
that the sum in the denominator extends exactly over all points of the periodic
orbit. As the overlap is a closed set its complement is open and because the orbit
{σ}n has a finite number of points there exists ε > 0 such that all preimages
f−1
{σ}i

(f{σ}n
(Bε(x

∗))), i = 1, . . . , n, do not intersect the overlap O. Therefore, the

n-fold application of the Frobenius-Perron equation (3.7) has only one term for
this ε and yields

µ(x)
(

f{σ}n
(Bε(x

∗))
)

=
1

2n
µ(x)(Bε(x

∗)) . (3.19)

As f{σ}n
is a contraction

|f{σ}n
(x) − x∗| = |f{σ}n

(x) − f{σ}n
(x∗)| < |x − x∗| (3.20)

implying

f{σ}n
(Bε(x

∗)) ⊂ Bε(x
∗) . (3.21)

Therefore, f−1
{σ}i

(f{σ}kn
(Bε(x

∗))) ∩ O = ∅ for i = 1, . . . , kn and any k ∈ N. This

allows to iterate equation (3.19) to obtain

µ(x)
(

f{σ}kn
(Bε(x

∗))
)

=
1

2kn
µ(x)(Bε(x

∗)) . (3.22)

Now define

δmax
k := max

x∈Bε(x∗)

(

f{σ}kn

)′
(x) ε (3.23)

δmin
k := min

x∈Bε(x∗)

(

f{σ}kn

)′
(x) ε . (3.24)

Using
(

f{σ}kn

)′
(x) =

∏kn
i=1 f ′

σi

(

f−1
{σ}i

(f{σ}kn
(x))

)

and f ′
σi

= A′ leads to

δmax
k = max

x∈Bε(x∗)

kn
∏

i=1

A′
(

f−1
{σ}i

(f{σ}kn
(x))

)

ε (3.25)

and the same with the minimum instead of the maximum for δmin
k . As an imme-

diate consequence

δmax
k+1

δmax
k

≥
(

A′
min

)n
and

δmin
k+1

δmin
k

≥
(

A′
min

)n
(3.26)

where A′
min := minx∈I A′(x) > 0 such that (δmax

k )k∈N and (δmin
k )k∈N are admissible

sequences. On the other hand the mean value theorem applied to f{σ}kn
implies

Bδmin
k

(x∗) ⊆ f{σ}kn
(Bε(x

∗)) ⊆ Bδmax
k

(x∗) (3.27)
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such that

µ(x)(Bδmin
k

(x∗)) ≤ µ(x)
(

f{σ}kn
(Bε(x

∗))
)

≤ µ(x)(Bδmax
k

(x∗)) . (3.28)

Therefore,

Dp(x
∗; µ(x)) = lim sup

δ→0

log µ(x)(Bδ(x
∗))

log δ
= lim sup

k→∞

log µ(x)(Bδmax
k

(x∗))

log δmax
k

(3.29)

≤ lim sup
k→∞

log µ(x)
(

f{σ}kn
(Bε(x

∗))
)

log δmax
k

. (3.30)

Inserting (3.22) and (3.25) leads to

Dp(x
∗; µ(x)) ≤ lim sup

k→∞

−kn log 2 + log µ(x)(Bε(x
∗))

max
x∈Bε(x∗)

∑kn
i=1 log A′

(

f−1
{σ}i

(f{σ}kn
(x))

)

+ log ε
(3.31)

= lim sup
k→∞

− log 2

max
x∈Bε(x∗)

1
kn

∑kn
i=1 log A′

(

f−1
{σ}i

(f{σ}kn
(x))

) . (3.32)

The points f−1
{σ}i

(f{σ}kn
(x)), i = 1, . . . , kn, are elements of I{σi+1,...,σkn}. Therefore,

the average 1
kn

∑kn
i=1 log A′

(

f−1
{σ}i

(f{σ}kn
(x))

)

in the denominator does in the limit
k → ∞ not depend on the choice of x according to lemma 3.2 such that one can
choose x = x∗, drop the maximum and use f{σ}kn

(x∗) = x∗ for any k ∈ N to
obtain

Dp(x
∗; µ(x)) ≤ lim sup

k→∞

− log 2
1

kn
k

∑n
i=1 log A′

(

f−1
{σ}i

(x∗)
) (3.33)

=
− log 2

1
n

∑n
i=1 log A′

(

f−1
{σ}i

(x∗)
) . (3.34)

Repeating the calculation with the sequence (δmin
k )k∈N instead of (δmax

k )k∈N and
the limes inferior yields the opposite inequality for Dp such that Dp exists and is
equal to (3.34). �

Even though the main idea, the void intersection of neighbourhoods of the points
of a periodic orbit with the overlap and the consequences for the Frobenius-Perron
equation, is the same as in the clever argument given in [PBL95, Pat97] which
was somewhat refined also presented in [NPB01a], the rather tedious proof given
here is clearly more general. It does not depend on the a priori assumption of
existence of the pointwise dimension nor does it need the assumption of strong
scaling1. On the contrary, it is proved that the pointwise dimension exists for all
points of periodic orbits which do not touch the overlap.

1The assumption of strong scaling means that not only the existence of Dp(x;µ) but also
the existence of the limit limε→0 µ(Bε(x))/εDp is assumed which is a considerably stronger
assumption.
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head (finite) tail (infinite)

generic

+ − + + + −− + − + − + + + −− + − + + −−− + . . .
{σ}n {σ̃}

periodic (here period 3)

− + + − + + − + + − + + − + + − + + − + + − + + . . .
{σ}9 = {− + +}3 {− + +}∞

offshoot (arbitrary head, periodic tail)

+ − + + −−− + + − + + − + + − + + − + + − + + . . .
{σ}n {− + +}∞
head determines the
interval I{σ}n

3 x∗
{σ}

tail determines scaling at x∗
{σ}

Table 3.1 Illustration of the terminology of symbolic sequences and the different
roles played by head and tail. Note, that the head consists of the symbols belonging
to the functions applied last and the infinite tail to those applied first. This
notation corresponds to the consideration of so-called α-limits which is often the
most useful approach.

Equation (3.18) is invariant with respect to cyclic permutations of {σ}n.
Therefore, the invariant measure has the same pointwise dimension at all points
of a periodic orbit for which lemma 3.3 applies. A short calculation using the
Frobenius-Perron equation (3.7) shows that the pointwise dimension at arbitrary
points x and fσ(x) are the same provided fσ(x) is not in the overlap, cf appendix
B.6. The argument can be iterated such that µ(x) has the same pointwise dimen-
sion at x and all its images f{σ̃}m

(x) if no point f−1
{σ̃}i

(f{σ̃}m
(x)), i = 1, . . . m is in

O. Therefore, not only the pointwise dimension at all points of a periodic orbit
are the same but also the pointwise dimensions at all points of non-periodic orbits
in case the orbit does not touch the overlap O. For this reason the terms the
pointwise dimension of an orbit or the local dimension of an orbit are sometimes
used.

For orbits of the form {σ̃}m({σ}n)∞ the pointwise dimension is determined by
the periodic tail ({σ}n)∞. Non-periodic orbits of this type will be called offshoots
of the corresponding periodic orbit. The roles played by the head and the tail of a
sequence {σ} ∈ Σ are summarized in table 3.1. Note that the choice of the length
of the head is arbitrary, in a sense. Similar structures have been considered in
[BL90].

In the non-overlapping case the pointwise dimension of an even larger class
of orbits can be calculated due to the fact that in this case all predecessors of
points with respect to the iteration of (3.4) are unique.
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Lemma 3.4 If there is no overlap and the limit

lim
n→∞

1

n

n
∑

i=1

log A′
(

f−1
{σ}i

(x∗
{σ})

)

(3.35)

exists for {σ} ∈ Σ then the pointwise dimension at x∗
{σ} also exists and is given

by

Dp(x
∗
{σ}; µ

(x)) = lim
n→∞

− log 2
1
n

∑n
i=1 log A′

(

f−1
{σ}i

(x∗
{σ})

) . (3.36)

Even though the proof is very similar to the proof of lemma 3.3 it is not quite the
same. It is given in full detail in appendix B.8. Elton’s ergodic theorem [Elt87]
implies that the assumption of the existence of (3.35) is fulfilled for almost all
{σ} which corresponds to µ(x)-almost sure existence of the pointwise dimension
Dp(x; µ(x)). Elton’s ergodic theorem together with (3.36) further implies that for
µ(x)-almost all x the pointwise dimension has the same value

Dp(x; µ(x))
µ(x)-a.s.

=
− log 2

∫

log A′(ξ) µ(x)(dξ)
=: D̂p. (3.37)

This result has direct consequences for the information dimension D1. Proposi-
tion 2.1. in [You82] implies that

f(D̂p) = DH({x ∈ I : Dp(x) = D̂p}) = D̂p (3.38)

in which DH denotes the Hausdorff-dimension. General properties of the multi-
fractal f(α)-spectrum imply that α(1) is the only fixed point of f(α) and that
α(1) = D1, cf section 2.1 and [Fal90]. Therefore, (3.38) implies α(1) = D̂p and

thus D̂p = D1. This is illustrated by the solid line in figure 3.2 on page 23 which

coincides with the numerically obtained values of D1 for h > h
(1)
c . It was obtained

by calculation of (3.37) using Edalat’s R-integration [Eda95] for the integral in
the denominator.

It also easily can be checked that using a randomly chosen sequence {σ} the
value obtained from (3.36) yields the same value with probability 1.

Note that the restriction to almost all {σ} above is necessary because the sum
in (3.35) does not converge for all {σ} ∈ Σ as the following example shows.

Example 3.1 Let {σ} := {(+)ik(+−)jk
}k∈N with ik = 222k

and jk = 222k+1
. Fur-

thermore, denote nk :=
∑k

l=1 il +
∑k−1

l=1 jl and mk :=
∑k

l=1 il +
∑k

l=1 jl such that
nk are the positions at the end of the (+) series in {σ} and mk the positions at
the end of the (+−) series. Then

snk
:=

1

nk

nk
∑

i=1

log A′
(

f−1
{σ}i

(x∗
{σ})

)

(3.39)
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∼ 1

nk

mk−1
∑

i=1

log A′
(

f−1
{σ}i

(x∗
{σ})

)

+
ik
nk

log A′(x∗
+) (3.40)

as the repeated application of f+ brings the orbit close to x∗
+ very fast. The limit

of the first term for k → ∞ is 0 as the sum has only mk−1 terms and mk−1/nk

converges to 0. The second term converges to log A′(x∗
+) as ik/nk converges

to 1. Therefore, limk→∞ snk
= log A′(x∗

+). On the other hand limk→∞ smk
=

log A′(x∗
{+−}) by a similar argument. Therefore, the limit limn→∞ sn does not

exist.

3.3.2 Pointwise dimension of points in the overlap

In lemmata 3.3 and 3.4 it was essential that no point of the orbit under consid-
eration was in the overlap O such that the Frobenius-Perron equation (3.7) had
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only one term. If some point x is in the overlap O though the Frobenius-Perron
equation has two terms corresponding to the two predecessors of x. If the point-
wise dimension exists at the two predecessors then it also exists at x and is the
minimum of the dimensions at the predecessors.

Lemma 3.5 Let x ∈ O such that Dp(f
−1
− (x); µ(x)) and Dp(f

−1
+ (x); µ(x)) exist.

Then the pointwise dimension Dp(x; µ(x)) exists and is given by

Dp(x; µ(x)) = min{Dp(f
−1
− (x); µ(x)), Dp(f

−1
+ (x); µ(x))} . (3.41)

Sketch of proof. Writing x1 := f−1
− (x), x2 := f−1

+ (x), α1 := Dp(x1; µ
(x)) and

α2 := Dp(x2; µ
(x)) the invariant measure scales like

µ(x)(Bε(x1)) ∼ εα1 and µ(x)(Bε(x2)) ∼ εα2 (3.42)

such that the measure at x scales according to the Frobenius-Perron equation
roughly like

µ(x)(Bε(x)) ∼ 1
2
(εα1 + εα2) ∼ εmin{α1,α2}. (3.43)

This implies Dp(x; µ(x)) = min{α1, α2}. �

The sketch of proof was taken from [PBL95, Pat97, NPB01a]. The exact proof
is rather tedious and can be found in appendix B.9. The mechanism of such
superseding of pointwise dimensions for points in the overlap is illustrated in
figure 3.3 for the example of an orbit which will be important in the next section.

When investigating the dependence of the Dq-spectrum on the physical pa-
rameters β, J and h it is most convenient to fix β and J and study the effects of
decreasing random field strength h because the structure in the non-overlapping
case, i. e. for large h, is rather well understood. With decreasing h the overlap
grows and more orbits have points in it. For orbits with pointwise dimension
smaller than or equal to the pointwise dimension of the additional predecessor
the entry into the overlap has no consequences. For orbits with large pointwise
dimension though the pointwise dimension is abruptly changed with the entry
into the overlap. In fact, at the value of h where the orbit first touches the
overlap the pointwise dimension of the additional predecessor is the pointwise
dimension of the fixed points x∗

± which is rather small because A′(x∗
±) is small.

Therefore, orbits with pointwise dimension larger than the local dimension of x∗
±

are guaranteed to change their pointwise dimension as soon as they touch the
overlap. This change in the pointwise dimension may have a major impact on
the Dq-spectrum if some or all of the large pointwise dimensions have already
been superseded.
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Figure 3.4 Mapping of subintervals of I = [x∗
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+] by f+ and f− elucidating
the importance of the interval [x∗

{−+}, x
∗
{+−}]. The latter is mapped onto parts

of the outer intervals [x∗
−, x∗

{−+}] and [x∗
{+−}, x

∗
+] by f− and f+ while these outer

intervals are themselves preimages of parts of [x∗
{−+}, x

∗
{+−}]. The points in the

overlap [f+(x∗
−), f−(x∗

+)] have two predecessors, one stemming from the left by f+

and one from the right by f− (all in the case of moderate overlap).

3.4 Further transitions in the Dq-spectrum

3.4.1 Transition at h(2)
c

A special role in the mechanism described above is played by the 1-orbits {+}
and {−}, because they never touch the overlap O, and by the 2-orbit {+−}. At
moderate overlap (small |O|) the situation is like illustrated in figure 3.4. Since
x∗
{+−} is mapped to x∗

{−+} and vice versa and because fσ is monotonic, all points
to the right of x∗

{+−} are mapped to the right of x∗
{−+} and all points to left of

x∗
{−+} are mapped to points left of x∗

{+−}. Therefore, any periodic n-orbit with

n > 2 must have at least one point inside [x∗
{−+}, x

∗
{+−}]. Hence, the {+−} orbit

is the last periodic orbit to touch O.

The {+−} orbit and its offshoots have a comparably large pointwise dimension
as the {+−} orbit always stays in regions with comparably large A′, cf equation
(3.18). For β and J in the vicinity of β = J = 1 one can show that the orbit {+−}
even has the largest pointwise dimension of all periodic orbits [Pat97]. Because of
its large pointwise dimension and the fact that all other periodic orbits and their
offshoots touch the overlap before x∗

{+−} does, the {+−} orbit and its offshoots
practically solely determine all Dq with q < 0 if h is close to the value for which
x∗
{+−} gets into the overlap. As soon as O includes x∗

{+−}, i. e. f−(x∗
+) ≥ x∗

{+−},

the large pointwise dimension of the {+−} orbit and its offshoots is superseded
by a smaller one and, as all other periodic orbits have been reached by O before,
all Dq with q < 0 collapse to Dq = 1 at this point. The critical value h

(2)
c at
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Figure 3.5 Collapse of the right part of the f(α)-spectrum at h
(2)
c and h

(2a)
c .

In a) the spectra at h = 0.49385 > h
(2)
c (dashed line) and h = 0.4938 < h

(2)
c

(solid line) are shown. In b) the spectra are at h = 0.8136 > h
(2a)
c (dashed line)

and h = 0.8128 < h
(2a)
c (solid line). The spectra were obtained by a numerical

Legendre transform of the corresponding Dq-spectra. These were generated with
the same algorithm as in figure 3.2 with a recursion depth of 21. (β = J = 1)

which the collapse takes place is thus given by the condition [Pat97, NPB01a]

f−(x∗
+) = x∗

{+−} . (3.44)

The collapse is clearly visible in the numerically generated Dq-spectra, cf figure
3.2 on page 23.

So far only periodic orbits and their offshoots were discussed. Other, non-
periodic orbits do not play a major role because they generically have the rather
small pointwise dimension D̂p = D1 and also generically have points inside
[x∗

{−+}, x
∗
{+−}] such that they touch O before the {+−} orbit does.

The drastic change in the Dq-spectrum has a counterpart in the f(α)-spec-

trum. For all h < h
(2)
c the right part of the spectrum has vanished since the large

pointwise dimensions have all been superseded by smaller ones, cf figure 3.5a. A
similar collapse of parts of the multifractal spectrum has previously been observed
in the superposition of equal-scale [Rad95] and multi-scale [RS96, SS97] Cantor
sets showing that effects of this type appear in a wide variety of applications.

The value of h
(2)
c can be calculated explicitly. In a first step explicit expressions

for x∗
+ = −x∗

− and x∗
{+−} = −x∗

{−+} are needed. The fixed point x∗
+ is defined by

f+(x∗
+) = x∗

+. With the notation z = e2βx∗
+ this yields the equation

z2 − (e2βJ(e2βh − 1))z − e2βh = 0 (3.45)

with the solution

x∗
+ =

1

2β
log

(

K +
√

K2 + e2βh
)

(3.46)
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where K = e2βJ(e2βh − 1)/2. To obtain x∗
{+−} one can exploit x∗

{+−} = −x∗
{−+} =

−f−(x∗
{+−}). With z = e2βx∗

{+−} this yields

z2 + e−2βJ(e2βh − 1)z − e2βh = 0 (3.47)

and therefore

x∗
{+−} =

1

2β
log

(

K̃ +
√

K̃2 + e2βh
)

(3.48)

with K̃ = e−2βJ(e2βh−1)/2. The condition (3.44) is equivalent to x∗
+ = x∗

{+−}+2h.
With the explicit expressions for x∗

+ and x∗
{+−} this yields after some elementary

algebra

k2(1 + 3z + 3z2 + 4z3 + 3z4 + 3z5 + z6) − z3 − k4z3 = 0 (3.49)

in the variables k = e2βJ and z = e2βh
(2)
c . Dividing by z3 and regrouping then

leads to

2
(

cosh(2βh(2)
c )

)3
+ 3

(

cosh(2βh(2)
c )

)2
=

(

cosh(2βJ)
)2

. (3.50)

This equation has exactly one real solution for cosh
(

2βh
(2)
c

)

resulting in

h(2)
c =

1

2β
arcosh

(

cosh(4
3
βJ) − 1

2

)

. (3.51)

There is a critical temperature (kBT
(2)
c )−1 = β

(2)
c such that no phase transition

of this type is possible for all β < β
(2)
c . It is given by the condition h

(2)
c = 0

corresponding to

1

kBT
(2)
c

= β(2)
c =

3

4J
arcosh(3

2
) =

1

2J
log

(

2 +
√

5
)

. (3.52)

With (3.44), (3.51) and (3.52) a complete analytical understanding of the occur-

rence and the position of the transition at h
(2)
c is achieved. The results are in

perfect agreement with the numerical data, cf figure 3.2 on page 23.

3.4.2 Transition at h
(2a)
c

The key to the explanation of the transition at h
(2)
c was the knowledge of the

pointwise dimension of the {+−} orbit and its significance for the generalized
dimensions Dq with q < 0. In the numerically generated Dq-spectrum another

smaller collapse of the Dq with q < 0 is visible at some critical field strength h
(2a)
c .

It is due to a similar mechanism as the one described in the previous subsection
but whereas a single orbit and some of its offshoots caused the transition at h

(2)
c ,
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the transition at h
(2a)
c is due to changes in the pointwise dimension of a family of

periodic orbits and some of their offshoots.
Consider the family {{+−−(+−)n} : n ∈ N} of periodic orbits. It has the

following properties.

• For large n most points of the {+−−(+−)n} orbit are close to x∗
{+−} and

x∗
{−+}. Provided no point of the orbit is in O its pointwise dimension is

therefore by virtue of (3.18) comparably large.

• The larger n the larger is the fraction of points in the vicinity of x∗
{+−} and

x∗
{−+} such that the pointwise dimension of the orbits is increasing with n.

• For each orbit {+−−(+−)n} the point zn := x∗
{+−−(+−)n}

is the one closest
to the origin and therefore the first one to get into O with decreasing h.

• The sequence of points (zn)n∈N is monotonically growing with n.

• f{+−−(+−)n}(x
(n)

0 ) converges to x∗
{+−−(+−)∞} for any choice of initial val-

ues x(n)

0 ∈ I in the limit n → ∞. Furthermore, f{+−−(+−)n}(zn) = zn

by definition of zn. Therefore, with x(n)

0 := zn one immediately deduces
limn→∞ zn = x∗

{+−−(+−)∞}.

Combining these properties it is clear that each orbit {+−−(+−)n} is affected by
the overlap as soon as zn ∈ O and that therefore the orbits with larger pointwise
dimension are affected later than the ones with lesser pointwise dimension for
decreasing h. From the last point it is clear that as long as x∗

{+−−(+−)∞} /∈ O there

are countably infinitely many orbits {+−−(+−)n} left which have no points in
O but as soon as x∗

{+−−(+−)∞} ∈ O all of the orbits have points in the overlap and
there pointwise dimension is therefore superseded. Thus, the pointwise dimension
at a considerable amount of points changes from a large value to a smaller one
at a sharp critical value. This causes the small collapse in all Dq with q < 0 at

h
(2a)
c and the critical field strength for this transition is therefore determined by

f−(x∗
+) = x∗

{+−−(+−)∞} = f{+−}(x
∗
{−+}) . (3.53)

The result is in perfect agreement with the numerically obtained positions of the
small collapse in the Dq-spectrum for q = −1, −2 and −3, cf figure 3.6.

The transition is also visible in the f(α)-spectrum. For h ↘ h
(2a)
c a cusp

develops and the spectrum collapses to a smooth form again at h
(2a)
c , cf figure

3.5b.
So far only the periodic orbits {+−−(+−)n} were considered neglecting their

offshoots. Each such orbit has countably many offshoots. From these offshoots
those originating from points left of O and containing exclusively additional −
as well as those originating from points to the right of O and only containing
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Figure 3.6 h
(2a)
c obtained from the analytical condition (3.53) (dashed line) com-

pared to the location of the small drops in Dq (error-bars), cf figure 3.2. The
errors are estimated and mainly due to the error in reading off the exact location
of the collapse in the numerically obtained Dq-spectra. The points were read off
the Dq-spectra for q = −1, −2 and −3, equally spaced in β. Points with small
error bars correspond to numerical data with especially fine steps in the random
field strength. (J = 1)

additional + are not touching the overlap as long as the corresponding periodic
orbit is not. Thus, at h

(2a)
c countably infinitely many periodic orbits with each

countably infinitely many offshoots of the described form lose their large pointwise
dimension at once. This gives a clue why this transition is visible in the Dq-
spectrum in contrast to events of single orbits (and their offshoots) changing
their local dimension at their entry into the overlap occurring at various values
of h.

The fact that the transition is not visible in Dq with large negative q is also eas-
ily understood in this framework. As the pointwise dimension of all {+−−(+−)n}
orbits is similar to but somewhat smaller than the pointwise dimension of the
{+−} orbit, the {+−} orbit and its offshoots dominate Dq for large negative q
and the transition is not visible.

