
CODE SCORES IN LIVE CODING PRACTICE

 Thor Magnusson

Department of Music
University of Sussex

Brighton, BN1 9RH, UK
t.magnusson@sussex.ac.uk

ABSTRACT
This paper explores live coding environments in the con-
text of notational systems. The improvisational practice
of live coding as combining both composition and per-
formance is introduced and selected systems are dis-
cussed. The author’s Threnoscope system is described,
but this is a system that enables the performer to work
with both descriptive and prescriptive scores that can be
run and altered in an improvisational performance.

1. INTRODUCTION
The live coder sits on stage and writes software in front
of a live audience. The desktop is projected on the wall in
a gesture of sharing and audience engagement [1, 2]. In
the past decade, live coding has become a popular per-
formance practice, supported by the diverse interpreted
and high level programming languages that suit the prac-
tice. Furthermore, the popular hacker and maker cultures
are affecting general culture such that coding is now
considered a creative activity on par with drawing or
playing an instrument. The live coding community has
played an important role here and been active in dissemi-
nating the practice by sharing code, organizing festivals
and conferences, and establishing research networks.

Code is a form of notation that works extremely well in
musical composition, especially when the aim is to write
non-linear, interactive, or context aware music [3]. Alt-
hough general-purpose languages can be used for musical
live coding, many live coders have created their own
mini-languages for a particular performance style, genre,
or even a performance. The new language becomes an
instrument, a framework for thinking, with strong consid-
erations of notational design. Here, language designers
have invented graphical interfaces like we find in Pure
Data or Max/MSP; game interfaces, as in Dave Griffiths'
Al Jazaari; functional notation, like McLean's Tidal; or
Chris Kiefer’s physical controllers that encode genetic
algorithms of sound synthesis [4].

2. NOTATION AND INTERPRETATION
Notation is a way of communicating abstract ideas to an
interpreter, and in live coding that interpreter is typically
a compiler called the “language interpreter.” Standard
Music Notation is a system of notation that has developed

from the general recognition that symbols can capture
more information, coherent in meaning between compos-
ers, interpreters and cultures, in a smaller space than
natural language or bespoke new symbolic languages.
Standard Music Notation is a cognitive tool that has de-
veloped with requirements for a standard language and
concerns about sight-reading and rapid understanding.
Composers are able to rely on the performer’s expertise
and creative interpretation skills when the piece is played.
Conversely, in the symbolic notation for computer music
composition and performance, we encounter an important
difference in the human and the computer capacity for
interpretation: the human can tolerate mistakes and ambi-
guity in the notation, whereas the computer cannot. Natu-
ral language programming of computers is clearly possi-
ble, for example:

produce a sine wave in A
 name this synth "foo"
 wrap this in an ADSR envelope
 repeat foo four times per second
 name this pattern "ping"

However, the problem here is one of syntax: what if the
coder writes “Sine” instead of “sine,” “440” instead of
“A,” or “every 0.25 second” instead of “four times per
second?” The cognitive load of having to write natural
language with the programming language’s unforgiving
requirements for perfect syntax makes the natural lan-
guage approach less appealing than writing in traditional
programming languages, for example in functional or
object orientated languages. Of course, semi-natural lan-
guage programming languages have been invented, such
as COBOL, Apple Script, or Lingo. The problems with
those were often that they became quite verbose and the
‘naturalness’ of their syntax was never so clear. Conse-
quently, in a more familiar object oriented dot-syntax, the
above might look like:

w = Sine("foo", [\freq, 440]);
 w.addEnvelope(\adsr);
 p = Pattern("ping");
 p.seq(\foo, 0.25);

In both cases we have created a synthesizer and a pattern
generator that plays the synth. The latter notation is less
prone to mistakes, and for the trained eye the syntax
actually becomes symbolic through the use of dots,
camelCase, equals signs, syntax coloring, and brackets
with arguments that are differently formatted according
to type. This is called ‘secondary notation’ in computer
science parlance, and addresses the cognitive scaffolding
offered by techniques like colorization or indentation [5].

Copyright: © 2015 Thor Magnusson. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License
3.0 Unported, which permits unrestricted use, distribution, and repro-
duction in any medium, provided the original author and source are
credited.

3. LIVE CODING AS NOTATION
Live coding is a real-time performance act and therefore
requires languages that are relatively simple, forgiving in
terms of syntax, and high level. Certain systems allow for
both high and low level approach to musical making, for
example SuperCollider, which enables the live coder to
design instruments (or synths) whilst playing them at
another level of instructions (using patterns). Perhaps the
live coding language with the most vertical approach
would be Extempore [6], which is a live coding environ-
ment where the programming language Scheme is used at
the high level to perform and compose music, but another
language – type sensitive and low level, yet keeping the
functional programming principles of Scheme – can be
used for low level, real-time compiled instructions (using
the LLVM compiler). In Extempore, an oscillator, wheth-
er in use or not, can be redesigned and compiled into
bytecode in real-time, hotswapping the code in place.