There is also a critical temperature for this transition which is determined by
the condition h

(2a)
c = 0. Even though an explicit expression for h

(2a)
c could not be

found so far the explicit form of the critical temperature can be obtained after
some basic algebra. It is

1

kBT
(2a)
c

= β(2a)
c =

1

4J
log

(

19
3

+ 8
3

√
7 cos(π

3
− 1

3
arctan(3

√
3))

)

. (3.54)

Note that the symmetry of the system allows the same reasoning as above
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Figure 3.7 Double logarithmic plot of pn generated with the algorithm based
on the new natural partition, cf appendix A.1, at iteration depth 21. The nega-
tive peaks correspond to deep cuts in pn. The dotted lines mark the position of
x∗
{(+)k(+−)∞}, i.e. the points of the {+−} orbit and its offshoots, and the dash-

dotted lines the positions of x∗
{(+)k+−−(+−)∞}, i.e. the points of the {+−−(+−)∞}

orbit and its offshoots. In a) at random field h > h
(2a)
c deep cuts are visible at all

marked positions whereas in b) for h < h
(2a)
c the deep cuts at x∗

{(+)k+−−(+−)∞}

have vanished. They reappear in c) at a critical field strength h ≈ 0.5436 as

is discussed in the text whereas in d) for h < h
(2)
c all deep cuts have vanished.

(β = J = 1)

with the ‘opposite’ orbits {−++(−+)n} resulting in an equivalent result.

Even though the effect is due to the periodic orbits {+−−(+−)n} and their
offshoots, the orbit entering into condition (3.53) is an offshoot of the {+−} orbit,
namely {+−−(+−)∞}. This orbit thus plays a similar role as the {+−} orbit

for the transition at h
(2)
c .

In numerically generated approximations of pn a bunch of weakly scaling
points (deep cuts in the measure density) in the vicinity of x∗

{+−} and its offshoots

{(+)m(+−)∞} as well as x∗
{+−−(+−)∞} and its offshoots x∗

{(+)m+−−(+−)∞} can be
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Figure 3.8 Phase diagram for the transitions in the invariant measure of the one-

dimensional random field Ising model. The critical random field strengths h
(n)
c

are defined in the text. The remarkable fact that the lines of h
(2)
c and h

(3)
c as well

as the lines of h
(2a)
c and h

(3)
c intersect shows that there is a variety of different

scenarios depending on the choice of T . For example, at kBT = 1.3, the transition

at h
(2)
c precedes the one at h

(3)
c while the transition at h

(4)
c is non-existent. (J = 1)

seen for h > h
(2a)
c , cf figure 3.7a. For h

(2)
c < h < h

(2a)
c the weakly scaling points

around x∗
{+−−(+−)∞} and its offshoots have vanished, cf figure 3.7b. For h < h

(2)
c

all weakly scaling points have vanished, cf figure 3.7d.

The attentive reader will have noticed that it was argued that the large local
dimension of an orbit which touches the overlap O for some h0 but not for h > h0

is superseded by the small pointwise dimension of the {+} or the {−} orbit. For
smaller h the pointwise dimension of the second predecessor will be D1 in the
generic case and thus also rather small. It is not excluded though that two
large pointwise dimensions are combined resulting in a large pointwise dimension
even though the orbit touches the overlap. A prominent example of this effect
is the value of h for which x∗

{+−−(+−)∞} = x∗
{−++(−+)∞} = 0. At this random

field amplitude new deep cuts in the approximated measure density appear at
x∗
{+−−(+−)∞} and its offshoots, cf figure 3.7c. The effect on the Dq-spectrum

is negligible though as this is a rare event only affecting a single orbit and its
offshoots and only appearing at an isolated value of h.

To summarize, the crucial feature for a visible transition in the Dq-spectrum is
that a non-negligible fraction of orbits with large pointwise dimension is affected
by the overlap at one sharp critical value h

(2a)
c resulting in a collapse of Dq

with negative q. It is not excluded that there are more transitions of this type
which might become observable with further increase in numerical accuracy in the



3.4 Further transitions in the Dq-spectrum 39

PSfrag replacements
kBT

h

0.25

0.5

0.75

1

1.25

1.5

1.75

2

D−3

kBT

h

PSfrag replacements
kBT

h

0.25

0.5

0.75

1

1.25

1.5

1.75

2

D−1

kBT

h

PSfrag replacements
kBT

h

0.25

0.5

0.75

1

1.25

1.5

1.75

2

D−0.5

kBT

h

PSfrag replacements
kBT

h

0.25

0.5

0.75

1

1.25

1.5

1.75

2

D0

kBT

h

Figure 3.9 Surface plots of D−3, D−1, D−0.5 and D0 as functions of kBT and h.
The lines on the bottom of the graphs are the transitions lines of figure 3.8 and
the lines on the surfaces are projetions of these lines. As on can see, the transition
lines agree perfectly with the visible transitions (steps, kinks) in the numerical
data for all T and h. (J = 1)

future. The arguments presented here allow the conjecture that these transitions,
if existent, should take place at h > h

(2a)
c .

3.4.3 Transition diagram

The formulae given for the critical values h
(n)
c , n = 1, 2, 2a, 3 and 4 allow to draw

a phase diagram for the transitions in the Dq-spectrum of the invariant measure,
cf figure 3.8. To check the consistency with numerical results for more than the
temperature β = 1 figure 3.9 shows the Dq-spectra as functions of kBT and h
and the phase diagram of figure 3.8 in comparison. It is obvious that the results
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Figure 3.10 Sample situation of first order bands for the random field distribution

(3.55) in the vicinity of a transition similar to the one at h
(2)
c in the text. If, as

shown in the figure, H is large enough, x∗
{23} and x∗

{32} are not included in I1 and
I4 respectively. In this case x∗

{23} has the unique predecessor x∗
{32} and vice versa

as long as they are not in O23 exactly like x∗
{−+} and x∗

{+−} in the dichotomous
case. The situation is therefore identical to the situation in the dichotomous case
and the transition takes place at h = h

(2)
c . Of course, szenarios where the overlaps

O12 and O34 play important roles are conceivable as well. (β = J = 1, h = 0.7,
H = 1.8)

match for all T .
All considerations so far were explicitly for the specific choice (3.2) of the

distribution of the random field. It is natural to ask whether transitions of the
different types discussed also appear in more general situations. This is indeed
the case. For illustration consider the random field distribution

ρ(hi) = 1
4
δ(hi − H) + 1

4
δ(hi − h) + 1

4
δ(hi + h) + 1

4
δ(hi + H) (3.55)

with h < H. One can perform a similar analysis as for the dichotomous random
field distribution the main difference being that for the random field distribution
(3.55) up to three overlaps have to be taken into account. The results roughly
are the following.

• For any given temperature β there exists a transition line in the (h,H)
parameter plane between a region with D0 = 1 and D0 < 1 which is easily
determined from the overlap conditions of the first order bands I1, . . . , I4.
The conditions for D0 = 1 are h ≤ h

(1)
c implying the existence of O23 and

f3(x
∗
4) ≥ f4(x

∗
1) implying the existence of the overlaps O12 and O34. The

second inequality is a condition on H as well as h, cf figure 3.10.

• The transitions depending on the scaling at the boundary of the support of
µ∞, i. e. on the scaling at x∗

1 and x∗
4, exist in the same way as the transitions

at h
(3)
c and h

(4)
c in the dichotomous case. The transition conditions are

H = h
(3)
c and H = h

(4)
c respectively.

• Even though the orbit structure is more intricate than in the dichotomous
case figure 3.10 shows a situation in which a transition of the type of the
transition at h

(2)
c as discussed in subsection 3.4.1 can take place. The tran-

sition occurs at h = h
(2)
c provided H is large enough such that the bands
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I1 and I2 do not include x∗
{23} or x∗

{32}, i. e. f1(x
∗
4) < x∗

{23} or equivalently

f4(x
∗
1) > x∗

{32}.

In summary, the types of transitions occurring in the Dq-spectrum are the same
as in the dichotomous case and it is in principle possible to draw a diagram in the
(β, h,H) parameter space similar to the simpler diagram in figure 3.7 which is
the h = H slice of this higher dimensional diagram. As there are more than one
overlap in this example and the simultanuous overlap of more than two bands
can occur there also can be more complicated effects which nevertheless should
be amenable to a similar analysis as the transitions discussed in this section.

In the same way, appropriate adaptions of the analytic tools developed in this
chapter allow to analyze transitions in the Dq-spectrum of the invariant measure
of the effective field for any discrete random field distribution.

3.5 Bounds on the Dq-spectrum

The knowledge of the pointwise dimension of orbits is not only essential for the
explanation of the transitions in Dq with q < 0 but also very useful to obtain
bounds on the Dq-spectrum as well. To see this it is important to understand
some general relations between Dq and Dp.

3.5.1 General relations between Dq and Dp

The following considerations are true for any Borel probability measure µ on R
n.

They in some sense generalize bounds developed in [Eva87]. Let µi be defined as
in (2.8) on page 13 for some arbitrary mesh of cubes {bε

i}i∈N and enlarged cubes
{bε

i}i∈N. Naturally one has for any x ∈ R
n and q ∈ R

∑

i∈N

µq
i ≥ µq

i(x) (3.56)

where µi(x) denotes the measure of the enlarged box b
ε

i(x) for which x ∈ bε
i(x). This

basic inequality leads to non-trivial bounds on the Dq-spectrum in terms of the
pointwise dimension of arbitrary points in the support of µ.

Lemma 3.6 General bounds on Dq For any x ∈ supp µ the inequalities

Dq(µ) ≥ q

q − 1
Dp(x; µ) for q < 1 (3.57)

Dq(µ) ≤ q

q − 1
Dp(x; µ) for q > 1 (3.58)

and analogously for the upper dimensions Dq(µ) and Dp(x; µ) hold.
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Proof. Let x ∈ supp µ. The choice of enlarged boxes of size ε(1 + δ) implies
Bε(1+δ)(x) ⊇ b

ε

i(x) ⊇ Bεδ/2(x) such that

µ(Bε(1+δ)(x)) ≥ µi(x) ≥ µ(Bεδ/2(x)) . (3.59)

For q < 0 inequality (3.56) and the left inequality of (3.59) yield
∑

i∈N

µq
i ≥ µ(Bε(1+δ)(x))q (3.60)

⇒ Dq(µ) ≥ q

q − 1
lim inf

ε→0

log µ(Bε(1+δ)(x))

log ε(1 + δ) + log ε
ε(1+δ)

(3.61)

resulting in

Dq ≥
q

q − 1
Dp(x; µ) . (3.62)

For 0 < q < 1 inequality (3.56) and the right inequality of (3.59) yield
∑

i∈N

µq
i ≥ µ(Bεδ/2(x))q (3.63)

⇒ Dq ≥
q

q − 1
lim inf

ε→0

log µ(Bεδ/2(x))

log(εδ/2) − log(δ/2)
(3.64)

and therefore also

Dq(µ) ≥ q

q − 1
Dp(x; µ) . (3.65)

For q > 1 inequality (3.56) and the right inequality of (3.59) yield
∑

i∈N

µq
i ≥ µ(Bεδ/2(x) (3.66)

⇒ Dq(µ) ≤ q

q − 1
lim inf

ε→0

log µ(Bεδ/2(x))

log(εδ/2) − log(δ/2)
(3.67)

and thus the opposite inequality

Dq(µ) ≤ q

q − 1
Dp(x; µ) . (3.68)

The proof for the upper dimensions Dq is analogous with lim inf replaced by
lim sup. �

Whenever the measure under consideration has compact support and scales most
weakly at some point xmin of its support, i.e. the pointwise dimension at xmin is
maximal, the inequality

∑

i

µq
i ≤ Nεµ

q
i(xmin) ≤ Nεµ(Bεδ/2(xmin))

q (3.69)
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holds for sufficiently small ε and q < 0. Here Nε is the number of boxes with
non-vanishing measure. This inequality also implies non-trivial bounds on the
Dq-spectrum.

Lemma 3.7 Bounds on Dq in terms of maximal Dp Let xmin ∈ supp µ
such that Dp(xmin; µ) is maximal. Then

Dq(µ) ≤ 1

q − 1
(qDp(xmin; µ) − D0(µ)) for q < 0 (3.70)

and the same for Dq(µ) and Dp(xmin; µ).

Proof. The inequality (3.69) implies for q < 0

Dq(µ) ≤ 1

q − 1
lim inf

ε→0

( log Nε

log ε
+

q log µ(Bεδ/2(xmin))

log εδ/2 − log δ/2

)

(3.71)

such that

Dq(µ) ≤ 1

q − 1
(qDp(xmin; µ) − D0(µ)) . (3.72)

The proof for the upper dimensions Dq is the same with lim inf replaced by
lim sup. �

If on the other hand the measure scales maximal at some point xmax, i.e. the
pointwise dimension is minimal at xmax then for sufficient small ε and q > 0

∑

i

µq
i ≤ Nεµ

q
i(xmax) ≤ Nεµ(Bε(1+δ)(xmax))

q . (3.73)

This yields another set of inequalities.

Lemma 3.8 Bounds on Dq in terms of minimal Dp Let xmax ∈ supp µ
such that Dp(xmax; µ) is minimal. Then

Dq(µ) ≤ 1

q − 1
(qDp(xmax; µ) − D0(µ)) for 0 < q < 1 (3.74)

Dq(µ) ≥ 1

q − 1
(qDp(xmax; µ) − D0(µ)) for q > 1 (3.75)

and accordingly for Dq(µ) and Dp(xmax; µ).

Proof. For 0 < q < 1 inequality (3.73) implies

Dq ≤
1

q − 1
lim inf

ε→0

( log Nε

log ε
+

q log µ(Bε(1+δ)(xmax))

log ε(1 + δ) − log(1 + δ)

)

(3.76)
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yielding

Dq ≤
1

q − 1
(qDp(xmax; µ) − D0(µ)) . (3.77)

For q > 1 inequality (3.73) results in

Dq ≥
1

q − 1
lim inf

ε→0

( log Nε

log ε
+

q log µ(Bε(1+δ)(xmax))

log ε(1 + δ) − log(1 + δ)

)

(3.78)

and therefore

Dq ≥
1

q − 1
(qDp(xmax; µ) − D0(µ)) . (3.79)

The proof for Dq is identical with lim inf replaced by lim sup. �

Note that the inequalities of lemma 3.7 and lemma 3.8 are a little stronger than
the ones presented in [NPB01a] as in that work D0(µ) ≤ n was used as an
additional estimate.

Because the right hand sides of (3.57) and (3.70) converge to a common value
for x = xmin in the limit q → −∞ as well as the right hand sides of (3.58) and
(3.75) for x = xmax in the limit q → ∞ one can obtain explicit formulae for D−∞

and D∞.

Corollary 3.9 Explicit formulae for D−∞ and D∞ Let xmax and xmin be

defined as in lemma 3.7 and lemma 3.8 respectively. Then

D−∞(µ) = Dp(xmin; µ) (3.80)

D∞(µ) = Dp(xmax; µ) . (3.81)

3.5.2 Application to the measure of the effective field

The inequalities obtained in the preceding subsection can directly be applied to
the invariant measure of the effective field as some of the pointwise dimensions
are well known, cf section 3.3. Knowing that Dq(µ

(x)) and Dp(x; µ(x)) exist for
all q and all relevant x ∈ supp µ(x) the inequalities need not be formulated with
lower and upper dimensions separately. The pointwise dimension at x∗

+ is given
by use of (3.18) as

Dp(x
∗
+; µ(x)) =

− log 2

log A′(x∗
+)

(3.82)

leading via lemma 3.6 to

Dq(µ
(x)) ≥ q

q − 1

− log 2

log A′(x∗
+)

for q < 1 (3.83)
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Figure 3.11 Dq-spectrum of the invariant measure of the effective field as a

function of h. The solid lines in the region h < h
(3)
c are lower bounds on Dq,

q = −20, −6, −3, −2 and −1 according to (3.83). The short dashed lines in the

region h > h
(2)
c , upper part, are lower bounds on Dq for the same set of q values

based on (3.86). The dashed lines in the region h > h
(2)
c , lower part, are upper

bounds on Dq for q = 2, 4 and 20 based on (3.84). The dotted lines are the

exact values of D−∞ and D∞ for h < h
(3)
c , h > h

(2)
c and h > h

(3)
c respectively.

The numerically generated Dq-spectra are taken from figure 3.2 for comparison
purposes. (β = J = 1)

Dq(µ
(x)) ≤ q

q − 1

− log 2

log A′(x∗
+)

for q > 1. (3.84)

The resulting bounds are shown in comparison to numerical results in figure 3.11.
The pointwise dimension at x∗

{+−} is for h > h
(2)
c according to (3.18)

Dp(x
∗
{+−}; µ

(x)) =
− log 2

log A′(x∗
{+−})

(3.85)

leading by lemma 3.6 to

Dq(µ
(x)) ≥ q

q − 1

− log 2

log A′(x∗
{+−})

for q < 1 and h > h
(2)
c (3.86)
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Dq(µ
(x)) ≤ q

q − 1

− log 2

log A′(x∗
{+−})

for q > 1 and h > h
(2)
c . (3.87)

Examples of the resulting bounds for the Dq-spectrum are shown in figure 3.11.

Furthermore, for h < h
(3)
c the measure scales most weakly at x∗

+ which allows
to use lemma 3.7 and equation (3.82) as well as D0(µ

(x)) = 1 in this parameter
region to obtain

Dq(µ
(x)) ≤ 1

q − 1

( −q log 2

log A′(x∗
+)

− 1
)

for q < 0 and h < h
(3)
c . (3.88)

In the region h > h
(3)
c the invariant measure scales most strongly at x∗

+ such that
lemma 3.8 and equation (3.82) can be applied. This yields

Dq(µ
(x)) ≤ 1

q − 1

( −q log 2

log A′(x∗
+)

− D0(µ
(x))

)

for 0 < q < 1 and h > h
(3)
c (3.89)

Dq(µ
(x)) ≥ 1

q − 1

( −q log 2

log A′(x∗
+)

− D0(µ
(x))

)

for q > 1 and h > h
(3)
c . (3.90)

As it turns out Dp(x
∗
+; µ(x)) = − log(2)/ log A′(x∗

+) is so small for typical T and
J and the relevant parameter region of h that the right hand side of (3.90) is
increasing in q. As Dq ≥ D∞ the bound for q → ∞ is therefore always a tighter
lower bound for Dq than any of the bounds for finite q, cf also figure 3.12. For

h > h
(2)
c the invariant measure scales most weakly at x∗

{+−} if β and J are close

to 1, cf [Pat97], such that lemma 3.7 can be applied resulting in

Dq(µ
(x)) ≤ 1

q − 1

( −q log 2

log A′(x∗
{+−})

− D0(µ
(x))

)

for q < 0 and h > h
(2)
c . (3.91)

The bounds according to inequalities (3.88), (3.90) and (3.91) are shown in figure
3.12. Corollary 3.9 finally yields

D−∞ =



















− log 2

log(A′(x∗
+))

for h < h
(3)
c

− log 2

log(A′(x∗
{+−}))

for h > h
(2)
c

(3.92)

and

D∞ =
− log 2

log(A′(x∗
+))

for h > h3
c . (3.93)

The resulting curves for D−∞ and D∞ are shown in figure 3.11 as well as figure
3.12.
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Figure 3.12 Dq-spectrum of the measure of the effective field as a function of h.

The solid lines in the region h < h
(3)
c are upper bounds on Dq based on (3.88)

where q = −20, −6, −4, −2 and −1 respectively. The short dashed lines in the

region h > h
(2)
c , upper part, are upper bounds on Dq based on (3.91) for the same

q values. The dashed lines in the region h > h
(2)
c , lower part, are lower bounds on

Dq based on (3.90). The labels b2, b4 and b20 mark the bound for q = 2, 4 and 20
respectively. The numerically generated Dq-spectra are taken from figure 3.2 for
comparison. It is obvious that these type of bounds are less useful than the ones
presented in figure 3.11. Especially the bounds based on (3.90) provide no new
information as they are smaller than the exact value of D∞ and the monotonicity
of Dq already implies Dq ≥ D∞ for all q. (β = J = 1)

Note that whereas the bounds (3.83), (3.84), (3.86) and (3.87) do not need any
additional assumptions the bounds (3.88), (3.89), (3.90), (3.91) and the equations
(3.93) and (3.92) rest on the assumption of minimal or maximal scaling at x∗

+

and x∗
{+−}. Furthermore, as figures 3.11 and 3.12 reveal, the latter bounds are

not as tight as the former ones.
The detailed characterization of the Dq-spectrum of the effective field by the

various bounds and the description of the transitions in this chapter are necessary
prerequisites for the analysis of the local magnetization because the main results
for the local magnetization will be relations between the multifractal properties
of the measure of the local magnetization and the multifractal properties of the
measure of the effective field. This will become clear in the next chapter.



Chapter 4

Convolution of multifractals and
the local magnetization of the
one-dimensional random field
Ising model

In this chapter the multifractal properties of the measure of the local magnetiza-
tion at an arbitrary site i in the random field Ising chain are investigated. Recall
that the model is defined by the Hamiltonian (3.1) and treated in the canonical
ensemble. The local magnetization in the bulk is given by mbulk

i,N = 〈si〉N at some
site a < i < b inside the chain. To obtain its probability distribution with re-
spect to the random field probability space it is helpful to rewrite the partition
function of the random field Ising chain with N spins to a partition function with
one remaining spin si in two effective fields. The reformulation is the same as
in chapter 3, cf appendix B.3, except that the procedure is carried out from the
right and the left boundary. It leads to

ZN =
∑

si=±1

exp β
(

(

x
(N)
i + A(y

(N)
i−1 )

)

si +
i−1
∑

j=a

B(y
(N)
j ) +

b
∑

j=i+1

B(x
(N)
j )

)

(4.1)

with the two effective fields

x
(N)
j = A(x

(N)
j+1) + hj, i ≤ j ≤ b, x

(N)
b+1 = 0 (4.2)

y
(N)
j = A(y

(N)
j−1) + hj, a ≤ j < i, y

(N)
a−1 = 0 (4.3)

from the right and the left of site i respectively. The local magnetization at i is
thus given by [GR84, BZ87a, BZ88b]

mbulk
i,N = 〈si〉N = tanh β

(

x
(N)
i + A(y

(N)
i−1 )

)

(4.4)

48
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and its measure is

µ
(m)
l,r = (tanh β)#(µ(x)

r ∗ A#µ
(y)
l ) (4.5)

where l = i−a and r = b− i+1. As the effective fields share the same Frobenius-
Perron equation (3.7) and the invariant measure of this equation is unique, the
measures µ(x) of the right effective field in the thermodynamic limit b → ∞ and
µ(y) of the left effective field in the thermodynamic limit a → −∞ are identical.
Therefore, as will become clear below, the measure µ

(m)
l,r of the local magnetization

in the bulk converges to

µ(m) = (tanh β)#(µ(x) ∗ A#µ(x)) (4.6)

in the thermodynamic limit a → −∞, b → ∞, i. e. the local magnetization
mbulk

i,N converges in distribution to a random variable mbulk with measure µ(m), cf

lemma 4.1 below. Note that µ(m) is independent of the position i because of the
uniqueness of the invariant measure of the Frobenius-Perron equation and the
continuity of the convolution.

4.1 Convolution of multifractals

To transfer the knowledge of the multifractal properties of the invariant measure
µ(x) to the measure of the local magnetization µ(m) it is necessary to understand
how the multifractal properties of the convolution of two measures are related to
the multifractal properties of the two convoluted measures. Such general relations
exist and will be developed in this section. As the convolution of two measures
consists of the two steps of forming the product measure and projecting it in a
given way, this problem is related to the question of the multifractal dimensions
of product measures [Ols96] and of projections of multifractal measures [FO99].
But whereas [FO99] considered typical projections the projection leading to the
convolution is one special choice which need not have the same properties as the
typical ones.

For simplicity the results are all formulated for measures on R rather than R
n

but most results are easily extendable to the more general case.
Throughout the section (µn)n∈N and (νn)n∈N denote sequences of bounded

Borel measures on R which converge to bounded Borel measures µ and ν with
respect to the Hutchinson metric dHutch [Hut81]. As explained above the main
interest are the properties of the convolution of bounded Borel measures. The
convolution of two bounded Borel measures µ and ν is always well-defined [Bau90]
and will in the following be denoted by µ ∗ ν. As a first step one can show that
the convolution is continuous with respect to dHutch.

Lemma 4.1 Continuity of the convolution Let (mi)i∈N and (ni)i∈N be two

monotonically increasing and unbounded sequences of natural numbers. Then
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(µmi
∗ νni

)i∈N converges to a bounded Borel measure in Hutchinson topology and

the limit is dHutch-limi→∞ µmi
∗ νni

= µ ∗ ν.

Proof. Let ε > 0. The convergence of (µn)n∈N and (νn)n∈N implies the existence
of numbers M,N ∈ N such that for all i ≥ M dHutch(µmi

, µ) ≤ ε and for all i ≥ N
dHutch(νni

, ν) ≤ ε. Let Ñ := max(M,N). Then for all i ≥ Ñ

dHutch(µmi
∗ νni

, µ ∗ ν)

= sup
{ ∫

f(z) µmi
∗ νni

(dz) −
∫

f(z) µ ∗ ν(dz) : Lip(f) ≤ 1
}

. (4.7)

The definition of the convolution of two measures implies
∫

f(z) µmi
∗ νni

(dz) =
∫∫

f(x + y) µmi
(dx) νni

(dy) and
∫

f(z) µ ∗ ν(dz) =
∫∫

f(x + y) µ(dx) ν(dy). In-
serting 0 = −

∫∫

f(x + y) µ(dx) νni
(dy) +

∫∫

f(x + y) νni
(dy) µ(dx) yields

dHutch(µmi
∗ νni

, µ ∗ ν)

= sup
{ ∫ ( ∫

f(x + y) µmi
(dx) −

∫

f(x + y) µ(dx)
)

νni
(dy) (4.8)

+
∫ ( ∫

f(x + y) νni
(dy) −

∫

f(x + y) ν(dy)
)

µ(dx) | Lip(f) ≤ 1
}

≤
∫

sup
{ ∫

f(x + y) µmi
(dx) −

∫

f(x + y) µ(dx) | Lip(f) ≤ 1
}

νni
(dy) (4.9)

+
∫

sup
{ ∫

f(x + y) νni
(dy) −

∫

f(x + y) ν(dy) | Lip(f) ≤ 1
}

µ(dx) .

Furthermore, as the condition Lip(f) ≤ 1 is translationally invariant,

sup
{ ∫

f(x + y) µmi
(dx) −

∫

f(x + y) µ(dx) | Lip(f) ≤ 1
}

= sup
{ ∫

f(x) µmi
(dx) −

∫

f(x) µ(dx) | Lip(f) ≤ 1
}

(4.10)

= dHutch(µmi
, µ) ≤ ε. (4.11)

In the same way

sup
{ ∫

f(x + y)νni
(dy) −

∫

f(x + y)ν(dy) : Lip(f) ≤ 1
}

= dHutch(νni
, ν) ≤ ε. (4.12)

This finally yields

dHutch(µmi
∗ νni

, µ ∗ ν) ≤
∫

ε νni
(dy) +

∫

ε µ(dx) (4.13)

= (‖νni
‖ + ‖µ‖) ε (4.14)

where ‖νni
‖ = νni

(R) and ‖µ‖ = µ(R) denote the total mass of νni
and µ respec-

tively. �

As the metric dHutch topology and the weak topology coincide on bounded Borel
measures with compact support [Hut81] there is an immediate consequence.

Corollary 4.2 If supp µ and supp ν are compact, w-limi→∞ µmi
∗ νni

= µ ∗ ν.

Furthermore supp µ ∗ ν is also compact.
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For the situation of the two-sided random field Ising chain considered here lemma
4.1 implies that the thermodynamic limit l, r → ∞ can be carried out in an arbi-
trary way and that the result is the same as when first taking the thermodynamic
limit of the effective fields and then calculating the measure of the local magne-
tization. Having detailed knowledge of the properties of the Dq-spectrum and
the pointwise dimensions of the invariant measure of the effective field it is now
interesting to investigate the relationship of the Dq-spectra and pointwise di-
mensions of measures µ and ν to the Dq-spectrum and pointwise dimensions of
their convolution µ ∗ ν. It turns out that one can transfer a considerable part of
the knowledge about the multifractal properties of the invariant measure of the
effective field gathered in chapter 3 to the measure of the local magnetization.

In the following only measures with bounded, i. e. compact, support are dis-
cussed. Let x− := min suppµ > −∞ denote the left and x+ := max suppµ < ∞
the right boundary of supp µ. The boundaries of supp ν are denoted by y− and
y+. The pointwise dimension at the boundary of the support of µ ∗ ν can be
obtained from the pointwise dimensions at x+, x−, y+ and y−.

Lemma 4.3 Pointwise dimension of µ ∗ ν at the boundary Let µ, ν be

Borel measures on R with compact support and such that the pointwise dimen-

sions Dp(x±; µ) and Dp(y±; ν) at the boundaries of the support of µ and ν exist.

Then, the boundaries of µ ∗ ν are z± = x± + y±, the pointwise dimension at z±
exists and is given by

Dp(z±; µ ∗ ν) = Dp(x±; µ) + Dp(y±; ν) . (4.15)

Proof. The pointwise dimension of µ ∗ ν at z− is defined by

Dp(z−; µ ∗ ν) = lim
ε→0

log(µ ∗ ν(Bε(z−)))

log ε
(4.16)

where µ ∗ ν(Bε(z−)) is given by

µ ∗ ν(Bε(z−)) =

∫ ∫

1Bε(z−)(x + y) µ(dx) ν(dy). (4.17)

The symbol 1X denotes the characteristic function of a set X, i. e. 1X(x) = 1 if
x ∈ X and = 0 otherwise. The area in which 1Bε(z−)(x + y) is non-zero is the
diagonal strip in figure 4.1. Neglecting the regions in which either µ = 0 or ν = 0
(or both), the relevant region is the dark gray triangle. As µ and ν are positive
measures, integration over the small square gives a lower and integration over the
larger square an upper bound

∫ y−+ ε
2

y−

ν(dy)

∫ x−+ ε
2

x−

µ(dx) ≤ µ ∗ ν(Bε(z−)) ≤
∫ y−+ε

y−

ν(dy)

∫ x−+ε

x−

µ(dx). (4.18)
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Figure 4.1 Illustration of the proof of lemma 4.3. The diagonal strip is the
region in which 1Bε(z−)(x + y) is non-zero. Therefore, the dark grey triangle is
the relevant region with non-zero contributions to the integral (4.17). As µ and ν
are positive measures, integration over the small square of side length ε

2 provides
a lower and integration over the larger square of side length ε an upper bound on
the integral.

Taking into account that µ = 0 on (x− − ε, x−) and ν = 0 on (y− − ε, y−) one
can write

ν(B ε
2
(y−))µ(B ε

2
(x−)) ≤ µ ∗ ν(Bε(z−)) ≤ ν(Bε(y−))µ(Bε(x−)) (4.19)

to finally obtain

log ν(B ε
2
(y−)) + log µ(B ε

2
(x−))

log ε
2

+ log 2
≥ log µ ∗ ν(Bε(z−))

log ε

≥ log ν(Bε(y−)) + log µ(Bε(x−))

log ε
(4.20)

which completes the proof as both sides of the inequality converge to Dp(x−; µ)+
Dp(y−; ν) as ε → 0. The proof for the right boundaries is obtained by applying
the same arguments to µ̃(X) := µ(−X) and ν̃(X) := ν(−X). �

As the proof also works with lim inf and lim sup instead of lim the lemma applies
to Dp and Dp seperately if Dp does not exist.

To apply lemma 4.3 to the measure of the local magnetization in the one-
dimensional random field Ising model it is important to know how the mappings
A# and (tanh β)# in (4.6) affect the pointwise dimensions of µ(m). As A(·)
and tanh β(·) are bi-Lipschitz on any finite interval lemma 2.6 and lemma 4.3



4.1 Convolution of multifractals 53

directly imply Dp(m−; µ(m)) = Dp(m−; (tanh β)#(µ(x)∗A#µ(x))) = Dp(x−; µ(x))+
Dp(A(x−); A#µ(x)) = 2Dp(x−; µ(x)). Thus, the mappings A# and (tanh β)# in
(4.6) do not play a decisive role. In section 3.5 lower (upper) bounds on Dq for
q < 0 (q > 0) based on the pointwise dimension at arbitrary points in the support
of the measure were developed, cf lemma 3.6. These bounds can now directly be
applied to the Dq-spectrum of µ(m) which by use of (3.18) results in

Dq(µ
(m)) ≥ q

q − 1
2Dp(x−; µ(x)) =

q

1 − q

2 log 2

log A′(x−)
(q < 1). (4.21)

the resulting bounds are shown in figure 4.9 on page 67. They are tight bounds
as long as the pointwise dimension at the boundary is large. This is the case as
long as Dp(m−) > 1. The critical value h

(m,3)
c determined by this condition is

1

2β
log

( R + e2βJ

R−1 + e2βJ

)

with (4.22)

R = 3 sinh(2βJ) − e−2βJ +

√

(

3 sinh(2βJ) − e−2βJ
)2 − 1. (4.23)

The critical value can also be interpreted in terms of the measure density. At
this value of h the approximating measure densities p

(m)
l,r (m−) at the boundary of

the support of the measure of the local magnetization switch from converging to
0 (for h < h

(m,3)
c ) to diverging (for h > h

(m,3)
c ) in the limit l, r → ∞.

For q > 0 the bound is not of interest for small h as the smoothness of p(x) in
the region of small h implies existence and smoothness of p(m) in this region and
thus Dq = 1 for all q > 0. The same applies to the connectedness of the support
implying D0 = 1.

The transition of the invariant measure of the effective field where the slope
of the approximating measure densities at the boundary of the support switches
from converging to 0 to diverging for n → ∞, cf section 3.2, also has an ana-
logue. This effect occurs for the approximating measure densities of the local
magnetization at Dp(m−) = 2 corresponding to

h(m,4)
c =

1

β
arsinh

(

2−
3
2 (1 − 9e−4βJ)

1
2

)

= h(3)
c . (4.24)

Note that this transition in the slope of the approximating measure densities of
the local magnetization occurs at the same critical value at which the approximat-
ing measure densities of the effective field undergo the transition from converging
to 0 to diverging at the boundary of the support, cf section 3.2.

For q > 0 inequality (3.58) of lemma 3.6 applied to µ(m) results in

Dq(µ
(m)) ≤ q

q − 1
Dp(m±; µ(m)) =

q

1 − q

2 log 2

log A′(x∗
−)

(4.25)
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in full analogy to the lower bounds (4.21) for q < 0. The resulting upper bounds
are shown in figure 4.9 on page 67.

Apart from the relation between the pointwise dimensions of the convolution
at its boundaries and the pointwise dimension at the boundaries of the convoluted
measures discussed so far there also exists a general relation between the Dq-
spectra.

Theorem 4.4 Upper bound on Dq(µ ∗ ν) The Dq-spectrum of the convolu-

tion is bounded from above by the sum of the Dq-spectra of the convoluted

measures,

Dq(µ ∗ ν) ≤ Dq(µ) + Dq(ν) (4.26)

provided Dq(µ) and Dq(ν) exist.

Proof. It is necessary to distinguish three cases, q > 1, 0 < q < 1 and q < 0.
For the first two cases the improved multifractal formalism with enlarged boxes
coincides with the usual one and for simplicity the latter will be used in these
cases. Let ε > 0 and denote xi := ε

2
i, i ∈ Z.

Let q > 1. For any i ∈ Z

(µ ∗ ν)i := µ ∗ ν(B ε
2
(x2i)) =

∫ ∫

1B ε
2
(x2i)(x + y) µ(dx) ν(dy) (4.27)

is the integral over the diagonal strip in the (x, y) plane shown in figure 4.2a.
Integration over the dark gray squares provides a lower bound on this integral,

(µ ∗ ν)i ≥
∑

j

µ(B ε
4
(x2i+j)) ν(B ε

4
(x2i−j)). (4.28)

Taking the qth power of both sides and using (
∑

i xi)
q ≥ ∑

i x
q
i for q > 1 and any

positive numbers xi yields

(µ ∗ ν)q
i ≥

∑

j

µ(B ε
4
(x2i+j))

q ν(B ε
4
(x2i−j))

q. (4.29)

For (µ ∗ ν)′i
q := µ ∗ ν(B ε

2
(x2i+1))

q one has in the same way

(µ ∗ ν)′i
q ≥

∑

j

µ(B ε
4
(x2i+j+1))

q ν(B ε
4
(x2i−j))

q. (4.30)

Denote µi := µ(B ε
4
(xi)) and νj := ν(B ε

4
(xj)). When summing (4.29) and (4.30)

and over all i the right hand side is
∑

i

∑

j µq
i νq

j . It is straightforward to show that
∑

i (µ ∗ ν)′i
q ≤ 2q+1

∑

i(µ ∗ ν)q
i , cf appendix B.10, such that the left hand side of

the sum of (4.29) and (4.30) summed over all i is less or equal (2q+1+1)
∑

i(µ∗ν)q
i .
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Figure 4.2 Illustration of the main ideas of the proof of theorem 4.4. Figure
a) applies to q > 0 and figure b) to q < 0. The diagonal strip in a) represents
the region of integration for (µ ∗ ν)i, the measure of one of the disjoint intervals
of length ε covering supp µ ∗ ν. The integral over the dark grey squares (and
diagonally translated disjoint copies) provides a lower bound on (µ ∗ ν)i used in
the case q > 1. Considering additionally the integral over the dashed squares gives
an upper bound on (µ ∗ ν)i needed in the case 0 < q < 1. The wide diagonal strip
in b) is the region of integration for (µ∗ν)i, the measure of one of the (intersecting)
enlarged intervals of length 3 ε covering supp µ ∗ ν. The narrow dashed strip is
the region of integration for the corresponding inner interval of size ε. Integration
over each of the six overlapping large squares of side length ε (solid lines) and their
disjoint by (−nε, nε) diagonally translated copies gives a lower bound on (µ ∗ ν)i

such that the sum of the six integrals gives a lower bound on 6(µ∗ν)i. The narrow
strip is contained in the union of all the interior small squares of side length ε

2
(dashed lines) assuring that the lower bound obtained is non-zero whenever the
integral over the narrow strip is. This is an important point in the proof. The
details are given in the text.

After taking the logarithm, dividing by log ε and multiplying with 1/(q − 1) this
results in

1

q − 1

log
∑

i(µ ∗ ν)q
i + log 2q+1

log ε
≤ 1

q − 1

log
∑

i µ
q
i + log

∑

j νq
j

log ε
2

+ log 2
(4.31)

which completes the proof for q > 1 as the left hand side converges to Dq(µ ∗ ν)
and the right hand side to Dq(µ) + Dq(ν) as ε → 0.
Let 0 < q < 1 and i ∈ Z and again denote (µ ∗ ν)i := µ ∗ ν(B ε

2
(x2i)), µi :=

µ(B ε
4
(xi)) and νj := ν(B ε

4
(xj)). The solid and dashed squares in figure 4.2a and

by (nε,−nε) diagonally translated disjoint copies cover the diagonal strip over
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which one needs to integrate to obtain (µ ∗ ν)i. Therefore,

(µ ∗ ν)i ≤
∑

j

1
∑

k=−1

µ2i+j+kν2i−j . (4.32)

Taking the q-th power and using (
∑

i xi)
q ≤ ∑

i x
q
i for q < 1 and arbitrary positive

numbers xi yields

(µ ∗ ν)q
i ≤

∑

j

1
∑

k=−1

µq
2i+j+k νq

2i−j. (4.33)

When summing over all i each combination µiνj appears at most twice in the
sum on the right hand side such that

∑

i

(µ ∗ ν)q
i ≤ 2

∑

i

∑

j

µq
i ν

q
j . (4.34)

Taking the logarithm, dividing by log ε and multiplying with 1/(q − 1) results in

1

q − 1

log
∑

i(µ ∗ ν)q
i

log ε
≤ 1

q − 1

log
∑

i µ
q
i + log

∑

j νq
j + log 2

log ε
2

+ log 2
. (4.35)

The limit ε → 0 then yields Dq(µ ∗ ν) ≤ Dq(µ) + Dq(ν).
Let q < 0. In this case it is necessary to use the improved multifractal formalism
with enlarged intervals. In the following the notation

(µ ∗ ν)i :=

{

µ(B 3
2
ε(x2i)) (µ ∗ ν(B ε

2
(x2i)) > 0)

0 (otherwise)
(4.36)

will be used. By this choice the ε-intervals are enlarged by ε on both sides
corresponding to δ = 2, cf definition 2.2. Furthermore denote

µi :=

{

µ(B ε
2
(xi)) (µ(B ε

4
(xi)) ≥ 0)

0 (otherwise)
(4.37)

νi :=

{

ν(B ε
2
(xi)) (ν(B ε

4
(xi)) ≥ 0)

0 (otherwise)
(4.38)

i. e. the ε
2
-intervals of µ and ν are enlarged by ε

4
corresponding to δ = 1. This

choice facilitates the proof and has no influence on the resulting Dq [Rie95]. Let
i ∈ Z with (µ ∗ ν)i > 0, i. e. the integral over the i-th interior interval is non-zero.
When calculating (µ ∗ ν)i one has to integrate over the wide diagonal strip in
figure 4.2b. The large squares B ε

2
(x2i+2j) × B ε

2
(x2i−2j), j ∈ Z, are disjoint and

are all contained in the strip. Therefore,

(µ ∗ ν)i ≥
∑

j

µ2i+2j ν2i−2j . (4.39)
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This applies analogously to the other shown five squares and their by (nε,−nε)
diagonally translated disjoint copies such that

6(µ ∗ ν)i ≥
∑

j

1
∑

k=−1

µ2i+j+k ν2i−j . (4.40)

The integral over the narrow diagonal strip determines that (µ∗ν)i is greater than
zero. In the same way the integral over the small squares determines whether
the terms on the right hand side are greater than zero. As the narrow strip is
contained in the union of the small squares, the right hand side is greater than
zero because (µ ∗ ν)i is by assumption. One therefore can take the q-th power
on both sides and (omitting all terms being zero) use (

∑

i xi)
q ≤ ∑

i x
q
i for q < 1

and arbitrary positive numbers xi to obtain

6q(µ ∗ ν)q
i ≤

∑

j

1
∑

k=−1

µq
2i+j+k νq

2i−j. (4.41)

When summing over all i with (µ ∗ ν)i > 0, each combination µq
i νq

j appears
at most twice. Furthermore, adding terms which do not already appear only
enlarges the right hand side. Therefore,

6q
∑

i

(µ ∗ ν)q
i ≤ 2

∑

i

µq
i

∑

j

νq
j . (4.42)

From this one immediately obtains

1

q − 1

log
∑

i(µ ∗ ν)q
i + log 6q

log ε
≤ 1

q − 1

log
∑

i µ
q
i + log

∑

j νq
j + log 2

log ε
2

+ log 2
(4.43)

which implies Dq(µ ∗ ν) ≤ Dq(µ) + Dq(ν) in the limit ε → 0. �

Note that this proof easily generalizes to measures on R
n. Furthermore, it also

applies to Dq and Dq separately if Dq does not exist.
The invariance of the Dq-spectrum with respect to bi-Lipschitz maps, cf

lemma 2.4, and theorem 4.4 immediately imply

Dq(µ
(m)) = Dq(µ

(x) ∗ A#µ(x))

≤ Dq(µ
(x)) + Dq(A#µ(x)) = 2Dq(µ

(x)). (4.44)

As the Dq-spectrum of the invariant measure of the effective field is — at least
on a numerical level — very well known this provides interesting insights for the
Dq-spectrum of the measure of the local magnetization, cf figure 4.9 on page 67.
Prior to the comprehensive discussion of the consequences of the results of this
section on the Dq-spectrum of the measure of the local magnetization in section
4.3 the following section provides more insight into the relevant mechanisms in
the convolution of multifractal measures.
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Figure 4.3 Illustration of the convolution of µ
(1)
a,p with λ#µ

(1)
a,p and µ

(2)
a,p with

λ#µ
(2)
a,p for a = 1

6 , p = 3
4 and λ = 4

7 . The condition for the disjointness of the
trapezoids, a/(1−2a) ≤ λ ≤ (1−2a) is clearly fulfilled for this choice of parameters
such that in the limit n → ∞ example 4.1 applies.

4.2 Convolution of Cantor sets with weights

In many examples in fractal and multifractal theory Cantor sets and measures
on Cantor sets are the first examples accessible to rigorous analysis. For the
convolution of multifractals this also turns out to be the case. It is possible
to calculate the Dq-spectrum for Cantor sets with weights analytically in certain
situations. In this section two examples are given which provide some insight into
the mechanisms which are important in the convolution of multifractal measures.

Let C(0)
a = [−1

2
, 1

2
] and C(n)

a be defined inductively by C(n)
a := fa+(C(n−1)

a ) ∪
fa−(C(n−1)

a ) with fa+(x) = ax+ 1−a
2

and fa− = ax− 1−a
2

. The infinite intersection

Ca :=
⋂∞

n=0 C
(n)
a is the a-Cantor set. On the approximating sets C(n)

a define the
probability densities

p(n)
a,p(x) =

p

a
p(n−1)

a,p (f−1
a+ (x)) +

1 − p

a
p(n−1)

a,p (f−1
a− (x)). (4.45)

The corresponding measures are denoted by µ
(n)
a,p(X) =

∫

X
p

(n)
a,p dx for any Borel

set X ⊂ R. The measures µ
(n)
a,p converge to a limit measure µa,p which is often

referred to as an a-Cantor set with weights p and 1 − p. For a generic choice of
a and p the measure µa,p is a multifractal. For an illustration cf figure 4.3 and
4.4. In the following two examples the Dq-spectrum of the convolution of µa,p

with λ#µa,p, a ‘compressed’ version of it, is calculated (λ ≤ 1). In full generality
this is a hard problem. The examples give the solution for certain parameter
combinations of a and λ.
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Example 4.1 Let 0 < p < 1 and a/(1−2a) ≤ λ ≤ (1−2a). This is meaningful for

a ≤ 1
4
. Then, the two intervals of supp µ

(1)
a,p fit into the gap of supp λ#µ

(1)
a,p and

on the other hand the complete supp λ#µ
(1)
a,p fits into the gap of supp µ

(1)
a,p. Self-

similarity of Ca and λ#Ca implies that for any given n and y ∈ R at most one pair

of bars in p
(n)
a,p(x) and λ#p

(n)
a,p(y−x) can overlap in the process of the convolution.

The convolution is therefore a collection of trapezoids as shown in figure 4.3.
Denoting the intervals of supp µ

(n)
a,p ∗ λ#µ

(n)
a,p (the bases of the trapezoids) by

T
(n)
j , j = 1, . . . , 2n, only the structure of the measure within the trapezoids but

not their total measure changes, i.e. µa,p ∗ λ#µa,p(T
(n)
j ) = µ

(n)
a,p ∗ λ#µ

(n)
a,p(T

(n)
j ).