However, live performance is stressful and most live
coders come up with their own systems for high-level
control. The goals are typically fast composition cycle,
understandability, novel interaction, but most importantly
to design a system that suits the live coder’s way of
thinking. Below is an introduction of four systems that all
explore a particular way of musical thinking, language
design, and novel visual representation.

Figure 1. A screen shot of Tidal. We see the score writ-
ten in the quotation marks, with functions applied.

Alex McLean’s Tidal [7] is a high level mini-language
built on top of Haskell. It offers the user a limited set of
functionality; a system of constraints that presents a large
space for exploration within the constraints presented [8].
The system focuses on representing musical pattern. The
string score is of variable length, where items are events,
but these items can be in the form of multi-dimensional
arrays, representing sub-patterns. This particular design
decision offers a fruitful logic of polyrhythmic and poly-
metric temporal exploration. The system explicitly af-
fords this type of musical thinking, which consequently
limits other types of musical expression. The designers of
the live coding languages discussed in this section are not
trying to create a universal solution to musical expres-
sion, but rather define limited sets of methods that ex-
plore certain musical themes and constraints.

Dave Griffiths’ Scheme Bricks is a graphical coding
system of a functional paradigm, and, like Tidal, it offers
a way of creating recursive patterns. Inspired by the MIT
Scratch [9] programming system, a graphical visualiza-
tion is built on top of the functional Scheme program-
ming language. The user can move blocks around and
redefine programs through visual and textual interactions
that are clear to the audience. The colored code blocks are
highlighted when the particular location of the code runs,
giving an additional representational aspect to the code.

Figure 2. Scheme Bricks. In simple terms, what we see
is the bracket syntax of Scheme represented as blocks.

Scheme Bricks are fruitful for live musical performance
as patterns can be quickly built up, rearranged, muted,
paused, etc. The modularity of the system makes it suita-
ble for performances where themes are reintroduced (a
muted block can be plugged into the running graph).

This author created ixi lang in order to explore code as
musical notation [10]. The system is a high level lan-
guage built on top of SuperCollider and has access to all
the functionality its host. By presenting a coherent set of
bespoke ‘ixi lang’ instructions in the form of a notational
interface, the system can be used by novices and experi-
enced SuperCollider users alike. The system removes
many of SuperCollider’s complex requirements for cor-
rect syntax, whilst using its synth definitions and pat-
terns; the original contribution of ixi lang is that it creates
a mini-language for quick prototyping and thinking.

Figure 3. ixi lang Agents are given scores that can be
manipulated, and changed from other code.

In ixi lang the user creates agents that are assigned per-
cussive, melodic, or concrete scores. The agents can be
controlled from other locations in the code and during
that process the textual document is automatically rewrit-
ten to reflect what is happening to the agents. This makes
it possible for the coder and the audience to follow how
the code is changing itself and the resulting music. As
code can be rewritten by the system, it also offers the

possibility of storing the state of the code at any given
time in the performance. This is done by writing a snap-
shot with a name: the snapshot can then be recalled at any
time, where running new code is subsequently muted
(and changes color), and agents whose score has changed
return to their state when the snapshot was taken.

A recent live coding environment by Charlie Roberts
called Gibber [11] takes this secondary notation and
visual representation of music further than ixi lang: here
we can see elements in the code highlighted when they
are played: the text flashes, colors change, and font sizes
can be changed according to what is happening in the
music. Gibber allows for any textual element to be
mapped to any element in the music. The code becomes a
visualization of its own functionality: equally a prescrip-
tion and description of the musical processes.

Figure 4. Gibber. Here textual code can change size,
color or font responding to the music. All user-defined.

Gibber is created in the recent Web Audio API, which
is a JavaScript system for browser-based musical compo-
sition. As such it offers diverse ways of sharing code,
collaborating over networks in real-time or not.

All of the systems above use visual elements as both
primary and secondary notation for musical control. The
notation is prescriptive – aimed at instructing computers
– although elements of secondary notation can represent
information that could be said to be of a descriptive pur-
pose [12]. The four systems have in common the con-
strained set of functions aimed to explore particular mu-
sical ideas. None of them – bar Gibber perhaps – are
aimed at being general audio programming systems, as
the goals are concerned with live coding: real-time com-
position, quick expression, and audience understanding.

4. THE THRENOSCOPE
In the recent development of the Threnoscope system, the
author has explored representational notation of live
coding. This pertains to the visualization of sound where
audible musical parameters are represented graphically.
The system is designed to explore microtonality, tunings,
and scales; and in particular how those can be represented
in visual scores aimed at projection for the audience.