Therefore, µa,p ∗ λ#µa,p and µ
(n)
a,p ∗ λ#µ

(n)
a,p can be used interchangeably on the

set of intervals T
(n)
j . This fortunate circumstance is due to the fact that the

self-similarity of the Cantor sets induces a direct iteration for the convolution
rendering it self-similar itself. The analytical treatment of the Dq-spectrum in
this example is essentially based on this fact. If choosing εn := an + λan, which
is the width of the trapezoids at level n, boxes B 3

2
εn

(xi), xi = iεn, i ∈ Z with

µa,p(B εn
2

(xi)) > 0 contain at least one whole trapezoid of level n and intersect at
most four. Thus, denoting

µi :=

{

µa,p ∗ λ#µa,p(B 3
2
εn

(xi)) (µa,p ∗ λ#µa,p(B εn
2

(xi)) > 0)

0 (otherwise)
(4.46)

one obtains for q > 0, q 6= 1

µa,p ∗ λ#µa,p

(

T
(n)
j(i)

)q ≤ µq
i ≤

(

4 max
j∈J(i)

µa,p ∗ λ#µa,p(T
(n)
j )

)q
(4.47)

where j(i) is the index of a trapezoid completely contained in B 3
2
εn

(xi) and J(i)

is the set of the indices of all trapezoids intersecting B 3
2
εn

(xi). As any trapezoid
can appear at most four times on the right hand side when summing over i and
any trapezoid appears at least once on the left hand side this implies

∑

j

µa,p ∗ λ#µa,p

(

T
(n)
j

)q ≤
∑

i

µq
i ≤ 4

∑

j

(

4µa,p ∗ λ#µa,p(T
(n)
j )

)q
. (4.48)

The measures of the trapezoids can explicitly be calculated such that

∑

j

µa,p ∗ λ#µa,p(T
(n)
j )q =

n
∑

k,l=0

(

n

k

)(

n

l

)

(

pk(1 − p)n−kpl(1 − p)n−l
)q

. (4.49)

Applying
∑

k

(

n
k

)

(pq)k((1 − p)q)n−k = (pq + (1 − p)q)n then results in

((pq + (1 − p)q)2n ≤
∑

i

µq
i ≤ 4q+1((pq + (1 − p)q)2n (4.50)
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Figure 4.4 Illustration of the convolution of µ
(1)
a,p with itself and µ

(2)
a,p with itself

for a = 1
3 and p = 3

4 . For this choice of parameters example 4.2 applies in the
limit n → ∞.

and therefore

Dq(µa,p ∗ λ#µa,p) =
1

q − 1

2 log(pq + (1 − p)q)

log a
. (4.51)

For q < 0 the argument is the same with reversed inequality signs which leads to
an identical result. For q = 1 the limit q → 1 of (4.51) yields

D1(µa,p ∗ λ#µa,p) = lim
q→1

1

q − 1

2 log(pq + (1 − p)q)

log a

= 2(p log p + (1 − p) log(1 − p))/ log a. (4.52)

For any λ ∈ [ak+1/(1 − 2a), ak(1 − 2a)], k ∈ N, the arguments above apply to

µ
(n+k)
a,p ∗ λ#µ

(n)
a,p which according to lemma 2.4 also converges to µa,p ∗ λ#µa,p.

Therefore, (4.51) and (4.52) apply to all λ taken from these intervals. For an
example cf figure 4.5.

Example 4.2 Let 0 < p < 1, a ≤ 1
3

and λ = 1. Then choose εn := 2an and boxes

of length εn in such a way that each box covers one of the spikes of µ
(n)
a,p ∗ µ

(n)
a,p .

This leads to an admissible sequence {εn}n∈N and avoids any complications with
q < 0 such that enlarged boxes are not necessary here. The situation is like
shown in figure 4.4. For n = 1 one obtains (µ

(1)
a,p ∗ µ

(1)
a,p)i = (1 − p)2, 2p(1 − p)

and p2 for i = 1, 2 and 3 respectively. As in example 4.1 self-similarity implies
for the specific choice of boxes made that µ

(n)
a,p ∗ µ

(n)
a,p and µa,p ∗ µa,p can be used

interchangeably as they coincide on all boxes of level n. Furthermore, the result
of the convolution of the next iteration, n = 2, can be constructed by replacing
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each triangle in figure 4.4 by the complete figure and choosing the corresponding
weight. Therefore, the (µ

(2)
a,p ∗ µ

(2)
a,p)i are the nine terms of the sum

2
∑

k=0

n−k
∑

l=0

(

2

k

)(

2 − k

l

)

(1 − p)2k(2p(1 − p))2−kp2(2−k−l)

=
(

(1 − p)2 + 2p(1 − p) + p2
)2

. (4.53)

This continues for larger n such that

∑

i

(µ(n)
a,p ∗ µ(n)

a,p)
q
i =

n
∑

k=0

n−k
∑

l=0

(

n

k

)(

n − k

l

)

(

(1 − p)2k(2p(1 − p))n−kp2(n−k−l)
)q

=
(

(1 − p)2q + 2qpq(1 − p)q + p2q
)n

. (4.54)

For q 6= 1 this yields

Dq(µa,p ∗ λ#µa,p) =
1

q − 1
lim

n→∞

n log
(

(1 − p)2q + 2qpq(1 − p)q + p2q
)

n log a + log 2
(4.55)

=
1

q − 1

log
(

(1 − p)2q + 2qpq(1 − p)q + p2q
)

log a
. (4.56)

The limit q → 1 results in

D1(µa,p ∗ λ#µa,p) = lim
q→1

1

q − 1

log
(

(1 − p)2q + 2qpq(1 − p)q + p2q
)

log a

= 2
(

p log p + p(1 − p) log 2 + (1 − p) log(1 − p)
)

/ log a. (4.57)

As in example 4.1 the arguments can be repeated for the an-fold value of λ such
that (4.56) and (4.57) are also correct for all λ = an, n ∈ N. This means that the
Dq-spectrum can be calculated at specific points between the intervals where it
is given by (4.51) and (4.52). The results are illustrated in figure 4.5.

In the case of the random field Ising model one is interested in the dependence of
the Dq-spectrum on the strength h of the random field which rather corresponds
to varying a in the convolution of Cantor sets. Viewing (4.51) and (4.52) in this
light it is possible to choose λ = 1

2
such that for all a < 1

4
example 4.1 applies.

This results in the right part of the Dq-spectrum shown in figure 4.6. For the left
part with a close to one the usual lower bounds for q < 0 based on the pointwise
dimension at the boundary of the support apply. For q ≥ 1 all Dq are 1 in this
region because of the regularity of µa,p.

The convolution of two-scale Cantor sets shows a far richer behaviour than
the two examples above. It turns out that the lacking strict self-similarity does
not allow the kind of analytical treatment used here. Numerical investigations
show that the Dq-spectrum strongly depends on the two scales of the Cantor sets.
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Figure 4.5 Dq spectrum of µa,p ∗ λ#µa,p as a function of log λ for q = −20,
−6, −3, −2, −1, 0, 1, 2, 4 and 20. The thick lines are the exact Dq obtained in
example 4.1 and the points the Dq obtained in example 4.2. The thin lines are
numerical results obtained from iteration depths l = r = 8 compared to l = r = 7
in the new natural partition method of the convolution, cf appendix A.2.1.

Furthermore, in a large parameter regime the obtained numerical estimates are
extremely sensitive to the iteration depth to which the Cantor sets are generated.
The situation is of similar complexity as for the measure of the local magnetization
in the one-dimensional random field Ising model discussed in the next section.

4.3 The Dq-spectrum of the local magnetization

4.3.1 The approximating measure densities

Before discussing the Dq-spectrum of the measure of the local magnetization one
should first have a look at the approximating densities of this measure to get
an impression of its general form and its dependence on the strength h of the
random field. In figure 4.7 the measure densities of the effective field and of the
local magnetization are shown in comparison for various values of h. The measure
densities of the effective field were obtained on their new natural partition by the
third method described in appendix A.1.1. The iteration depths were n = 20
for h = 0.02 and n = 16 for all other values. The measure densities of the local
magnetization were obtained on the natural partition at l = r = 8 from the
measure of the effective field at iteration depths l = r = 8 with the convolution
algorithm described in appendix A.2.1. In figure 4.8 the same measure densities
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Figure 4.6 Dq-spectrum of µa,p ∗ λ#µa,p as a function of − log a with p = 3
4 ,

λ = 1
2 and q = −20, −6, −3, −2, −1, 0, 1, 2, 4 and 20. The lines to the left of

− log a = log 4 are the usual lower bounds based on the pointwise dimension at
the left boundary of Ca,p. The lines on the right are the calculated exact values of
Dq according to (4.51) and (4.52). The points are numerical results for iteration
depths l = r = 6 compared to l = r = 5 in the new natural partition method for
the convolution, cf appendix A.2.1.

are shown in a logarithmic plot in order to reveal the structure of the measure of
the local magnetization for large h.

As one can see, the measure of the local magnetization is much smoother
than the measure of the effective field in agreement with the general belief. For
h = 0.02 both measures are smooth and the slope at the boundary is zero.
For h = 0.2 > h

(4)
c the slope of p

(x)
n already diverges whereas the slope of p

(m)
l,r

converges zero. For h = 0.4 > h
(3)
c = h

(m,4)
c the density of the measure of

the effective field diverges at the boundary whereas p
(m)
l,r converges to zero but

has diverging slope. For h = 0.7 > h
(m,3)
c the density p

(m)
l,r also diverges at the

boundary. The fractality of the support is in the same way ‘delayed’ for µ(m).
For h = 1.0 > h

(1)
c the support of µ(x) is already fractal but the support of µ(m)

is still connected.

Overall, there is a gradual transition of the measure of the local magnetization
from a strongly peaked monomodal distribution for small random field to an
even more strongly peaked bimodal distribution for large random field. The local
magnetization (which is a thermodynamic average but still a random variable
with respect to the probability space of the random field) shows a transition from
a paramagnetic situation where the most probable value is zero to a ferromagnetic
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Figure 4.7 Measure densities of the effective field p
(x)
n (x) versus x (left column)

for n = 20 (h = 0.02) and n = 16 (otherwise) and of the local magnetization
p
(m)
l,r (m) versus m (right column) for l = r = 8. The details are explained in the

text. (β = J = 1)
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Figure 4.8 Measure densities p
(x)
n (x) versus x (left column) and p

(m)
l,r (m) versus m

(right column) as in figure 4.7 but in a logarithmic plot. The details are explained
in the text. (β = J = 1)
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situation where the most probable value is ±1. Between these extremal situations
is the regime where multifractality is most obvious. The distribution always
remains symmetric however such that this is not a phase transition. There is no
symmetry breaking even if an infinitesimal homogeneous field is applied.

4.3.2 The Dq-spectrum

The Dq-spectrum of the measure of the local magnetization was numerically
approximated by two methods. For rather small h and rather large h the method
based on the new natural partition of the local magnetization, cf appendix A.2.3,
yields excellent results. The alternative method is a box method based directly
on definition 2.2, cf appendix A.2.2. The results of both methods are shown in
figure 4.9. The points with error bars in region a) and b) are the results of the
natural partition method obtained from comparing the partition functions (A.17)
for all three combinations of l = r ∈ {9, 10} and l′ = r′ ∈ {8, 9} where l 6= l′.
The calculation was carried out with C++ long doubles. The error bars are the
standard deviation of the average of the 3 obtained values. In region c) the same
calculation was performed for l = r ∈ {6, 7} and l′ = r′ ∈ {5, 6} using CLN high
precision numbers with guaranteed 50 decimal digits. All points with a standard
deviation greater than 0.05 were omitted in the figure as it must be assumed that
these were not properly determined. The reason for this ‘failure’ of the natural
partition method occurring for some values of h will be discussed in more detail
below.

The variously dashed lines above Dq = 1 in regions b) and c) of figure 4.9
are results of the box method. The steps in h for these lines were chosen as
∆h = 0.005 for 0.56 ≤ h ≤ 0.66 and ∆h = 0.02 everywhere else. The measure
was generated with iteration depths l = r = 12 and the support was divided into
at least 5 and at most 1500 boxes. As one can see the results are in reasonable
agreement with the results of the method of the new natural partition in all
regions where both results could be obtained. In region a) the box results are
known to systematically underestimate Dq with q < 0 as they depend more or
less exclusively on the two boxes at the boundary. The same applies to Dq with
q > 0 in regions b) and c). Therefore, the box results are not shown for these
values of q in these regions.

The dashed lines in region a) of figure 4.9 are lower bounds on Dq with q < 0
based on (4.21) for q = −20, −6, −3, −2, and −1. The upper bounds for q > 0
based on inequality (4.25) are shown as short dashed lines in regions b) and c)
of figure 4.9 for q = 4 and q = 20. Finally, the dotted lines are the twofold
Dq-spectra of µ(x) which are upper bounds on Dq(µ

(m)) according to theorem 4.4.
As one can see immediately, all numerical results are in good agreement with the
exact bounds.

In region b) all Dq for q < 0 are 1 close to h = h
(m,3)
c . At some h > h

(m,3)
c they

are again greater than 1. In this region the method based on the new natural
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Figure 4.9 Numerical results for the Dq-spectrum of the measure of the local
magnetization in the bulk. The results are shown for q = −20, −6, −3, −2,
−1, 0, 1, 2, 4 and 20. All points with errorbars were obtained by the method
based on the new natural partition. In regions a) and b) and q 6= 0 the results
of all combinations of iteration depths l = r ∈ {9, 10} and l′ = r′ ∈ {8, 9}
where l 6= l′ were used and the number representation was C++ long doubles. In
region c) and also q 6= 0 all combinations of iteration depths l = r ∈ {6, 7} and
l′ = r′ ∈ {5, 6} with l 6= l′ were used with numbers of the arbitrary precision library
CLN with guaranteed 50 decimal digits. The errorbars are obtained from the
standard deviations of the averages of the results of the three possible combinations
of iteration depths. All points with standard deviation greater than 0.05 are not
shown. For q = 0 iteration depths up to l = r = 13 were used. The long dashed
lines in a) are lower bounds on Dq with q < 0 and the short dashed lines in b) and
c) are upper bounds on Dq with q > 1 both based on the pointwise dimension at
the boundary of the support of µ(m). The dotted lines are the twofold numerical
results for the Dq (q < 0) of the effective field, cf figure 3.2, and are upper bounds
on the Dq with q < 0 according to theorem 4.4. Finally, the other lines in b)
and c) are the results for Dq with q < 0 obtained by the box scaling approach, cf
appendix A.2.2. The usual spacing in h for all data points is 0.02 except for the
region between h = 0.56 and h = 0.66 where a spacing of ∆h = 0.005 was used in
the box method. (β = J = 1)
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Figure 4.10 Example of the convolution of two Cantor sets with weights where
arbitrarily small intervals appear in the new natural partition of the convolution.
a) The two Cantor sets with weights which are convoluted. One is the usual mid-
third Cantor set (solid lines) and the other is the mid-third Cantor set compressed
with a factor λ = 0.36 (dashed lines). b) The resulting convolution. The interval
at the origin has length ε = λ − 1

3 and the measure density of the convolution is
δ = 9

4λ
(λ − 1

3 ). Therefore, the measure of this interval is δ · ε = (3λ−1)2

4λ
and thus

can get arbitrarily small for λ close to 1
3 .

partition yields completely different results for different iteration depths. It is
therefore not possible to deduce the asymptotic behaviour from the scaling in
the accessible finite iteration depth. Most data points had to be left out for
this reason. Provided h is large enough (h & 1.7) the numerical results of the
new natural partition method are again stable for all iteration depths considered
which leads to small error bars in figure 4.9. For q > 0 there is perfect agreement
with the upper bounds in regions b) and c) and no problems arise.

The difficulties in obtaining the asymptotic scaling for q < 0 in the region
1 . h . 1.7 are of the same type as encountered in the convolution of two-
scale Cantor sets. This shows that this is an effect of more than one relevant
scale present (infinitely many in this case). As the asymptotic scaling seems
not to be attainable in this region the physicists point of view is to ask what
an experimentalist would observe. In any experiment the scale of resolution is
bounded from below. This corresponds to the box method where the scale is
bounded by the size of the smallest box whereas the scale in the new natural
partition can get more or less arbitrarily small already for finite iteration depths,
cf figure 4.10 for an example. Therefore, the estimates of Dq based on the box
method are the physical results in this region.

The results of the box method are robust against changes in the iteration
depth whereas they depend on an appropriate choice of box sizes. As a rule of
thumb the smallest box size should be chosen of the order of the length of the
longest band of the new natural partition.
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Figure 4.11 Illustration of the situation leading to the weakest band in the con-

volution of µ
(x)
l and A#µ

(x)
r at h = 1.54 and l = r = 6. The integration over

the product of ρ
(x)
l (the density of µ

(x)
l (x), upper part) and A#ρ

(x)
r (y − x) (the

density of A#µ
(x)
r , lower part) yields the density of the convolution at y. In this

figure y = 0.309965 which is the position of the weakest band. Only for the weak
band around x∗

{−+} the two densities are simultaneously non-zero (see inlay). This
leads to a very small value for the density of the convolution at y. Note that even
though the two convoluted measures are already rather sparse, the convolution
still has non-fractal support at this h. (β = J = 1)

The local minimum of the Dq, q < 0 at h ≈ 1.6 can be understood as a change
in the overlap structure of the bands of the two convoluted measures for different
h. For h ≈ 1.5 there is a relative position for µ

(x)
l and A#µ

(x)
r for which only

the two very weak bands around x∗
{−+} and A(x∗

{+−}) overlap which leads to a
very weak band in the convolution, cf figure 4.11 for an example. This results
in the large values of Dq observed numerically. For h ≈ 1.6 the band structure
is such that no position of this type can be found in the iteration depths under
consideration. For any relative position of µ

(x)
l and A#(µ

(x)
r ) more than one pair

of bands or considerably stronger ones overlap. This results in the considerably
smaller values of Dq. For larger h the formation of a very weak band in the
convolution reappears and again large values of Dq with q < 0 are obtained.
For other iteration depths the situation can again change as there is no strict
self-similarity of the measure µ(m).

From another point of view the values of Dq for negative q strongly depend
on the random field strength h for given iteration depth due to the changes in
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the overlap structure described above. This mechanism is to be expected at any
iteration depth such that there is a sensitive dependence of the Dq-spectrum with
q < 0 on the random field strength h.

It is now clear that the convolution of two multifractal measures can lead to
difficulties in determining the Dq-spectrum for negative q. It will become clear at
the end of the next chapter that the continued convolution encountered for the
effective field on the Bethe lattice can even lead to so-called left-sided multifractal
measures where the Dq for q < 0 are not defined. Another effect of the different
form of the iteration for the effective field on the Bethe lattice is the possible loss
of contractivity leading to the existence of physical phase transitions for non-zero
temeperature. This subject will be addressed in the first part of the next chapter.



Chapter 5

Random field Ising model on the
Bethe lattice

In this chapter the random field Ising model on a Bethe lattice is considered. The
Bethe lattice of degree k is uniquely characterized by the two properties that it is
an infinite Graph with constant vertex degree k+1 and that it contains no closed
paths. The formulation of the random field Ising model on a Bethe lattice requires
some notations for the underlying lattice. V denotes the set of vertices of the
Bethe lattice and d(y, z) is the natural metric on the lattice given by the length of
the unique path connecting y and z. Furthermore, VR := {y ∈ V : d(y, y0) ≤ R}
denotes the ball of radius R around some arbitrarily chosen central vertex y0 and
∂VR := {y ∈ V : d(y, y0) = R} its boundary, the sphere of radius R. In the
following it will be useful to decompose V into two subtrees V + and V − with
roots y0 and z0 in the way illustrated in figure 5.1.

Introducing the notation S(y) := {z ∈ ∂VR+1 : d(y, z) = 1} for the successors
of y ∈ ∂VR the Hamiltonian of the random field Ising model on the Bethe lattice
reads

HR({sy}y∈VR
) = −

∑

y∈VR−1

z∈S(y)

Jsysz −
∑

y∈VR−1

hysy −
∑

y∈∂VR

xb
ysy (5.1)

where sy denotes the classical spin at vertex y taking values ±1, J is the coupling
strength, hy is the random field at site y and xb

y the field at the boundary encoding
the chosen boundary conditions. In the following the considerations are restricted
to independent, identically distributed, symmetric dichotomous random fields,
i. e. hy = ±h with probability 1

2
for all y ∈ V . The canonical partition function

ZR :=
∑

{sy}y∈VR

exp(−βHR({sy})) (5.2)

where β = (kBT )−1 is the inverse temperature can be reformulated by a method
first introduced by Ruján [Ruj78] for the one dimensional random field Ising

71
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Figure 5.1 Bethe lattice of degree k = 2. The solid lines mark the part of the
lattice denoted by V + and the dashed lines the part denoted by V −. The roots
of the two subtrees are denoted by y0 and z0 respectively. The thick line shows
the unique path from a vertex y ∈ ∂V3 at the boundary to the central vertex y0

to illustrate the labeling along the path used in section 5.1.

model resulting in

ZR =
∑

sy0=±1

exp β
(

(x(R)

y0
+ A(x(R)

z0
))sy0 +

∑

y∈VR\{y0}

B(x(R)

y )
)

(5.3)

where the effective fields x(R)
z are determined by the generalized random iterated

function system

x(R)

y =
∑

z∈S(y)

A(x(R)

z ) + hy (5.4)

with boundary conditions x(R)
y = xb

y for y ∈ ∂VR. The functions A and B are
given by

A(x) = (2β)−1 log(cosh β(x + J)/ cosh β(x − J)) (5.5)

B(x) = (2β)−1 log(4 cosh β(x + J) cosh β(x − J)) (5.6)

cf appendix B.4 for more details. Note that the upper index (R) of the effective
field refers to the radius of the sphere where the boundary conditions are fixed.
The partition function in the form (5.3) is a partition function of one spin sy0

in two effective fields x(R)
y0

and A(x(R)
z0

) which are both determined through the
random iterated function system (5.4). The sum in (5.4) implies that although
|A′| < 1 for non-zero temperature T , the random iterated function system is
not necessarily contractive in contrast to the one-dimensional case. A loss of
contractivity indicates a phase transition as is explained in more detail below.
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Being functions of the random fields hy the effective fields are random variables
on the random field probability space and the iteration (5.4) induces a Frobenius-
Perron or Chapman-Kolmogorov equation for their probability measure

ν(R)

y (X) =
∑

hy=±h

1

2

(

∏

z∈S(y)

∗
A#ν(R)

z

)

(X − hy) (5.7)

where
∏∗ denotes the convolution product of measures, X is some measurable

set, X−hy := {x−hy | x ∈ X} and A# is the induced mapping of A cf definition
2.3. The measures of the effective fields at the boundary are fixed by boundary
conditions e. g. as ν(R)

y = δ(x− xb
y), the Dirac measure at xb

y. Any other choice of
the random variables xb

y is also possible of course.

It was proved in [BRZ98] that the existence of limiting Gibbs measures with
finite restrictions compatible with (5.1) and (5.2), cf [Geo88], implies the weak
convergence of the random variables x(R)

y , i. e. the weak convergence of the mea-
sures ν(R)

y to invariant measures νy in the limit R → ∞. For homogeneous bound-
ary conditions xb

y ≡ xb for all y ∈ V , the measures νy are all identical and will be
denoted by ν.

Before the results on phase transitions in the random field Ising model on the
Bethe lattice are presented some more properties of the random iterated function
system (5.4) and the function A are necessary. A(x) is a monotonic function in
x. For a given random field configuration {hy}y∈V +

R
= {σyh}y∈V +

R
, σy = ±, the

composite function mapping the effective fields in ∂V +
R+1 to the effective field at y0

are denoted by f{σ}R
. Here, {σ}R is the tree of kR+1−1 symbols ± characterizing

the configuration of the random field and k is the degree of the Bethe lattice.
These composite functions are monotonic in the sense that if xb

y ≥ x′b
y for all

y ∈ ∂V +
R+1 then f{σ}R

({xb
y}) ≥ f{σ}R

({x′b
y}). In the same way they are monotonic

with respect to the random field, f{σ}R
({xb

y}) ≥ f{σ′}R
({xb

y}) if σy ≥ σ′
y for all

y ∈ V +
R . Furthermore, there exists an invariant interval I = [x∗

−, x∗
+] with the

property that if xy ∈ I for all y ∈ ∂V +
R+1 then also f{σ}R

({xy}) ∈ I for any
random field configuration {σ}R. Here, x∗

− and x∗
+ are the fixed points of the

composite functions for homogeneous {−} and homogeneous {+} configuration
of the random field respectively. As A(x) = −A(−x), these fixed points are
symmetric, x∗

− = −x∗
+.

5.1 Upper bounds for the existence of a unique

paramagnetic phase

In this section an exact upper bound for the existence of a unique paramagnetic
phase in terms of the random field strength h is developed. This bound improves
earlier results in [BRZ98].
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Throughout this section the effective fields gy := A(xy) instead of the fields
xy will be used in close analogy to the notation in [BRZ98]. This has some
advantages in the calculation which will become clear below. The iteration (5.4)
for gy reads

g(R)

y =







gb
y (for y ∈ ∂VR)

A
(
∑

z∈S(y)

A(g(R)
z ) + hy

)

(otherwise) (5.8)

and the composite functions mapping the effective fields {gy}y∈∂V +
R+1

to gy0 will be
denoted by f̃{σ}R

. They have the same monotonicity properties as the composite
functions f{σ}R

.
In order to prove the existence of a unique paramagnetic phase it is sufficient

to show that the random variables gy do not depend on the boundary conditions
{gb

y} in the limit R → ∞ for any choice of the boundary conditions. Let g+
y denote

the effective field at y ∈ V for homogeneous boundary conditions gb
y ≡ g∗

+ in the
limit R → ∞ and g−

y the effective field resulting from the corresponding negative
boundary conditions gb

y ≡ g∗
− where g∗

+ = A(x∗
+) and g∗

− = A(x∗
−). For g+

y0
and g−

y0

the shorthand notations g+ and g− will be used. Note that the dependence of the
effective fields on the random field configurations is suppressed in this notation.

Inspired by the proof for the existence of a unique paramagnetic phase for the
random field Ising model on the Bethe lattice of degree 2 for almost all random
field configurations and 2 < h < 3 in [BRZ98], the expectation value

E{σ}(|g+ − g−|) (5.9)

is considered. The monotonicity of the composite functions f̃{σ}R
implies that if

this expectation value is zero for the two extremal boundary conditions chosen
above then it is zero for any two sets of boundary conditions. This then implies
that the random variable gy0 is independent of the boundary conditions for almost
all random field configurations. The goal of this section is therefore to find a
criterion for the random field strength h which implies that the expectation value
(5.9) is zero. Because of the monotonicity of the composite functions f̃{σ}R

one
has g+ ≥ g− and thus |g+ − g−| = g+ − g−. Therefore, it is sufficient to consider

E{σ}

(

g+ − g−) =

∫

dη({σ}) (g+ − g−)

=
∑

{σ}R

∫

{σ̃}R={σ}R

dη({σ̃})
(

g+({σ̃}) − g−({σ̃})
)

(5.10)

where η is the product measure of the probability measures of the random fields
hy = σyh. In the second step the integration was split up into a sum of a finite
number of integrals over sets of configurations with fixed symbols {σ}R in VR and



5.1 Upper bounds for the existence of a unique paramagnetic phase 75

arbitrary {σ̃} ∈ V \VR. Using the recursion relation (5.4) the integrand can be
expressed as a function of the effective fields {g+

y }y∈∂VR
on the boundary of VR,

g+({σ̃}) − g−({σ̃}) = f̃{σ̃}R−1
({g+

y }y∈∂VR
) − f̃{σ̃}R−1

({g−
y }y∈∂VR

)

=
∑

y∈∂VR

∂gy
f̃{σ̃}R−1

({δz}z∈∂VR
}) · (g+

y − g−
y ). (5.11)

In the second step the mean value theorem has been used for f̃{σ̃}R
and δz ∈

[g−
z , g+

z ] are appropriately chosen. The partial derivatives in (5.11) are given by

∂gy
f̃{σ̃}R−1

({δz}z∈∂VR
}) =

R−1
∏

l=0

A′
(

f{σ̃}R−1−l(zl(y))({εz}z∈∂VR
)
)

(5.12)

where εz = A−1(δz), zl(y) ∈ ∂Vl are the vertices along the unique path from y
to y0, cf also figure 5.1, and {σ̃}R−1−l(zl(y)) are the signs of the random field
configuration on the subtree of depth R − 1 − l with root zl(y). The terms
f{σ̃}R−1−l(zl(y))({εz}z∈∂VR

) are effective fields x(R)

zl(y) corresponding to boundary con-

ditions {xb
z = εz}z∈∂VR

. These fields are denoted by x(R)
z (ε) and the corresponding

effective fields with boundary conditions xb
z = x+

z and xb
z = x−

z by x(R)
z (x+) and

x(R)
z (x−). Then one can estimate

A′
(

x(R)

zl(y)(ε)
)

≤ max
{

A′
(

x(R)

zl(y)(ε
′)
) ∣

∣ ε′z ∈ [x−
z , x+

z ], z ∈ ∂VR

}

= max
{

A′(x)
∣

∣ x ∈ [x(R)

zl(y)(x
−), x(R)

zl(y)(x
+)]

}

= min
{

A′(max{x(R)

zl(y)(x
−), 0}), A′(min{x(R)

zl(y)(x
+), 0})

}

. (5.13)

The last step uses that the maximum of A′ in an interval [a, b] is at a if a ≥ 0, at b if
b ≤ 0 and at zero in all other cases. As the effective fields can never be larger than
x∗

+ and never smaller than x∗
− one can estimate x−

z ≥ hz + kA(x∗
−) = x(R+1)

z (x∗
−)

and x+
z ≤ hz + kA(x∗

+) = x(R+1)
z (x∗

+) for z ∈ ∂VR. This allows to replace x+ and
x− in the argument of x(R)

zl(y) in (5.13) and with x(R)

zl(y)(x
(R+1)
y (x∗

±)) = x(R+1)

zl(y) (x∗
±) this

yields

A′
(

x(R)

zl(y)(ε)
)

≤ min
{

A′(max{x(R+1)

zl(y) (x∗
−), 0}), A′(min{x(R+1)

zl(y) (x∗
+), 0})

}

=: A′(R+1)

zl(y) max
. (5.14)

Inserting (5.14) into (5.12) then results in

∂gy
f̃{σ̃}R−1

({δz}z∈∂VR
}) ≤

R−1
∏

l=0

A′(R+1)

zl(y) max
(5.15)

which only depends on {σ̃}R = {σ}R and therefore is independent of the integra-
tion. Therefore,

E{σ}(g
+ − g−) ≤

∑

{σ}R

∑

y∈∂VR

R−1
∏

l=0

A′(R+1)

zl(y) max

∫

{σ̃}R={σ}R

dη({σ̃}) (g+
y − g−

y ). (5.16)
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The remaining integral for each y is
∫

{σ̃}R={σ}R

dη({σ̃}) (g+
y − g−

y ) = 2−|VR|+1

∫

σ̃y=σy

dη({σ̃}) (g+
y − g−

y )

= 2−|VR|
E{σ}(g

+
y − g−

y | σ̃y = σy). (5.17)

Here, the first step uses the independence of the random variables gy of the signs
{σz}z∈VR\{y} and |VR| denotes the number of vertices in VR, i. e. |VR| = (kR+1 −
1)/(k−1). The function A is antisymmetric which implies g+

y ({−σ}) = −g−
y ({σ})

and therefore

E(g+
y − g−

y |σy = +) = E(g+
y − g−

y |σy = −) (5.18)

implying

E(g+
y − g−

y ) = 1
2
E(g+

y − g−
y |σy = +) + 1

2
E(g+

y − g−
y |σy = −)

= E(g+
y − g−

y |σy = σ) (5.19)

for any σ ∈ {−, +}. Setting

ER := max
y∈∂VR

E{σ}(g
+
y − g−

y | σ̃y = σy) = max
y∈∂VR

E{σ}(g
+
y − g−

y ) (5.20)

leads to

E0 = E{σ}(g
+ − g−) ≤

∑

{σ}R

2−|VR|
∑

y∈∂VR

R−1
∏

l=0

A′(R+1)

zl(y) max
ER. (5.21)

The finite sums commute and as A′(R+1)

zl(y) max
is obtained with homogeneous bound-

ary conditions the sums
∑

{σ}R
are identical for all y ∈ ∂VR such that the sum

over y can be replaced by a factor |∂VR| = kR yielding

E0 ≤ K ER (5.22)

where

K :=
∑

{σ}R

2−|VR| kR

R−1
∏

l=0

A′(R+1)

zl(y) max
. (5.23)

Because of the translation invariance of the Bethe lattice the considerations are
not restricted to y0 such that the estimate can be applied recursively. This
implies E0 ≤ Kr

Er·R. If the factor K is less than 1 for any parameters (T , h)
then E0 = E{σ}(|g+ − g−|) = 0 as Er·R is uniformly bounded by 2g∗

+ for all r ∈ N

and therefore Kr
Er·R → 0 for r → ∞. By translation symmetry this result holds
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Figure 5.2 Exact upper bound for the existence of a stable paramagnetic phase
on the Bethe lattice of degree k = 2 (solid line). The bound was obtained as
described in the text with all random field configurations at R = 4. The dashed
line is a similar upper bound obtained by considering a sample of 104 realizations
of the random field at R = 11 using the complete sum (5.21). Close to T = 0
the problem is numerically unstable; results are presented only for T ≥ 0.1. The
large dot was obtained for R = 20 using (5.23) and 105 random field configura-
tions. In the shaded region the result of [BRZ98] for the existence of a unique
paramagnetic phase applies. The grey dashed lines are the ferromagnetic and the
antiferromagnetic lines [Bru84], cf also [BRZ98] and the grey dash-dotted line is
Bruinsma’s lower bound for the existence of a stable ferromagnetic phase [Bru84],
cf also subsection 5.2.4. (J = 1)

for all gy with y ∈ V . As |g+ − g−| ≥ 0 the vanishing expectation even implies
|g+ − g−| = 0 for almost all realizations {σ} of the random field.

The reason for using gy instead of xy is now easily explained. If the effective
fields xy were used instead of gy the product over derivatives of A would be from
l = 1 up to R. This gives a less precise estimate because xy with y ∈ ∂VR is less
restricted than xy0 and therefore the bound for A′(xy) with y ∈ ∂VR is greater
than the one for A′(xy0).

To apply the criterion obtained above K was evaluated on a computer. The
calculation time is proportional to the number of random field configurations on
VR and thus asymptotically grows for e. g. k = 2 as 22R

. Therefore, the calculation
was restricted to R ≤ 4 (for R = 5 each data point in an array of 20 × 40 points
would take about 3 days on a Pentium II 350MHz). The solid line in figure 5.2
shows the upper bound for the existence of a unique paramagnetic phase obtained
for R = 4.
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To estimate the results for R > 4 the field configurations were randomly
sampled instead of considering all possible configurations. When doing so it is
saving time not to exploit the symmetry and use (5.21) instead of (5.23). The
resulting bound for R = 11 and a sample of 104 random field configurations is
the dashed line in figure 5.2.

5.2 Approximations of the transition line

Even though the bounds presented in the preceding section considerably improve
former analytical results they are still far away from the region where the phase
transition from paramagnetic to ferromagnetic behaviour is suspected. In [Bru84]
Bruinsma claimed to have found a lower bound in h for the existence of a ferro-
magnetic phase which is in the relevant parameter region, cf figure 5.2. To check
this bound and to get a good numerical approximation of the transition line sev-
eral numerical criteria for the existence of a ferromagnetic phase or the existence
of a stable paramagnetic phase were developed. These criteria are discussed in
the following subsections.

5.2.1 Direct calculation of the magnetization

The most obvious criterion for the existence of a ferromagnetic phase is a non-
vanishing expectation value for the magnetization for small but non-zero bound-
ary conditions. The expectation value for the local magnetization at the spin in
the center is given by

m := E{σ}〈sy0〉 =

∫

dν(x) dν(y)

∑

s=±1 s exp
(

βs x + βsA(y)
)

∑

s=±1 exp
(

βs x + βsA(y)
)

=

∫

dν(x) dν(y) tanh
(

β(x + g(y))
)

(5.24)

where 〈·〉 denotes the thermodynamic average, E{σ} the expectation value with
respect to all random field configurations and ν is the limit measure of the effective
field for homogeneous boundary conditions xb

y ≡ xb for all y ∈ V in the limit
R → ∞. To approximate ν a large number of random field configurations on
a finite region VR was generated and the corresponding effective field x(R)

y0
was

calculated. The obtained values were then sorted into small boxes of length ε.
The resulting histogram was used as an approximation of νy0(bi) =: νi where bi

is the i-th box. Explicitly this yields for the magnetization

m ≈
∫

dν(R)

y0
(x) dν(R)

y0
(y) tanh

(

β(x + g(y))
)

≈
∑

i

∑

j

νiνj tanh β(xi + g(yj)) (5.25)
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Figure 5.3 Contour plot of the magnetization m at y0 for R = 13 obtained from
sampling (5.25) with 4 · 105 random field configurations and xb = 0.1. The lowest
contour is m = 0.9 the upmost is m = 0.1. The grey lines are as in figure 5.2.
(J = 1)

where the points xi and yj were chosen as the center of box i and j respectively.
The resulting magnetization m is shown as a contour plot in figure 5.3 for R = 13,
xb = 0.1, ε = 10−3 and 4 · 105 random field configurations.

Assuming that the magnetization in the center varies monotonically with the
radius R of the finite volume VR one would expect to observe a monotonically
increasing magnetization in the ferromagnetic regime and a monotonically de-
creasing magnetization in the paramagnetic regime for increasing R. Therefore,
the contours in figure 5.4 which divide the two regions in which the numerical
estimate of the magnetization is increasing or decreasing with increasing R are
good estimates for the transition line. As one can see the estimates only depend
slightly on the boundary condition and disagree significantly with Bruinsma’s
bound.

In contrast to this qualitative behaviour the absolute value of the magnetiza-
tion for a given system size depends essentially on the chosen boundary condition.
Figure 5.5 compares the numerical results for finite system size and zero random
field to the analytical result in the thermodynamic limit given below.

For h = 0 the iteration (5.4) degenerates to xn = kg(xn+1) with the non-trivial
fixed points (k = 2)

x∗ =
1

β
log

(

e2βJ−1
2

±
√

(

e2βJ−1
2

)2 − 1
)

(5.26)

which are real for T < Tc = 2J/kB log 3. Inserting dν(x) = δ(x − x∗)dx into
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(5.24) results in

m = tanh β(x∗ + A(x∗)). (5.27)

The finite size result is good far from the critical point and less good close
to it. This was to be expected because the finite size effects are most prominent
near Tc as usual.

5.2.2 Average contractivity of the random iterated func-
tion system

For zero boundary conditions there is a paramagnetic state for any temperature
T and random field strength h. The stability of this paramagnetic state is tied
to the average contractivity of the random iterated function system (5.4). If it
is globally contracting the paramagnetic state is stable and unique. If it is at
least contracting on the average for some interval around zero, the paramagnetic
phase is stable but the existence of other stable phases is not a priori excluded.
The investigation of the contractivity of the random iterated function system was
first proposed in [Pat97].
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Figure 5.5 Comparison of the exact total magnetization per spin to the numerical
result for R = 13 at h = 0 for several boundary conditions. The lowest points
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to be expected for the finite system the phase transition is smeared out. (k = 2,
J = 1)

To estimate the average contractivity of the iteration (5.4) a set ΣR of random
field configurations {σ}R on a finite ball VR was generated and the image of a
small initial interval Ib = [−xb, xb] was calculated. Because of the monotonicity
of f{σ}R

the image of this interval at vertex y is Iy = [x(R)
y (−xb), x(R)

y (xb)]. To
estimate the average contractivity of the random iterated function system the
average length 1/kR1

∑

y∈∂VR1
|Iy| at the vertices y ∈ ∂VR1 is compared to the

length |Iy0 | at the central vertex y0. As the effective fields at all y ∈ ∂VR1

contribute to the effective field at y0 by iteration (5.4) it is necessary to consider
the average interval lengths at vertices in ∂VR1 and not individual values. To
minimize the influence of the somewhat arbitrary choice of the initial interval the
comparison was performed for R1 � R.

There are essentially two ways of performing the comparison. Either one first
averages over the lengths |Iy| at all vertices y ∈ ∂VR1 then calculates the quotient
of |Iy0| and the obtained average length in ∂VR1 and averages over the sample ΣR

of random field configurations at the end,

〈 |Iy0|
1

kR1

∑

y∈∂VR1
|Iy|

〉

ΣR

. (5.28)

Or one first averages |Iy| over all y ∈ ∂VR1 and all random field configurations as
well as |Iy0| over the same random field configurations and calculates the quotient
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Figure 5.6 (a) Upper bound for the emergence of a stable paramagnetic phase
obtained by calculating the average contractivity of the random iterated function
system (5.4) for a small initial interval Ib = [−0.01, 0.01]. The solid line was
obtained by generating 105 random field configurations on a Bethe lattice of degree
k = 2 with radius R = 13 and comparing the length of the image of the interval
at y0 to the average length at R1 = 4. Above the solid line the quotient of the
interval lengths is less than 1 and below it is greater than 1. The dashed line was
obtained in the same way with R = 11 by comparing the interval lengths at y0

and R1 = 2. The grey lines are as in figure 5.2 and the shaded region as in figure
5.4. (J = 1)

at the end,

〈

|Iy0|
〉

ΣR
〈

1
kR1

∑

y∈∂VR1
|Iy|

〉

ΣR

. (5.29)

The two averaging procedures (5.28) and (5.29) yield identical results and thus
obviously are equivalent.

To extract a criterion for the emergence of a stable paramagnetic phase the
reasoning is the following. If the images of the initial interval contract on the
average for a finite iteration of (5.4) they will do so for all further iterations as
well and thus are likely to completely contract to length zero for infinite iteration.
The complete contraction corresponds to a stable paramagnetic phase. Therefore,
the contour in the (T, h) parameter plane at which the average quotient of band
lengths switches from greater than 1 below to less than 1 above is an estimate
for the position of the emergence of a stable paramagnetic phase.

The resulting estimated transition line for the emergence of a stable paramag-
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netic phase is shown for R = 13, R1 = 4, the initial interval Ib = [−0.01, 0.01]
and 105 random field configurations as the solid line and for R = 11, R1 = 2,
Ib = [−0.01, 0.01] and also 105 random field configurations as the dashed line in
figure 5.6. The agreement of both results is satisfactory but there is again a large
deviation from Bruinsma’s line which is shown for comparison.

5.2.3 Independence of the effective fields from boundary
conditions

Another somewhat related criterion for the existence of a stable paramagnetic
phase is the independence of the effective field from boundary conditions. As
in section 5.1 it is advantageous to use the effective fields g(R)

y rather than x(R)
y .

Consider boundary conditions {gb
y}y∈∂VR

taking values in a small interval [−gb, gb].
By means of the iteration with (5.4) the effective fields g(R)

y are functions of the
boundary conditions

g(R)

y = f̃{σ}R−n−1(y)({gb
z}) (5.30)

where the function f̃{σ}R−n−1(y) has kR−n arguments for y ∈ ∂Vn and it is the
identity if R = n. For simplicity and without loss of generality the following dis-
cussion is restricted to g(R)

y0
. The boundary conditions can be written as gb

y = gb ĝb
y

where ĝb
y takes values in [−1, 1]. To investigate how the effective fields depends

on the boundary conditions consider the expectation value of the derivative of
g(R)

y0
with respect to gb, the strength of the applied boundary condition

E{σ}R−1

∣

∣

∣

d

dgb
g(R)

y0

∣

∣

∣
≤ E{σ}R−1

∑

y∈∂VR

∂gy
f̃{σ}R−1

({gb
z}z∈∂VR

) |ĝb
y|

≤
∑

y∈∂VR

E{σ}R−1

R−1
∏

l=0

A′
(

x(R)

zl(y)(x
b)

)

(5.31)

where x(R)

zl(y)(x
b) denotes the effective fields along the unique path from y to y0

with homogeneous boundary conditions xb
y ≡ g−1(gb). One can estimate as in

section 5.1

A′(x(R)

zl(y)(x
b)) ≤ min{A′(max{x(R)

zl(y)(x
b), 0}, A′(min{x(R)

zl(y)(−xb), 0}}
=: A′(R+1)

zl(y) max
(xb). (5.32)

As the boundary conditions are homogeneous this implies

E{σ}R−1

∣

∣

∣

d

dgb
g(R)

y0

∣

∣

∣
≤ kR

E{σ}R−1

R−1
∏

l=0

A′(R+1)

zl(y) max
(xb). (5.33)



84 Random field Ising model on the Bethe lattice

PSfrag replacements

ra
n
d
om

fi
el

d
h

temperature kBT

kBTc

kBTc

0

0

0
0

0.50.5

11

1

1

2

2

Figure 5.7 Estimated upper bound for a stable paramagnetic phase based on
the dependence of the effective fields on the boundary conditions. For the solid
line the expectation value (5.33) was estimated by generation of all random field
configurations on a Bethe lattice of radius R = 4. For the dashed line 104 random
field configurations on a Bethe lattice of radius R = 11, homogeneous boundary
conditions xb = 0.01 and (5.34) were used. The large dots were obtained from
calculating (5.37) for R = 20, between 105 and 2.4·106 random field configurations
and selected temperatures T . For all these lines and the large dot the caculated
expectation value is less than 1 above and greater than 1 below. The dotted
contour results from comparing (5.34) at R1 = 2 and at y0 for R = 11 and 104

random field configurations. The expectation value is decreasing with the distance
from the boundary above the dotted line and increasing below. The grey lines are
as in figure 5.2 and the shaded region as in figure 5.4. (k = 2, J = 1)

If the right hand side vanishes for R → ∞ the effective field gy0 is on the average
independent from boundary conditions taking values in [−gb, gb]. By determining
the parameter region in which the right hand side of (5.33) vanishes for R → ∞
one therefore gets an upper bound on the emergence of a stable paramagnetic
phase.

As the calculations on a computer are limited to finite R, convergence to zero
of the right hand side of (5.33) is assumed whenever the obtained values for radius
R > 0 are smaller than 1 which is the value for R = 0.

For the Bethe lattice of degree k = 2, radius R = 4 and homogeneous bound-
ary conditions gb = 0.01 the right hand side of (5.33) was evaluated. The contour
between values smaller than 1 above and greater than 1 below is shown as the
solid line in figure 5.7.

For R > 4 a calculation of all random field realizations is very costly as the
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calculation time scales like 22R−1. Therefore, again a statistical sample of random
field configurations was used instead. In this case it is time saving not to exploit
the symmetry of the system but to calculate the complete sum

〈

kR−1
∑

j=0

R−1
∏

l=0

A′(R+1)

zl(y) max
(xb)

〉

ΣR−1

. (5.34)

where 〈·〉ΣR−1
denotes the average over the sample ΣR−1. The resulting contour

for R = 11 with a sample of 104 random field configurations is the dashed line in
figure 5.7. The dotted line in figure 5.7 was obtained by analyzing whether the
value is decreasing (above the line) or increasing (below the line) with increasing
distance to the boundary. The values at y ∈ ∂V2 were compared to the value at
y0 for R = 11 and 104 random field configurations to obtain this line.

If one considers the derivative of the effective field at y0 in the case of boundary
conditions gb ≡ 0 one obtains

E{σ}R−1

dg(R)
y0

dgb
({0}) = E{σ}R−1

∑

y∈∂VR

R−1
∏

l=0

A′(x(R)

zl(y)) (5.35)

= kR
E{σ}R−1

R−1
∏

l=0

A′(x(R)

zl(y)) (5.36)

for any y ∈ ∂VR because of the symmetry and the homogeneous boundary con-
ditions. If this derivative does not tend to zero for some parameters (T, h) and
R → ∞ there is no stable paramagnetic phase. By determination of the para-
meter region in which this is the case a lower bound on the emergence of a stable
paramagnetic phase is obtained. The numerical results obtained by evaluation of

〈

∑

y∈∂VR

R−1
∏

l=0

A′(x(R)

zl(y))
〉

ΣR−1

(5.37)

for a sample ΣR−1 of random field configurations are the large dots in figure 5.7.

5.2.4 Discussion

In order to interpret the discrepancies between Bruinsma’s bound for the on-
set of ferromagnetism and the numerical results it is necessary to briefly review
Bruinsma’s argument [Bru84].

The probability measures νy of the effective fields xy are fixed points of the
Frobenius-Perron equation (5.7). They can be approximated by finite iterations of
some initial probability densities (boundary conditions) νb

y for y ∈ ∂VR. Requiring
that the support of the boundary conditions νb

y is a subset of the invariant interval
I, the support of the resulting measure νy0 is a subset of the images of I by
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Figure 5.8 a) The two ferromagnetic and the two antiferromagnetic configurations
at R = 4 corresponding to the ferromagnetic and the antiferromagnetic line in
the phase diagrams respectively. b) Four equivalent chessboard configurations at
R = 4. The second configuration is obtained from the first by permutation of
two subtrees of a vertex in the sphere ∂V2, the third one by permutation of two
subtrees of a vertex in the sphere ∂V1 and the last one by permutation of the two
subtrees of the root itself.

functions f{σ}R
. These images of I are called bands. The left and right boundary

of the bands are the effective fields corresponding to homogeneous boundary
conditions xb

y ≡ x∗
+ and xb

y ≡ x∗
− for y ∈ ∂VR respectively. The investigation of

the structure of the set of bands has proved to be a powerful tool in the treatment
of the one-dimensional random field Ising model, cf chapter 3.

In contrast to the one-dimensional case the bands are highly degenerate here,
i. e. different configurations of the random field result in the same band. This is
due to the invariance of the model with respect to permutations of subtrees for
homogeneous boundary conditions. The most degenerate bands correspond to
the two chess-board configurations, cf figure 5.8b, of the random field with +h or
−h at y0 respectively. There are 22R−1−1 equivalent random field configurations
in the case of the Bethe lattice of degree k = 2 and radius R. As the total
number of configurations is N = 22R−1 the most degenerate bands have a weight
of 22R−1−1/22R−1 = 2−2R−1 ∼ 1/

√
N . The bands with the least weight are the

bands corresponding to homogeneous +h or −h random field configurations, cf
figure 5.8a. They have the weight 1/N . The weights of all other bands are
distributed between these values.

Bruinsma started with boundary conditions νb
y ≡ δxb for some xb ∈ R and

iterated with (5.7). He only considered the lowest and highest weight terms cor-
responding to the least and the most degenerate bands. The highest weight term
obeys a recursion relation. The fixed points of this recursion can be calculated.
They correspond to the position of the highest weight term after infinite itera-
tion of the Frobenius-Perron equation (5.7). It is straightforward to determine
for which temperatures T and random field strengths h these highest weight con-
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tributions are symmetric to the origin. Proving differentiability of the density ρ
of the invariant measure ν in a neighbourhood of T = Tc and h = 0, Bruinsma
concluded that an asymmetric position of the highest weight terms corresponds
to asymmetric maxima of ρ of non-zero weight and therefore to the existence of
a ferromagnetic phase. Note that because the contribution of the highest weight
term by itself converges to zero in the limit of infinite iteration the property of
differentiability of the invariant measure density is crucial for the argument.

The symmetric position of the highest weight terms corresponds to the com-
plete contraction of the most degenerate bands such that the asymmetric bound-
ary condition has no effect in the limit of infinite iteration. The asymmetric
position of the highest weight terms on the other hand occurs if the most degen-
erate bands do not completely contract such that the asymmetry of the boundary
condition remains visible throughout the infinite iteration. Seen in this light the
argument above is similar to the criterion of average contractivity of the ran-
dom iterated function system discussed in section 5.2.2 except that it considers
the contractivity of one specific band, the most degenerate band, instead of the
average contractivity.

There are two problematic points in the reasoning above. Firstly, it is not
clear whether the fact that the most degenerate bands have the greatest weight in
finite iterations of the Frobenius-Perron equation necessarily allows the conclusion
that their position determines the location of local maxima provided the measure
density is differentiable. For small h this actually seems not to be the case, cf
figure 5.9. Unfortunately the maxima are at ±h and therefore close to zero for
small h such that it is difficult to argue on the base of numerical data. Figure
5.9 also shows however that the maxima are clearly present for sufficiently large
random field amplitude h.

Secondly, the differentiability of the resulting measure density has been proved
only for small random field strength and in a neighbourhood of the critical
tmeperature of the model without random field. The lower bound for the on-
set of ferromagnetism was given for all temperatures 0 ≤ T ≤ Tc though. For
sufficiently large h or sufficiently small T , the measure density ρ is clearly not
differentiable such that the argument does not apply. It is unclear whether it is
differentiable in the region of Bruinsma’s lower bound for the onset of ferromag-
netism, cf figure 5.9.

The disagreement of the numerical results with Bruinsma’s lower bound there-
fore allows two interpretations. Either Bruinsma’s bound is not true outside the
proven region of validity because the most degenerate bands are not a sufficient
indicator for the symmetry of ρ when the measure density is not differentiable.
Or a stable paramagnetic phase coexists with the — also stable — ferromagnetic
phases in the region between the upper bounds for the existence of a stable para-
magnetic phase found in this work and Bruinsma’s lower bound for the onset of
ferromagnetism. This would imply the existence of a first order phase transition
and of hysteresis loops depending on the strength of the random field in con-
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Figure 5.9 Approximations of the invariant measure density ρ obtained from
four-fold application of (3.7) to the equipartition on the invariant interval I. The
value h = 0.961159 is very close to Bruinsma’s bound. (β = J = 1)
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trast to the hysteresis at T = 0 [DSS97, Shu00, SRR00] which depends on the
homogeneous offset of the random field.

5.3 Multifractal properties of the effective field

5.3.1 Left-sidedness of the invariant measure

After the Dq-spectrum of the invariant measure µ(x) of the effective field and
the measure µ(m) of the local magnetization in the one-dimensional random field
Ising model could be characterized very precisely and interesting transitions were
found for q < 0 it seems natural to try to analyze the invariant measure ν of the
effective field in the random field Ising model on the Bethe lattice in the same
way.

However, lemma 4.3 and the fact that ν is a fixed point of the Frobenius-
Perron equation (5.7) imply that the pointwise dimension of ν at the boundary
x∗
− of its support obeys the relation

Dp(x
∗
−; ν) = 2Dp(x

∗
−; ν) . (5.38)

The only solutions to this are Dp(x
∗
−; ν) = 0 or Dp(x

∗
−; ν) = ∞. As a direct

calculation reveals the latter is the only possible solution, cf appendix B.11. By
lemma 3.6 this implies that all Dq with q < 0 are undefined. In terms of the
f(α)-spectrum this corresponds to the situation that the f(α)-spectrum does not
terminate at some αmax but is non-zero on the whole positive real axis. Measures
of this type have been called left-sided multifractals and have attracted some
interest recently [HGH00, RM95, ME91, MEH90]. They also seem to be relevant
in fully developed turbulence and in diffusion limited aggregation [Man90]. That
this effect appears naturally in the context of physical models shows that it is not
an artificially constructed counterexample to the commonly assumed properties
of the f(α)-spectrum.

The appearance of this effect can also be understood in terms of the de-
generacy of bands. As the homogeneous {+} and {−} bands are non-degenerate
whereas the most degenerate bands are 22R−1−1 fold degenerate these bands which
contribute to the measure at the boundary of its support are exponentially sup-
pressed in the iteration. The maxima at the positions of the bands corresponding
to the chess-board configurations are exponentially stronger than the measure at
the boundary. It also becomes clear that the weight of bands is much more de-
termined by the degeneracy than by the local contractivity of the iteration in
contrast to the one-dimensional model. On the other hand even the most degen-
erate band has with increasing iteration depth an exponentially decreasing weight
such that single bands are never sufficient for the calculation of e. g. pointwise
dimensions also in clear contrast to the one-dimensional case.
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Figure 5.10 Lower bound for the transition from Euclidean to fractal support
of the invariant measure of the effective field in the random field Ising model on
the Bethe lattice (solid line). The bound was obtained from evaluating condition
(5.39). The points are estimates for the transition obtained from the condition
D0 < 0.999 for all h above the points. D0 was obtained with the method for
the new natural partition on measure generated through fourfold application of
the convolution algorithm to a constant initial measure. The grey lines are as in
figure 5.2 and the shaded regions are the regions of a unique paramagnetic phases
for almost all (light grey) and all (dark grey) random field configurations. Note
that the transition in D0 takes place in a region far away from the physical phase
transitions.

For the analysis of the Dq-spectrum the left-sidedness of the invariant measure
implies that the only remaining transition of those discussed for the Dq-spectrum
of the effective field of the one-dimensional model is the transition in D0 which
will be treated in the next subsection.

5.3.2 Transition in D0

In the one-dimensional random field Ising model the approximate self-similarity of
the support of the invariant measure of the effective field implied that as soon as
the first order bands do not overlap the support is a fractal set with D0 < 1. For
the measure of the local magnetization this reasoning was not possible because of
lack of self-similarity and one had to rely on numerical methods. The situation
of the invariant measure of the effective field of the random field Ising model on
the Bethe lattice is somewhere in between. One can give a lower bound in h for
the transition to a fractal support by investigating for which h the support first
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Figure 5.11 Dq-spectrum of the measure of effective field of the random field
Ising model on the Bethe lattice with degree k = 2 for q = 0, 1, 2, 4 and 20.
It was obtained by the method of the new natural partition on measure approxi-
mations obtained from up to fourfold application of the convolution algorithm on
a constant initial measure corresponding to fourfold iteration of the Frobenius-
Perron equation (5.7). The dashed line marks the position of the transition in D0

obtained from (5.39). (β = J = 1)

becomes disconnected. As it turns out this lower bound is in good agreement
with the numerically determined transition in D0.

The first order bands [2A(x∗
−)−h, 2A(x∗

+)−h] and [2A(x∗
−)+h, 2A(x∗

+)+h]
corresponding to radius R = 1 always intersect. Therefore, the transition to
fractal support can not be detected on this level. For R = 2 there are 6 distinct
bands. The first gaps in the support of ν appear if the right boundary of the
band - +

+
begins to be less than the left boundary of the + +

+
band. This leads to

the condition

A(2A(x∗
+) − h) + A(x∗

+) + h = 2A(2A(x∗
−) + h) + h . (5.39)

The condition can be evaluated numerically and leads to the lower bound of the
transition in D0 shown as the solid line in figure 5.10. The points in the figure
are numerical estimates for the transition determined from the condition that
D0 < 0.999 above the points. D0 was determined with the algorithm of the
new natural partition and has a sharp edge where it becomes less than 1. The
necessary approximations for the invariant measure were obtained by fourfold
application of the Frobenius-Perron equation (5.7) to a constant initial measure
on I. Obviously the lower bound is a good approximation of the real transition
line.
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Finally, the generalized box dimensions Dq with q > 0 are rather unspec-
tacular like in the one-dimensional model. Figure 5.11 shows the numerically
generated Dq-spectrum.

There has been some hope that there might be some connection between the
transitions in the multifractal Dq-spectrum of the effective field and the physical
phase transitions from paramagnetic to ferromagnetic behaviour. As of now no
such relations have been found. To the contrary the transition in D0 for example
is in a completely different region and the transition line also has a somewhat
different shape.

This concludes the investigations of the random field Ising model on the Bethe
lattice in the scope of this work. The results are discussed in comparison and an
outlook is given in the conclusions below.



Chapter 6

Conclusions

In this work several aspects of random field Ising models with quenched random
field were considered. The models under consideration allow to reformulate the
canonical partition function for N spins to a partition function for one spin in
effective fields which are characterized by random iterated function systems. The
essential requirement for this reformulation is that the underlying lattice contains
no loops. This requirement is met by the Bethe lattice and the one-dimensional
chain which is a Bethe lattice of degree k = 1.

The random iterated function system for the effective field of the one-dimensional
model is contractive and therefore defines a unique invariant measure of the cor-
responding Frobenius-Perron equation. The multifractal properties of this in-
variant measure were investigated in chapter 3. The random iterated function
system allows the introduction of a symbolic dynamic in a way that each point
in the support of the invariant measure is the fixed point of a suitably defined
infinite iteration which corresponds to an infinite symbol sequence. To investi-
gate the multifractal properties of the invariant measure the concept of orbits
was introduced. An orbit to a given symbol sequence was defined as the set of
predecessors of the fixed point with respect to a given symbol sequence generaliz-
ing the notion of periodic orbits in [Pat97] to arbitrary, generically non-periodic,
symbol sequences. This conceptual step allowed some remarkable progress on the
pointwise dimension at the points of orbits.

In section 3.3 it could be proven that the points of periodic orbits which do not
touch the overlap have a well-defined pointwise dimension and an explicit formula
for this pointwise dimension was established in lemma 3.3. This is a considerable
improvement of earlier results for which the existence of the pointwise dimension
and even strong scaling at the points of the periodic orbit under consideration
had to be assumed. Furthermore, the result is not specific for the random iterated
function system considered in this work but applies to any contractive random
iterated function system for which periodic orbits with unique predecessors in the

93
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Frobenius-Perron equation can be identified.

The generalized notion of orbits allowed to identify a special class of orbits
named offshoots in this work. These are orbits with a symbolic sequence which
has an infinite periodic tail but an arbitrary head. It was shown that the invari-
ant measure has the same pointwise dimension at all points of an orbit provided
it does not get into the overlap. This implied for the offshoots that they have
the same pointwise dimension as the periodic tail which is known. This obser-
vation revealed the interesting roles played by the head and the tail of a symbol
sequence. Whereas the infinite tail determines the local properties, i. e., the
pointwise dimension, the head determines the position of the fixed point of the
orbit.

In the case of empty overlap it was possible to generalize the expression for
the pointwise dimension at points of periodic orbits to non-periodic orbits as well
leading to lemma 3.4. Whereas the pointwise dimension at the points of periodic
orbits is determined by the slope of the function A at the finitely many points
of the periodic orbit, the pointwise dimension at the points of a non-periodic
orbit depends on this slope at all infinitely many points of the orbit. Provided
the average of the logarithm of the slope of A at the points of an orbit exists,
the pointwise dimension at the points of that orbit also exists and is given by
the generalized formula. By use of general results of ergodic theory [Elt87] this
provided a formula for the pointwise dimension of µ(x)-almost all points of the
support of the invariant measure µ(x) of the effective field. The result again
applies to other random iterated function systems without overlap and therefore
is of interest in its own right.

The knowledge of the pointwise dimension at the points of periodic orbits
furthermore allowed to explain transitions in the Dq-spectrum of the invariant

measure for q < 0 in section 3.4 and to obtain the critical values h
(2)
c and h

(2a)
c at

which they take place. The transition at h
(2a)
c was discovered in improved numer-

ical Dq-spectra generated as part of this work. The transitions are caused by the
superseding of pointwise dimensions of orbits which have points in the overlap.
The investigation for which values of the random field strength certain orbits have
points in the overlap or not provided an equation for the critical field strength of
each of the two transitions. The mechanism was understood in detail rendering
the earlier results [Pat97] more precisely. In particular the obtained exact results
on the pointwise dimension of periodic and non-periodic orbits improve the argu-
ment. In addition, the critical value h

(2)
c was also calculated explicitly. Note, that

the change in the pointwise dimension of an orbit which is a local effect has grave
consequences for the Dq-spectrum which characterizes a measure globally. The

transitions at h
(2)
c and h

(2a)
c are thus an interesting example of relations between

local and global multifractal properties.

The excellent agreement with numerical results confirmed the validity of the
analytical arguments for the transitions, the explicit value for h

(2)
c and the crite-
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rion for h
(2a)
c as well as the numerical techniques.

The transitions in the Dq-spectrum are also not specific for the random it-
erated function system considered here. Similar effects have already been found
in the context of learning in neural networks [BvHK+93]. Any random iterated
function system with an overlap structure similar to the one encountered here
can display such transitions [BvHK+94] and the explanation patterns developed
in [Pat97, NPB01a] and this work apply.

In section 3.5 general inequalities between Dq and Dp based on basic inequal-
ities between sums of positive numbers and the individual summands were estab-
lished. They are of very general nature applying to any measure which allow to
define Dq and Dp. For the invariant measure of the effective field the application
of these inequalities and the knowledge of the pointwise dimension of the points
of periodic orbits led to explicit lower and upper bounds on the Dq-spectrum and
explicit formula for D∞ and D−∞. In many regions of the (T, h) parameter plane
the bounds almost coincide with the Dq-spectrum. This is a hint that in these
regions the local dimension at the points of a single orbit (and its offshoots) more
or less solely determines the Dq-spectrum.

Together with the results of earlier work a comprehensive understanding of
the Dq-spectrum of the effective field has been achieved. One interesting further

question would yet be whether other transitions of the type h
(2a)
c exist. This is

commonly expected and can be investigated numerically when higher iteration
depths become realizable. Another related question is how to quantify the height
of the step in the Dq-spectrum at h

(2a)
c . To this end it would be necessary to un-

derstand in which sense the countably infinitely many periodic orbits with their
countably infinitely many offshoots each constitute a non-negligible fraction of
all orbits with large pointwise dimension at the critical point h = h

(2a)
c . Under-

standing this would allow to decide whether and which other orbits or families
of orbits can also trigger transitions in the Dq-spectrum.

The results on multifractal properties of the one-dimensional Ising model so
far mainly had been concentrated on the effective field which is not a quantity
amenable to direct physical measurement. The local magnetization investigated
in chapter 4 however is in principle experimentally observable by neutron scat-
tering. Its investigation brings the theoretical work closer to the experimental
realizations.

The probability measure of the local magnetization is essentially the convo-
lution of the invariant measure of the effective field with a deformed version of
itself. Therefore, the investigation of the multifractal properties of the local mag-
netization led in a natural way to the question how the multifractal properties of
the convolution of two measures are related to the multifractal properties of the
two convoluted measures which was investigated in section 4.1. There were three
main results in this general investigation.
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The first was the continuity of the convolution of Borel measures with respect
to the Hutchinson metric established in lemma 4.1 which implies that the ther-
modynamic limit for the measure of the local magnetization can be performed in
an arbitrary way.

Secondly, the pointwise dimension at the boundary of the support of the con-
volution was proved to be the sum of the pointwise dimensions at the boundaries
of the support of the convoluted measures as formulated in lemma 4.3. This
result applies to any pair of bounded Borel measures with compact support. As
the pointwise dimension at any point of the support can reveal a lot about the
Dq-spectrum by means of the general inequalities between Dq and Dp derived in
section 3.5 this is an important result for the characterization of the Dq-spectrum
of the local magnetization.

The third main result was that the Dq-spectrum of the convolution of two
measures is bounded from above by the sum of the Dq of the convoluted measures.
It was stated in theorem 4.4 and applies to any pair of bounded Borel measures.
For the local magnetization this provided a non-trivial bound on the Dq-spectrum
in terms of the Dq-spectrum of the effective field.

As all three results apply to arbitrary bounded Borel measures (with compact
support in the second case) they are of general interest beyond the example of
the measure of the local magnetization in the one-dimensional random field Ising
model. This is the more so as sums of independent random variables leading to
the convolution of the corresponding probability measures appear quite naturally
in a wide variety of applications.

The convolution of Cantor sets with weights in section 4.2 provided some
non-trivial examples in which the multifractal Dq-spectrum can be obtained an-
alytically. This allowed further insight into the mechanism of the convolution of
multifractals. The comparison of the numerical methods to the exact analytical
results showed excellent agreement thus verifying the numerical methods.

For the measure of the local magnetization the general results for the pointwise
dimension and the Dq-spectrum of the convolution of two measures together with
the covariance and invariance of Dp and Dq with respect to bi-Lipschitz maps
allowed a characterization of the Dq-spectrum by various bounds in section 4.3.
The numerically obtained Dq-spectrum is in good agreement with the analytical
results. Numerical instabilities in some parameter regions hinted to more complex
mechanisms in the convolution. Some important steps towards an understanding
of these effects have been taken by the analysis of the overlap structure of bands
in the process of the convolution of the measures at finite iteration depth. This
led to the realization that variations in the iteration depth or, equivalently, in
the random field strength or the temperature can lead to a qualitative change in
the overlap structure in the process of the convolution. This can qualitatively
change the obtained value of Dq for arbitrarily small changes in T and h and at
all iteration depths.

The more pragmatic approach was to ask for the possible observation in ex-



97

periments which led to the consideration of box methods for the numerical deter-
mination of the Dq-spectrum. In these methods the scale of resolution is bounded
from below by the smallest considered box in contrast to the situation of the new
natural partition where the scale can get arbitrarily small already at finite itera-
tion depths. Choosing the smallest box size according to the iteration depth led
to meaningful results for the Dq-spectrum.

Nevertheless, the parameter regions where the numerical method based on
the new natural partition becomes unstable is open to further investigations of
numerical and analytical nature. It would be interesting to find out if and for
which T and h the pointwise dimension exists in a strict mathematical sense and
how it can be caluclated. As the general impression is that the inpredictability
of the usual numerical methods on small scales is present for any scale below
some lower critical length scale there might even be need for other multifractal
concepts to characterize this measure.

The random field Ising model on the Bethe lattice of degree k ≥ 2 exhibits a
phase transition from ferro- to paramagnetic behaviour in dependence on the
temperature T and the random field strength h. This phase transition was inves-
tigated in detail in chapter 5. It is an example of a phase transition where the
ordered phase is suppressed by the disorder at large random field amplitudes.

The improved exact upper bound for the existence of a unique paramagnetic
phase in section 5.1 is a further step towards the exact determination of the phase
diagram of the random field Ising model on the Bethe lattice. Even though it is a
considerable improvement of earlier results [BRZ98] it is still far from the region
where the real transition line is expected.

The estimates for the transition line in section 5.2 are while all being slightly
different in method and interpretation nevertheless in very good agreement with
each other and all disagree with an earlier result by Bruinsma [Bru84].

The direct calculation of the expectation value of the local magnetization in
subsection 5.2.1 provided an estimate for the extent of the ferromagnetic region.
In the way it was exploited this estimate for the transition line was based on
determining the instability of the paramagnetic phase. The investigation of the
average contractivity of the random iterated function system (5.4) at large itera-
tion depths in subsection 5.2.2 provided a reliable estimate for the stability region
of the paramagnetic phase and the numerical calculation of the derivative of the
effective field with respect to the strength of the boundary condition in section
5.2.3 led to a compatible result. A closer look at the different methods reveals
that they all measure the average contractivity of the random iterated function
system in one way or the other. This seems to be the important quantity indi-
cating the phase transition. A contractive random iterated function system leads
to a paramagnetic and a non-contracting one to a ferromagnetic situation. If
the contractivity of the random iterated function system depends on the type of
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the applied boundary conditions more complicated phase diagram structures are
conceivable.

The relation between the contractivity of the generalized random iterated
function system and the phase transition in the random field Ising model on the
Bethe lattice is a prominent example where methods and notions of one field of
physics are useful in describing effects encountered in a model usually described
within a different context.

The obvious disagreement of the obtained transition lines with the earlier re-
sult of Bruinsma [Bru84] motivates further investigations into whether the bound
for the onset of ferromagnetism given in [Bru84] needs to be reconsidered or
whether there might be a coexistence region for stable ferromagnetic phases with
a stable paramagnetic phase. This would correspond to the situation that the ran-
dom iterated function system is contractive for boundary conditions with small
amplitude and non-contractive for large boundary conditions which seems some-
what improbable as the function A is more contractive for large arguments than
for small ones.

The last topic were the multifractal properties of invariant measures of the ef-
fective field on the Bethe lattice were investigated in section 5.3. It was shown
that invariance with respect to the Frobenius-Perron equation implies that the
invariant measures must be left-sided multifractals and therefore all Dq with
q < 0 are not defined. As a consequence, transitions in these Dq can not be
observed. The only remaining transition of those investigated for the effective
field of the one-dimensional model is the transition in D0. It was obtained nu-
merically and explained by an overlap condition which is while being somewhat
more complicated still similar to the overlap condition for the transition in the
one-dimensional case. It is noteworthy that the transition in D0 is located in
parameter regions far inside the paramagnetic regime. This also implies that the
transition does not depend on the boundary conditions.

The Dq for q > 0 were obtained numerically and exhibit the expected mono-
tonically decreasing behaviour. The much used bounds between pointwise dimen-
sions and generalized box dimensions are not useful for the measure of the effective
field on the Bethe lattice because the pointwise dimensions are not known. This
results from the strong degenaracy of the bands which dominates the scaling of
the measure in contrast to the situation for the one-dimensional model where the
contractivity of the iterated function system was the decisive influence. A com-
prehensive understanding of the distribution of degeneracies and the resulting
consequences for the Dq- or f(α)-spectrum has yet to be obtained.



Appendix A

Numerical methods

All numerical work was carried out on the Linux PC cluster of the Institute for
Theoretical Physics of the University of Leipzig. The cluster comprises about
70 processors ranging from Pentium Pro 200 MHz up to Pentium III 866 MHz.
The programs were written in C++ and compiled with a GNU g++ compiler.
Some more demanding calculations were distributed over the whole cluster using
the Condor queueing system. The calculation of D0 of the measure of the local
magnetization up to iteration depths l = r = 13, cf figure 4.9, was extremely
memory consuming and thus was parallelized using the PVM functionality of the
Condor program to be able to use about 3 GB of RAM simultaneously.

In the following sections the numerical methods used in this work are briefly
discussed. The explicit C++ code is not shown because the total source code is
far to bulky and the programming too modular to extract the specific core pieces
of the algorithms in an understandable way. Nevertheless, the descriptions below
should be precise enough to allow anyone capable of some computer language to
reproduce the numerical results without further information.

All methods were realized for three different number types. The fastest ver-
sion is implemented with C++ long doubles. This version was always used if not
stated otherwise. At parameter values with problematic numerical stability the
arbitrary precision numbers of the CLN library based on the GNU GMP algo-
rithms were used. The precision was usually set to 50 guaranteed decimal digits.
The third version uses an interval arithmetic tracing the exact lower and upper
bound of the calculation in a worst case scenario for all rounding errors. With
the third version the problematic parameter regions for numeric stability could
be identified.

A.1 Effective field

There are basically two numerical techniques to obtain the Dq-spectrum of the
invariant measure of the effective field. One is based on definition 2.2 and is
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called box method in the following. The other uses a partition function like in
definition 2.9. It is called method of the new natural partition for reasons which
will become clear later.

A.1.1 Box method

In this method the invariant measure is represented as an array of numbers µεn

i ≈
µ(x)(bεn

i ) which are approximations of the measure of boxes bεn

i of size εn := knε0.
Here, 0 < k < 1 is a scaling parameter which can be chosen arbitrarily. The
number of boxes for each εn is N(εn) = d|I|/εne.

Generation of the measure

There are three methods to obtain approximations of the measure of the boxes. In
the first method the ergodicity of the invariant measure is exploited. A trajectory
xj = A(xj−1) + hj is calculated for j = 1, . . . M . The number of points M is
typically of the order 106 . . . 108 and hj is chosen by a random number generator
for each j independently. Then, a histogram for the number of points xj falling
into each box bεn

i is generated and the values of the normalized histogram are
used as the approximations µεn

i of µ(x)(bεn

i ).
In the second method the left and right boundary of the bands I{σ}n

are
calculated. The weight 1

2n is associated to each band and it is assumed that this
weight is in approximation evenly distributed within the band. Then the measure
of a box is calculated as

µεn

i :=
∑

{σ}n

1

2n

|I{σ}n
∩ bεn

i |
|I{σ}n

| . (A.1)

The sum only needs to extend over all {σ}n for which I{σ}n
has non-void inter-

section with bεn

i , of course.
The third method is the most precise but also the most costly one in terms

of memory and calculation time. In this method the Frobenius-Perron equation
for the measure density p

(x)
n is used to calculate µ

(x)
n (bεn

i ) without any additional
approximation. The n-fold Frobenius-Perron equation for the measure density
p

(x)
n reads

p(x)
n (x) =

∑

{σ}n

1

2n

p
(x)
0

(

f−1
{σ}n

(x)
)

(

f{σ}n

)′(
f−1
{σ}n

(x)
) =

∑

{σ}n

1

2n

(

f−1
{σ}n

)′
(x) p

(x)
0

(

f−1
{σ}n

(x)
)

(A.2)

where the sum extends over all {σ}n for which f−1
{σ}n

exists. Choosing

p
(x)
0 :=

{

1/|I| (x ∈ I)
0 (otherwise)

(A.3)
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then yields

µεn

i := µ(x)
n (bεn

i ) =
∑

{σ}n

∫ xi+1

xi

p(x)
n (x) dx =

∑

{σ}n

f−1
{σ}n

(xi+1) − f−1
{σ}n

(xi)

|I| (A.4)

where bεn

i =: [xi, xi+1]. The expression (A.4) can be calculated directly as the
inverse functions f−1

{σ}n
are explicitly known.

Calculation of Dq

To calculate the Dq-spectrum from the set {µεn

i } of approximated measures of
boxes the most obvious way is to calculate

1

q − 1

log
∑

i(µ
εn

i−1 + µεn

i + µεn

i+1)
q

log 3 εn

(A.5)

directly and take the average over all εn. Note that the sum of measures of boxes
in the numerator corresponds to an enlarged box with enlargement δ = 2.

For large boxes the result will be unsatisfactory because the asymptotic be-
haviour can not be seen. For very small boxes the result is also not good because
the finite sampling or finite iteration depth does not allow arbitrarily good reso-
lution of the measure. It is therefore crucial to find the correct range for the box
sizes.

A better method to get an estimation for Dq therefore is to do a linear fit of

log
∑

i

(µεn

i−1 + µεn

i + µεn

i+1)
q (A.6)

as a function of log 3 εn and choose the scaling region for εn by the quality of the
fit, i. e. only fit the data in the region where it really depends linearly on log 3 εn.
The estimation for Dq is then 1/(q − 1) times the slope of the linear fit.

Error estimates

As error estimates one can use the standard deviation of the average in the
one method and the standard deviation of the slope in the other. These error
estimates are typically rather small and do not really give evidence of how far
away from the real invariant measure the approximations are.

The comparison of numerical results shows that the second and third method
for generating the measure of boxes leads to identical results for the high iteration
depths of up to 21 iterations used for the effective field. The use of the more
precise third method is necessary for the measure of the local magnetization
though as in that case the iteration depth for the effective field is restricted to at
most 10 iterations, cf section A.2.3 below.
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A.1.2 Natural partition method

In this method the new natural partition is used instead of equally sized boxes. It
is given by the intervals [x

(n)
i , x

(n)
i+1] where x

(n)
i , i = 1, . . . , 2n+1, are the elements of

the set {f{σ}n
(x∗

±)} ordered by size. This means that the new natural partition of
order n is the set of intervals formed by the boundaries of the bands I{σ}n

[BL92].
It has 2n+1 intervals. In the non-overlapping case these intervals are simply the
bands and the gaps. In the overlapping case the intervals of the new natural
partition are the intervals with constant number of overlapping bands, i. e. the
number of overlapping bands changes at the boundaries of the intervals of the
new natural partition.

Generation of the measure

The measure of the intervals of the new natural partition can in principle be
calculated with the same three methods used for calculating the measure of the
boxes in the preceding subsection. The first method did not seem to be very
appealing and was not realized though. The other two methods were realized.
Note that in the non-overlapping case the only symbol set {σ}n entering the sum
(A.2) is the symbol set of the band under consideration. Therefore equation (A.4)
reduces to

µ(x)
n (I{σ}n

) =
1

2n

f−1
{σ}n

(f{σ}n
(x∗

+)) − f−1
{σ}n

(f{σ}n
(x∗

−))

|I| =
1

2n
(A.7)

such that both methods are equivalent in the non-overlapping case.

Determination of Dq

With the measures µ
(n)
i := µ

(x)
n ([x

(n)
i+1, x

(n)
i ]) of the intervals of the new natural

partition of order n one can calculate the partition function

Γ(q, τ, {µ(n)
i }) :=

∑

i

(

µ
(n)
i

)q

l−τ
i

(A.8)

where li = |x(n)
i+1 − x

(n)
i |. Then, in the spirit of definition 2.9, one tries to find the

value τq for which Γn(q, τq, {µ(n)
i }) neither diverges nor converges to 0 for n → ∞.

One way to do this is to determine the value τ
(n)
q with

log Γ(q, τ (n)
q , {µ(n)

i }) !
= 0 (A.9)

for each iteration depth n and take the average over iteration depths to obtain τq.
As it is not clear which finite value the partition function takes at the correct τq,
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it is usually better to determine the stationarity of the partition function instead,
i. e. determine τ

(n)
q by the condition

log Γ
(

q, τ (n)
q , {µ(n+1)

i }
)

− log Γ
(

q, τ (n)
q , {µ(n)

i }
) !

= 0 (A.10)

and take the average over iteration depths n to obtain τq. Then, Dq is given by
Dq = 1/(1 − q) τq.

Strictly speaking, the obtained estimate of Dq is a numerically estimated
upper bound on DH

q as the new natural partition is only one of the ε coverings
with respect to which the supremum or infimum of Γ(q, τ, ε) for q ≥ 1 and q ≤ 1
has to be taken respectively. The general impression is however that it is a
covering which is distinguished by the structure of the random iterated function
system and should lead to the correct result. This really seems to be the case as
the exact lower bounds of section 3.5 are practically identical with the numerical
results in many cases.

For calculating D0 it is not necessary to know the exact weights of the intervals
of the new natural partition but only whether they are zero or not. Therefore,
it is sufficient to count how many bands overlap in a given interval of the new
natural partition. If this number is greater than zero the weight is non-zero and
it is zero otherwise. In this way a lot of calculation time and memory can be
saved such that for D0 larger iteration depths than for the other dimensions are
possible. This is especially important for the measure of the local magnetization.

Error estimates

As an error estimate the standard deviation in the average of the τ
(n)
q to various

iteration depths n was used. It seems to give a rather good account of the
precision of the result.

A.2 Local magnetization

As base for the convolution leading to the measure of the local magnetization
one of the approximations of the invariant measure of the effective field on the
new natural partition of the effective field is used. If densities are needed they
are assumed to be approximatively constant on each interval of the new natural
partition, i. e. p̃

(x)
n (x) ≈ µ

(n)
i /li for x ∈ [x

(n)
i , x

(n)
i+1] in the notation of the previ-

ous subsection. This piecewise constant measure densities are taken at iteration
depths l for one and r for the other factor. This corresponds to l spins to the left
and r−1 spins to the right of the site where the local magnetization is calculated.

A.2.1 Convolution

To obtain the measure of the local magnetization one needs to calculate the
convolution of the measures of the effective field to the left and the right according
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to equation 4.5. It is given by

µ
(m)
l,r ([mi,mi+1]) = (tanh β)#(µ

(x)
r ∗ A#µ

(x)
l )([mi,mi+1])

=
1/β tanh−1(mi+1)

∫

1/β tanh−1(mi)

p
(x)
l (y)

∫

p
(x)
r (x − A(y)) dx dy . (A.11)

For p
(x)
l and p

(x)
r the piecewise constant approximations p̃

(x)
l and p̃

(x)
r are substi-

tuted and the inner integral is denoted as F (y). This function is piecewise of
the form κjA(y) + ηj and thus can be represented by the coefficients κj, ηj and
the end points yj of the intervals [yj, yj+1] on which the particular κj and ηj are
valid. The outer integral in (A.11) is therefore approximately

∑

j

∫ yj+1

yj

p̃
(x)
l (y)(κjA(y) + ηj)dy. (A.12)

As p̃
(x)
l is piecewise constant this integrals can easily be calculated provided

∫

A(y)dy is known. This integral is given by

∫ x

A(y)dy =
1

4β2
(Li2(−e2β(x−J)) − Li2(−e2β(x+J))) − Jx + C (A.13)

in which Li2 denotes the second polylogarithmic function1. It turns out how-
ever that for the short intervals integrated on here the implementation of the
polylogarithmic function Li2 for double precision numbers is less precise than a
simple fifth order Taylor expansion of

∫

A(y)dy around the center of the intervals
[yi, yi+1]. Therefore, the expansion is used in the numerical studies.

By the methods described thus far one can obtain the measure µ
(m)
l,r of any

given interval [mi,mi+1] and not too large iteration depths l and r. For the Cantor
sets in 4.2 the method is in principal the same except that the extra difficulties
of A# and (tanh β)# are not present.

To estimate the Dq-spectrum of µ(m) or the convoluted Cantor sets from
the generated approximations the same two methods as for the measure of the
effective field can be used.

A.2.2 Box method

As was done for the measure of the effective field one chooses boxes of size εn =
knε0 with some scaling parameter 0 < k < 1 and calculates the measures of
these boxes with the convolution algorithm outlined above. The two techniques
to obtain the generalized box dimensions Dq from this are then the same as for
the measure of the effective field described above.

1The 2-nd polylogarithmic function is Li2(z) :=
∑∞

k=1
zk

k2 = −
∫ z

0
log(1−t)

t
dt.



A.2 Local magnetization 105

A.2.3 Natural partition method

When observing the process of the convolution of µ
(x)
r and A#µ

(x)
l more closely

it becomes clear that there is a qualitative change whenever bands of µ
(x)
r and

bands of A#µ
(x)
l start or cease to overlap, i.e. for values mi of the magnetization

obeying the condition

1

β
artanh(mi) − g(xr,j) = xl,k (A.14)

where xr,j and xl,k are points of the new natural partition of µ
(x)
r and µ

(x)
l respec-

tively. This condition leads to

mi = tanh β
(

f{σ}r
(x∗

±) + A(f{σ̃}l
(x∗

±))
)

. (A.15)

These points mi are obvious candidates for a new natural partition of the measure
of the local magnetization. It turns out that there exists a natural degeneracy
within the set {mi} induced by the trivial identity

A(a) + f−(b) = A(b) + f−(a) (A.16)

and other such identities comprising higher iterations of f+ and f−. These de-
generacies have to be removed ‘by hand’ by the algorithm. Then, as before for
the measure of the effective field, the partition function

Zl,r(q, τq) =
∑

i

µ
(m)
l,r ([mi+1,mi])

q

(mi+1 − mi)τq
(A.17)

is defined on this new natural partition and Dq is determined by one of the
conditions (A.9) or (A.10) for various iteration depths l, r, l′, r′. In all calculations
the second condition provided better results and all shown results are based on
this criterion.

Note that the memory and computation time requirements scale approxi-
mately like 2l · 2r or worse. This restricted the use of the methods described to
iteration depths up to l = r = 10. To obtain D0 the algorithm can be simpli-
fied because µ

(m)
l,r ([mi,mi+1]) to the 0th power is 1 whenever at least two bands

overlapped in the convolution for m ∈ [mi,mi+1] and 0 otherwise. It is therefore
sufficient to count the number of overlapping bands instead of evaluating the full
convolution. For this simplified algorithm to calculate D0, iteration depths up to
l = r = 13 were achieved by distributed computations across the whole computer
cluster.

Error estimates

As error estimates one uses again the standard deviation of the fit in case of the
box method and the standard deviation of the average of τq over various iteration
depths l and r in case of the method based on the new natural partition.
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Additional proofs

The additional proofs in this chapter are of two different types. The sections
B.1, B.3, B.4, B.10 and to some extent also B.2 and B.5 contain the proofs of
known results and techniques which are difficult to be found in the literature in
this form. They are provided for the convenience of the reader. The remaining
sections B.6, B.7, B.8, B.9 and B.11 however contain original results which are
integral parts of this thesis. They have been put into the appendix to avoid
tiresome technicalities in the main text and therefore improve readability. The
choice of the parts presented in the text and those presented in this appendix is
no rating of their importance.

B.1 Monotonicity of Dq

Let µ be a bounded Borel measure on R
n for which Dq exists for all q ∈ R

and let {µi}i∈N be defined as in definition 2.2. It is necessary to distinguish two
cases. The first case is 1 < q′ ≤ q. Define xi := µq−1

i and let x be a random
variable taking values xi with probability µi. Furthermore, be f : R → R,
f(x) = x(q′−1)/(q−1) which is a concave function because q′−1

q−1
≤ 1. Jensen’s

inequality yields

f(Ex) ≥ E(f(x)) (B.1)

⇒
(

∑

i∈N

µiµ
q−1
i

)
q′−1
q−1 ≥

∑

i∈N

µi

(

µq−1
i

)
q′−1
q−1 (B.2)

⇒
(

∑

i∈N

µq
i

)
1

q−1 ≥
(

∑

i∈N

µq′

i

)
1

q′−1
(B.3)

⇒ 1

q − 1

log
∑

i∈N
µq

i

log ε
≤ 1

q′ − 1

log
∑

i∈N
µq′

i

log ε
(B.4)
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which yields Dq ≤ Dq′ in the limit ε → 0. In the second case q′ ≤ q < 1 the
function f is convex and Jensen’s inequality now yields

(

∑

i∈N

µq
i

)
q′−1
q−1 ≤

∑

i∈N

µq′

i (B.5)

⇒
(

∑

i∈N

µq
i

)
1

q−1 ≥
(

∑

i∈N

µq′

i

)
1

q′−1
(B.6)

⇒ 1

q − 1

log
∑

i∈N
µq

i

log ε
≤ 1

q′ − 1

log
∑

i∈N
µq′

i

log ε
(B.7)

and therefore Dq ≤ Dq′ . As D1 exists by assumption, Dq is continuous at q = 1
and these two cases are sufficient to prove Dq ≤ Dq′ for any q ≥ q′.

B.2 Covariance of Dp with respect to bi-Lip-

schitz maps

Proof of Lemma 2.6. As f is bi-Lipschitz so is f−1 and therefore

L−1‖y − x‖ ≤ ‖f−1(y) − f−1(x)‖ ≤ L‖y − x‖ (B.8)

for some constant L > 1. Then

‖f−1(f(x) + ε) − x‖ = ‖f−1(f(x) + ε) − f−1(f(x))‖ (B.9)

≤ L‖f(x) + ε − f(x)‖ = Lε (B.10)

and

‖x − f−1(f(x) − ε)‖ ≤ L‖f(x) − (f(x) − ε)‖ = Lε. (B.11)

This implies f−1(Bε(f(x))) ⊆ BLε(x). In the same way one obtains BL−1ε(x) ⊆
f−1(Bε(f(x))) such that

log µ(BL−1ε(x))

log L−1ε + log L
≥ log f#µ(Bε(f(x)))

log ε
≥ log µ(BLε(x))

log Lε − log L
. (B.12)

The left and the right hand side of the inequality converge to Dp(x; µ) such that
the middle part which converges to Dp(f(x); f#µ) also has this limit. �

B.3 Reformulation of the partition function of

the 1D RFIM

The main trick of the reduction of the partition function to a one-spin partition
function in an effective field with otherwise only additive terms to the free energy
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is the simple identity

eβsA(x)eβB(x) = 2 cosh(β(x + Js)) (B.13)

for s = ±1 which can directly be verified,

eβsA(x)eβB(x) = exp
(

βs
1

2β
log

[cosh β(x + J)

cosh β(x − J)

]

(B.14)

+ β
1

2β
log

[

4 cosh β(x + J) cosh β(x − J)
]

)

=
[cosh β(x + J)

cosh β(x − J)

]s/2

2[cosh β(x + J) cosh β(x − J)]1/2 (B.15)

= 2 cosh(β(x + Js)) (B.16)

where the last equality uses s = ±1 explicitly. With (B.13) the partition function
can now be rewritten. For simplicity of notation the upper index (N) referring
to the number of spins in the chain is suppressed here.

ZN({hi}a≤i≤b) =
∑

{si}a≤i≤b

exp β
(

b−1
∑

i=a

Jsisi+1 +
b−1
∑

i=a

hisi + xbsb

)

(B.17)

where xb = A(xb+1) + hb = hb has been used. Extracting all terms containing sb

leads to

ZN =
∑

{si}a≤i≤b−1

exp β
(

b−2
∑

i=a

Jsisi+1 +
b−1
∑

i=a

hisi

)

∑

sb=±1

exp β
(

Jsb−1sb + xbsb

)

. (B.18)

The sum on the right is 2 cosh β(xb + Jsb−1) which can be replaced by virtue of
(B.13) to obtain

ZN =
∑

{si}a≤i≤b−1

exp β
(

b−2
∑

i=a

Jsisi+1 +
b−2
∑

i=a

hisi + xb−1sb−1 + B(xb)
)

(B.19)

where also hb−1sb−1 + A(xb)sb−1 = xb−1sb−1 has been used. Reiterating the pro-
cedure with the spin sb−1 yields

ZN =
∑

{si}a≤i≤b−2

exp β
(

b−3
∑

i=a

Jsisi+1 +
b−3
∑

i=a

hisi + xb−2sb−2 +
b

∑

i=b−1

B(xi)
)

(B.20)

and after N − 1 iterations the result is

ZN({hi}a≤i≤b) =
∑

sa=±1

exp β
(

xasa +
b

∑

i=a+1

B(xi)
)

(B.21)

which is the form given in equation (3.3).
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B.4 Reformulation scheme for the RFIM on the

Bethe lattice

The reformulation of the partition function of the random field Ising model on the
Bethe lattice is very similar to the reformulation for the one-dimensional model.
Starting from the partition function (5.2) one extracts all terms containing the
spins at the successors of some vertex y ∈ ∂VR−1 leading to

ZN =
∑

{sz}y∈VR\S(y)

exp β
(

∑

z∈VR−1

z′∈∂VR\S(y)

Jszsz′ +
∑

z∈VR−1

hzsz +
∑

z∈∂VR\S(y)

xb
zsz

)

×
∑

{sz}z∈S(y)

exp β
(

Jsysz + xb
zsz

)

. (B.22)

The last sum is
∑

{sz}z∈S(y)

exp β
(

Jsysz + xb
zsz

)

=
∏

z∈S(y)

2 cosh β(xb
z + Jsy) (B.23)

which can be rewritten using (B.13) to yield

ZN =
∑

{sz}y∈VR\S(y)

exp β
(

∑

z∈VR−1

z′∈∂VR\S(y)

Jszsz′ +
∑

z∈VR−1

hzsz +
∑

z∈∂VR\S(y)

xb
zsz + x(R)

y sy +
∑

z∈S(y)

B(xb
z)

)

(B.24)

where x(R)
y is defined by (5.4). Reiterating this procedure for all y ∈ ∂VR−1 and

successively for all y ∈ ∂Vl for l = R − 2, . . . 0 then yields (5.3).

B.5 Structure of the RIFS

Let in this appendix the following notations be fixed. In denotes the union of all
bands of order n,

In :=
⋃

{σ}n∈Σn

I{σ}n
(B.25)

and I :=
⋂

n∈N
In the intersection of all In. Furthermore denote the set of all

fixed points of order n by

Fn :=
⋃

{σ}n∈Σn

x∗
{σ}n

(B.26)

and the union of all Fn by F :=
⋃

n∈N
Fn. Furthermore, {σ}n always denotes

the head of the n leftmost symbols of a given sequence {σ} ∈ Σ. With these
notations the following two lemmata can be formulated. B
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Lemma B.1 Symbolic dynamics

1. For any {σ} ∈ Σ and any x0 ∈ I the limit limn→∞ f{σ}n
(x0) exists and is

independent of x0.

2. Conversely, for any x ∈ I there exists a sequence {σ} ∈ Σ such that

limn→∞ f{σ}n
(x0) = x for any x0 ∈ I.

Proof. Let {σ} ∈ Σ be given and ε > 0. Then the interval I{σ}n
contains f{σ}m

(x0)
for any x0 ∈ I and any m ≥ n. By the mean value theorem |I{σ}n

| ≤ A′n
max|I|

where A′
max denotes maxx∈I A′(x). As A′

max < 1 this implies that |f{σ}m
(x0) −

f{σ}m′ (x0)| < ε for sufficiently large n and all m,m′ ≥ n such that (f{σ}n
(x0))n∈N

is a Cauchy sequence of real numbers. As the real numbers are complete it thus
converges in the limit n → ∞.
Conversely let x ∈ I be given. Then it is contained in some I{σ}n

for all n ∈
N. Beginning with n = 1 and following the prescription to choose σn = + if
f−1
{σ}n−1

(x) > 0 and σn = − otherwise one inductively obtains a well-defined

increasing series of symbol sets {σ}n which are contained in each other thus
defining an infinite sequence {σ}. This {σ} fulfills limn→∞ f{σ}n

(x0) = x. In the
non-overlapping case {σ} is uniquely determined because x can be contained in
only one band I{σ}n

for each n. �

Lemma B.2 The intersection of all bands is identical to the closure of the set of

fixed points of finite compositions f{σ}n
and both are identical with the support

of the invariant measure µ(x). In symbols,

I = F = supp µ(x) . (B.27)

Proof. Let x ∈ I, {σ} ∈ Σ be a corresponding symbolic sequence and ε > 0. Then
N ∈ N exists such that |I{σ}n

| < ε for all n ≥ N . This implies |x − x∗
{σ}n

| < ε
because both are elements of I{σ}n

. Thus, limn→∞ x∗
{σ}n

= x implying that x is

an adherent point of F and therefore I ⊂ F . Conversely one has F ⊆ I and I
is a closed set. As F is the smallest closed set containing F this implies F ⊆ I.
This proves the first equality.
In the overlapping case supp µ(x) = I = I and there is nothing to prove. In
the non-overlapping case assume that some x ∈ I is not contained in supp µ(x).
Then ε > 0 exists with Bε(x) ∩ supp µ(x) = ∅ as the complement of supp µ(x)

is open. On the other hand there exists n ∈ N and {σ}n ∈ Σn such that x ∈
I{σ}n

⊂ Bε(x) and therefore µ(x)(Bε(x)) ≥ µ(x)(I{σ}n
) = 2−n > 0 which is a

contradiction. Therefore, I ⊆ supp µ. The opposite inclusion is obvious because
µ(x)(R\In) = 0 and thus R\In ⊆ R\supp µ(x) implying supp µ(x) ⊆ In for all n
and thus supp µ(x) ⊆ I. �

From the two lemmata one immediately obtains that the existence of {σ} ∈ Σ
with limn→∞ f{σ}n

(x0) = x follows for any x ∈ supp µ(x). Furthermore, F is never
closed, i. e. F 6= F , because F is countable but F = I is uncountable.
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B.6 Relation of Dp(x; µ(x)) and Dp(f
−1
σ (x); µ(x))

Let x ∈ supp µ(x) and x /∈ O, i. e. the predecessor of x under the iteration (3.4)
is unique and therefore the Frobenius-Perron equation (3.7) has only one term.
Denote A′

max := maxx∈I A′(x) > 0, A′
min := minx∈I A′(x) > 0 and

εmin := min
x∈I

(

f−1
−

)′
(x) ε = min

x∈I

(

f−1
+

)′
(x) ε = ε/A′

max (B.28)

εmax := max
x∈I

(

f−1
−

)′
(x) ε = max

x∈I

(

f−1
+

)′
(x) ε = ε/A′

min . (B.29)

Then the mean value theorem applied to f−1
σ implies

Bεmin
(f−1

σ (x)) ⊆ f−1
σ (Bε(x)) ⊆ Bεmax(f

−1
σ (x)) (B.30)

such that the Frobenius-Perron equation (3.7) results in

1

2
µ(x)(Bεmin

(f−1
σ (x))) ≤ µ(x)(Bε(x)) ≤ µ(x)(Bεmax(f

−1
σ (x))) (B.31)

and therefore

log µ(x)(Bεmin
(f−1

σ (x))) − log 2

log εmin − log A′
max

≥ log µ(x)(Bε(x))

log ε

≥ log µ(x)(Bεmax(f
−1
σ (x))) − log 2

log εmax − log A′
min

(B.32)

which implies Dp(x; µ(x)) = Dp(f
−1
σ (x); µ(x)).

B.7 Proof of lemma 3.2

Set εn := |I{σ}n
|. The sequence (εn)n∈N is admissable because εn+1

εn
≥ A′

min. The
mean value theorem for φ implies

φ(x̃(n)

i ) = φ(x(n)

i ) + φ′(x(n)

i + δ(n)

i )(x̃(n)

i − x(n)

i ) (B.33)

with some δ(n)

i ∈ [−εi, εi]. Thus

log φ(x̃(n)

i ) − log φ(x(n)

i ) = log
(

1 +
φ′(x(n)

i + δ(n)

i )

φ(x(n)

i )

(

x̃(n)

i − x(n)

i

)

)

. (B.34)

Denote the finite constant max
{φ′(x)

φ(x)
: x ∈ I

}

by Qmax. Then 1−Qmax |x̃(n)

i −x(n)

i |
is positive for sufficiently large i ∈ N and therefore (B.34) implies

log
(

1 − Qmax |x̃(n)

i − x(n)

i |
)

≤ log φ(x̃(n)

i ) − log φ(x(n)

i ) (B.35)

≤ log
(

1 + Qmax |x̃(n)

i − x(n)

i |
)

. (B.36)
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With |x̃(n)

i − x(n)

i | ≤ εi this yields

log(1 − Qmax εi) ≤ log φ(x̃(n)

i ) − log φ(x(n)

i ) ≤ log(1 + Qmax εi) (B.37)

implying that the difference log φ(x̃(n)

i ) − log φ(x(n)

i ) converges to zero.
Let now ε > 0 and choose N ∈ N so large that

∣

∣ log φ(x̃(n)

i ) − log φ(x(n)

i )
∣

∣ < ε

for all n > N . Then one can choose Ñ ≥ N such that also

1

n

∣

∣

∣

N
∑

i=1

(

log(φ(x̃(n)

i ) − log φ(x(n)

i )
)

∣

∣

∣
< ε (B.38)

for all n > Ñ leading to

1

n

∣

∣

∣

n
∑

i=1

(

log(φx̃(n)

i ) − log φ(x(n)

i )
)

∣

∣

∣
≤ 1

n

∣

∣

∣

N
∑

i=1

(

log φ(x̃(n)

i ) − log φ(x(n)

i )
)

∣

∣

∣
(B.39)

+
1

n

n
∑

i=N+1

∣

∣ log(φ(x̃(n)

i ) − log φ(x(n)

i )
∣

∣

≤ ε +
n − N

n
ε ≤ 2ε (B.40)

for all n > Ñ . This completes the proof.

B.8 Proof of lemma 3.4

Set εn := |I{σ}n
| like in appendix B.6 such that (εn)n∈N is admissible. The fact

that x∗
{σ} ∈ I{σ}n

for all n ∈ N and the choice of εn imply

Bεn
(x∗

{σ}) ⊇ I{σ}n
(B.41)

such that

µ(x)(Bεn
(x∗

{σ})) ≥ µ(x)(I{σ}n
) =

1

2n
(B.42)

leading to

log µ(x)(Bεn
(x∗

{σ}))

log εn

≤ −n log 2

log εn

. (B.43)

On the other hand ε′n := |f{σ}n
(∆)| also defines an admissible sequence. The

interval I{σ}n
is encompassed by two gaps. One of the adjacent gaps is always

f{σ}n−1(∆), the other is either f{σ}m
(∆) with m < n− 1 or the complement of I.

By contractivity of the random iterated function system |f{σ}m
(∆)| > |f{σ}n

(∆)|
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for m < n, such that in either case the smallest gap next to I{σ}n
is f{σ}n−1(∆).

This implies

µ(x)(Bε′n(x∗
{σ})) ≤ µ(x)(I{σ}n

) =
1

2n
(B.44)

because Bε′n(x∗
{σ}) can not bridge any of the adjacent gaps and therefore only

intersects I{σ}n
. Thus,

log µ(x)(Bε′n(x∗
{σ}))

log ε′n
≥ −n log 2

log ε′n
. (B.45)

The mean value theorem for f{σ}n
yields

εn = |I{σ}n
| = f{σ}n

(x∗
+) − f{σ}n

(x∗
−) (B.46)

=
(

f{σ}n

)′
(x(n)) (x∗

+ − x∗
−) =

n
∏

i=1

A′
(

f−1
{σ}i

(f{σ}n
(x(n)))

)

|I| (B.47)

for some x(n) ∈ I and in the same way

ε′n =
n

∏

i=1

A′
(

f−1
{σ}i

(f{σ}n
(x′(n)

))
)

|∆| (B.48)

for some other x′(n) ∈ I. Combining (B.43) and (B.47) results in

Dp(x
∗
{σ}; µ

(x)) = lim sup
n→∞

log µ(x)(Bεn
(x∗

{σ}))

log εn

(B.49)

≤ lim sup
n→∞

− log 2
1
n

∑n
i=1 log A′

(

f−1
{σ}i

(f{σ}n
(x(n)))

)

+ 1
n

log |I| . (B.50)

The assumption that the limit (3.35) exists and lemma 3.2 allow to replace
∑n

i=1 log A′
(

f−1
{σ}i

(f{σ}n
(x(n)))

)

by
∑n

i=1 log A′
(

f−1
{σ}i

(x∗
{σ})

)

such that

Dp(x
∗
{σ}; µ

(x)) ≤ lim sup
n→∞

log 2
1
n

∑n
i=1 log A′

(

f−1
{σ}i

(x∗
{σ})

) . (B.51)

Using (B.45), (B.48) and lemma 3.2 yields in the same way

Dp(x
∗
{σ}; µ

(x)) = lim inf
n→∞

log µ(x)(Bε′n)

log ε′n
(B.52)

≥ lim inf
n→∞

− log 2
1
n

∑n
i=1 log A′

(

f−1
{σ}i

(f{σ}n
(x′(n)))

)

+ 1
n

log |∆| (B.53)

= lim inf
n→∞

− log 2
1
n

∑n
i=1 log A′

(

f−1
{σ}i

(x∗
{σ})

) . (B.54)

Inequalities (B.51) and (B.54) show that Dp(x
∗
{σ}; µ

(x)) exists and is given by

Dp(x
∗
{σ}; µ

(x)) = lim
n→∞

− log 2
1
n

∑n
i=1 log A′

(

f−1
{σ}i

(x∗
{σ})

) . (B.55)
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B.9 Proof of lemma 3.5

Let x1, x2, α1 and α2 be defined as in the sketch of proof. Assume without loss
of generality α1 ≤ α2. Using the notations A′

max, A′
min, εmin and εmax as in B.6

the mean value theorem applied to f−1
− and f−1

+ implies

Bεmin
(x1) ⊆ f−1

− (Bε(x)) ⊆ Bεmax(x1) and (B.56)

Bεmin
(x2) ⊆ f−1

+ (Bε(x)) ⊆ Bεmax(x2) . (B.57)

The Frobenius-Perron equation (3.7) then yields

µ(x)(Bε(x)) =
1

2
µ(x)(f−1

− (Bε(x))) +
1

2
µ(x)(f−1

+ (Bε(x))) (B.58)

≤ 1

2

(

µ(x)(Bεmax(x1)) + µ(x)(Bεmax(x2))
)

. (B.59)

Let δ > 0. As α1 and α2 are the pointwise dimensions at x1 and x2 respectively
one can find ε0 > 0 such that for all ε < ε0

µ(x)(Bεmax(x1)) ≤ εα1−δ
max and µ(x)(Bεmax(x2)) ≤ εα2−δ

max (B.60)

and therefore

log µ(x)(Bε(x)) ≤ log(εα1−δ
max + εα2−δ

max ) − log 2 (B.61)

= (α1 − δ) log εmax + log(1 + εα2−α1
max ) − log 2 (B.62)

≤ (α1 − δ)(log ε − log A′
min) (B.63)

where in the last step α2 − α1 ≥ 0 and thus log(1 + εα2−α1
max ) ≤ log 2 was used.

Thus,

log µ(x)(Bε(x))

log ε
≥ (α1 − δ)

(

1 − log(A′
min)

log ε

)

≥ α1 − 2δ (B.64)

for sufficiently small ε. In an analogous way one can obtain the inequality

log µ(x)(Bε(x))

log ε
≤ α1 + 2δ (B.65)

Therefore, the pointwise dimension at x exists and is given by

Dp(x; µ(x)) = lim
ε→0

log µ(x)(Bε(x))

log ε
= α1 = min{α1, α2} (B.66)

which is the statement of lemma 3.5.
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B.10 Equivalence of grid positions

In this appendix it is shown that for q > 0
∑

i

µ(B ε
2
(x′

i))
q ≤ 2q+1

∑

i

µ(B ε
2
(xi))

q. (B.67)

for two grids xi = iε, x′
i = xi + y, i ∈ Z which are shifted by y with respect to

each other. Let i ∈ Z and denote µi := µ(B ε
2
(xi)) and µ′

i := µ(B ε
2
(x′

i)). Clearly,
µ′

i ≤
∑

j∈J(i) µj where J(i) = {j ∈ Z : B ε
2
(xj)∩B ε

2
(x′

i) 6= ∅}. As B ε
2
(x′

i) intersects

at most two B ε
2
(xj) the set J(i) has at most two elements and one can write

µ′
i
q ≤ 2q max

j∈J(i)
µq

j . (B.68)

On the other hand each B ε
2
(xj) intersects at most two B ε

2
(xi) for a fixed j such

that any µj appears at most twice when summing (B.68) over all i. Therefore,

∑

i

µ′
i
q ≤ 2 · 2q

∑

i

µq
i (B.69)

as claimed. As each sum is modulo constants bounded by the other the resulting
Dq when using one grid are the same as when using the other. In this sense all
grid positions are equivalent. It can be shown that in R

n also grids with differing
orientation are equivalent [Rie95].

B.11 Calculation of Dp(x
∗

−
; ν) for the RFIM on

the Bethe lattice

The invariant measure ν of the effective field of the RFIM on the Bethe lattice
is a fixed point of the Frobenius-Perron equation (5.7), i.e.

ν(X) =
∑

σ=±

1
2
(A#ν ∗ A#ν)(X − σh) (B.70)

for the Bethe lattice of degree k = 2 and any measurable set X. Denote A′
min :=

minx∈I A′(x) and choose some 0 < ε0 < h. Then εn := A′n
minε0 defines an

admissible sequence and as εn < h the Frobenius-Perron equation for ν(Bεn
(x∗

−))
has only on term

ν(Bεn
(x∗

−)) = 1
2
(A#ν ∗ A#ν)(Bεn

(x∗
− + h)). (B.71)

Because x∗
− + h = A(x∗

−) + A(x∗
−) and A(x∗

−) is the left boundary of A#ν the
situation is like in the proof of lemma 4.3, cf also figure 4.1. Therefore,

ν(Bεn
(x∗

−)) ≤ 1
2

(

A#ν(Bεn
(A(x∗

−)))
)2

(B.72)
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= 1
2
ν(A−1(Bεn

(A(x∗
−))))2 (B.73)

≤ 1
2
ν(Bεn−1(x

∗
−))2 (B.74)

where in the last step the mean value theorem for A−1 and the definition of εn

was used to obtain A−1(Bεn
(A(x∗

−))) ⊆ Bεn−1(x
∗
−). Taking the logarithm this

implies

log ν(Bεn
(x∗

−)) ≤ 2 log ν(Bεn−1(x
∗
−)) (B.75)

which leads to

log ν(Bεn
(x∗

−)) ≤ 2n log ν(Bε0(x
∗
−)) (B.76)

after n-fold iteration. Dividing by log εn then results in

log ν(Bεn
(x∗

−))

log εn

≥ 2n log ν(Bε0(x
∗
−))

n log A′
min + log ε0

(B.77)

which diverges for n → ∞. In the random field Ising model on the Bethe lattice
the pointwise dimension of the invariant measure of the effective field at the
boundary of its support is therefore infinite.
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(1883), 545–591.

[Can32] , Gesammelte Abhandlungen mathematischen und philosophischen Inhalts,
Teubner, Berlin, 1932.

[CCC+90] J. M. Carlson, J. T. Chayes, L. Chayes, J. P. Sethna, and D. J. Thouless, Bethe

lattice spin glass: The effects of a ferromagnetic bias and external fields. I. Bifur-

cation analysis, J. Stat. Phys. 61 (1990), 987–1067.



BIBLIOGRAPHY 119

[CCST90] J. M. Carlson, J. T. Chayes, J. P. Sethna, and D. J. Thouless, Bethe lattice spin

glass: The effects of a ferromagnetic bias and external fields. II. Magnetized spin-

glass phase and the de Almeida-Thouless line, J. Stat. Phys. 61 (1990), 987–1067.

[Cip87] B. A. Cipra, An introduction to the Ising model, Amer. Math. Monthly 94 (1987),
937–959.

[CPRV99] M. Campostrini, A. Pelissetto, P. Rossi, and E. Vicari, Improved high-temperature

expansion and critical equation of state of three-dimensional Ising-like systems,
Phys. Rev. E 60 (1999), 3526–3563.

[Dom74] C. Domb, Ising model, Phase Transitions and Critical Phenomena (London, New
York) (C. Domb and M. S. Green, eds.), vol. 3, Academic Press, 1974, pp. 357–484.

[DSS97] D. Dhar, P. Shukla, and J. P. Sethna, Zero-temperature hysteresis in the random-

field Ising model on a Bethe lattice, J. Phys. A 30 (1997), 5259–5267.

[DVP78] D. Derrida, J. Vannimenus, and Y. Pomeau, Simple frustrated systems: Chains,

strips and squares, J. Phys. C 11 (1978), 4749–4765.

[Dys53] F. J. Dyson, The dynamics of a disordered linear chain, Phys. Rev. 92 (1953),
1331–1338.

[EA75] S. F. Edwards and P. W. Anderson, Theory of spin glasses, J. Phys. F 5 (1975),
965.

[Eda95] A. Edalat, Domain theory and integration, Theoretical Computer Science 151
(1995), 163–193.

[Eda96] , Power domains and iterated function systems, Information and Compu-
tation 124 (1996), 182–197.

[Eda97] , Domains for computation in mathematics, physics and exact real arith-

metic, The Bulletin of Symbolic Logic 3 (1997), 401–452.

[Egg74] T. P. Eggarter, Cayley trees, the Ising problem, and the thermodynamic limit,
Phys. Rev. B 9 (1974), 2989–2992.

[Elt87] J. H. Elton, An ergodic theorem for iterated maps, Ergod. Th. & Dynam. Sys. 7
(1987), 481–488.

[Eva87] S. N. Evangelou, Fractal measures in the random-field Ising model, J. Phys. C 20
(1987), L511–L519.

[Fal75] H. Falk, Ising spin system on a Cayley tree: Correlation decomposition and phase

transition, Phys. Rev. B 12 (1975), 5184–5189.

[Fal90] K. J. Falconer, Fractal geometry, John Wiley & Sons Ltd., Chichester, 1990.

[Fal97] , Techniques in fractal geometry, John Wiley & Sons Ltd., Chichester, 1997.

[Fal99] , Generalized dimensions of measures on self-affine sets, Nonlinearity 12
(1999), 877–891.

[FH91] K. H. Fischer and J. A. Hertz, Spin glasses, Cambridge University Press, Cam-
bridge, 1991.

[FL91] A. M. Ferrenberg and D. P. Landau, Critical behaviour of the three-dimensional

Ising model: A high-resolution Monte Carlo study, Phys. Rev. B 44 (1991), 5081–
5091.



120 BIBLIOGRAPHY

[FO99] K. J. Falconer and T. C. O’Neil, Convolutions and the geometry of multifractal

measures, Math. Nachr. 204 (1999), 61–82.

[FOY83] J. D. Farmer, E. Ott, and J. A. Yorke, The dimension of chaotic attractors, Physica
7D (1983), 153–180.

[Geo88] H. O. Georgii, Gibbs measures and phase transitions, de Gruyter, 1988.

[GP83] P. Grassberger and I. Procaccia, Characterization of strange attractors, Phys. Rev.
Lett. 50 (1983), 346–349.

[GP87] G. H. Gunaratne and I. Procaccia, Organization of chaos, Phys. Rev. Lett. 59
(1987), 1377–1380.

[GR84] G. Györgyi and P. Ruján, Strange attractors in disordered systems, J. Phys. C 17
(1984), 4207–4212.
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{σ} (1D), 22

Frobenius-Perron equation
Bethe lattice, 73
one-dimensional, 20, 22

functions
A(x), B(x), f±(x), 20
composite

f{σ}R
(Bethe), 73

f{σ}n
(1D), 21

gap ∆ (1D), 22

Hamiltonian
Bethe lattice, 71
one-dimensional, 19

Hausdorff dimension, 4
generalized, 16

Hutchinson metric, 18

induced mapping f#, 14
invariance of Dq, 14
invariant interval

Bethe lattice, 73
one-dimensional, 22, 109

invariant measure, 18
Bethe lattice ν, 73
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one-dimensional µ(x), 20
support of µ(x) (1D), 109

local magnetization
at the boundary (1D), 20
in the bulk (1D), 48
measure µ(m) (1D), 49

magnetization
expectation per spin (Bethe), 78

measure
effective field

µ(x) (1D), 20
ν (Bethe), 73

local magnetization µ(m) (1D), 49
measure densities

of the effective field (Bethe), 87
of the local magnetization (1D), 62

multifractal
formalism, 16
left-sided, 89
measure, 11
properties

effective field (1D), 19
effective field (Bethe), 89
local magnetization (1D), 62

orbit, 25
pointwise dimension

in the overlap (1D), 30
outside the overlap (1D), 25

overlap O (1D), 22

partition function
Bethe lattice, 71
one-dimensional, 19, 48

random field
Bethe lattice, 71
one-dimensional, 19, 40

random iterated function system, 17
RIFS, see random iterated function system

sequence
admissible, 12
symbolic {σ}n, {σ} (1D), 21

strong scaling, 27
symbolic sequence {σ}n (1D), 21

transition
at h

(1)
c , h

(3)
c , h

(4)
c (1D), 22

at h
(2)
c (1D), 32

at h
(2a)
c (1D), 34

diagram Dq (1D), 39
in D0 (Bethe), 90
in Dq (1D), 22, 32, 34
para- to ferromagnetic (Bethe), 78