The Threnoscope departs from linear, pattern-based
thinking in music and tries to engender the conditions of
musical stasis through a representation of sound in a
circular interface where space (both physical space and

pitch space) is emphasized, possibly becoming more
important than concerns of time.

The system is object oriented where the sound object –
the ‘drone’ – gets a graphical representation of its state.
This continuous sound can be interacted with through
code, the graphical user interface, MIDI controllers, and
OSC commands, and changes visually depending upon
which parameters are being controlled. The user can also
create ‘machines’ that improvise over a period of time on
specific sets of notes, as defined by the performer. These
machines can be live coded, such that their behavior
changes during their execution. Unlike the code score,
discussed below, the machines are algorithmic: they are
not intended to be fully defined, but rather to serve as an
unpredictable accompaniment to the live coder.

Figure 5. The Threnoscope in 8-channel resolution. The
straight crossing lines are speakers. The circles are har-
monics, and the colored wedges are (moving) drones.

Figure 5 shows the circular interface where the inner-
most circle is the fundamental frequency, with the har-
monics repeated outwardly. The lines crossing the inter-
face represent the audio channels or speakers (the system
can be set from 2 to 8 channels). The sound/drone can
have a length extending up to 360 degrees, but it can also
be short and move fast around the space. Figure 6 depicts
the system with the command line prompt on the right,
and a console underneath that reports on the state of the
engine, errors in code, or events being played in a run-
ning score. By clicking on a particular drone, its sonic
information appears in the console in a format that gives
the coder quick entry to manipulate the parameters.

Musical events in the Threnoscope system are created
through code instructions. Since the default envelope of
the drone is an ASR (Attack, Sustain, Release) envelope,
a note duration can range from a few milliseconds to an
infinite length. Each of the speaker lines could be seen as
a static playhead, where notes either cross it during their
movement or linger above it with continuous sound. A

compositional aspect of the Threnoscope is to treat notes
as continuous objects with states that can be changed
(spatial location, pitch, timbre, amplitude, envelope, etc.)
during its lifetime.

Figure 6. The Threnoscope’s code interface on the
right. The system is here in a scale-mode, with scale de-
grees rather than harmonics. A machine is running in
the middle, affecting a selection of the running drones.

The Threnoscope has been described before both in
terms of musical notation [11] and as a system for im-
provisation [12]. This paper explores further the notation-
al aspects of the system, and the design of the code score.

5. THE CODE SCORE
Code is rarely represented on a timeline, although certain
systems have enabled programmers to organize code
linearly over time, although in Macromedia’s Director
and Flash multimedia production software this becomes a
key feature. This general lack of a timeline can pose a
problem when working with code as a creative material
in time-based media such as music, games or film. The
lack of timeline makes navigating the piece for composi-
tional purposes cumbersome and often impossible.

The Threnoscope’s code score is a two dimensional tex-
tual array where the first item is the scheduled time and
the second contains the code to be executed. This makes
it possible to jump to any temporal location in the piece,
either directly or through running the code that is sched-
uled to happen before (with some limitations though, as
this code could be of a temporal nature as well).

Scores in textual code format, like that of the Threno-
scope, can make it difficult to gain an overview of the
musical form, as multiple events can be scheduled to take
place at the same moment with subsequent lack of activi-
ty for long periods. This skews the isomorphism between
notational space (the lines of code) and time if working
with the mindset of a linear timeline. For this reason the
Threnoscope offers an alternative chronographic visuali-
zation to represent the code in the spatial dimension. This
is demonstrated in Figure 7.

The code score timeline is vertically laid out as is
common in tracker interfaces. The code can be moved
around in time, deleted, or new elements added. By click-

ing on relevant 'code tracks' the user can call up code into
a text field and edit the code there. The drones are created
on the vertical tracks on the timeline. They have a begin-
ning and an end, with code affecting the drones repre-
sented as square blocks on the drone track. The drone
itself and the events within it can be moved around with
the mouse or through code. The score can therefore be
manipulated in real-time, much like we are used to with
MIDI sequencers or digital audio workstations.

Figure 7. A graphical visualization of the code score.
When a vertically lined drone is clicked on, a page with
its code appears above the circular interface.

Most timelines in music software run horizontally from
left to right, but in the Threnoscope the score vertical and
runs from top down. This is for various reasons: firstly,
the available screen space left on most display resolutions
when the circular score has taken up the main space on
the left is a rectangular shape with the length on the verti-
cal axis; secondly, when a user clicks on the visual repre-
sentation of the drone, its score pops up in the textual
form of code, and this text runs from top to bottom. It
would be difficult to design a system where code relates
to events on a horizontal timeline.

6. PERFORMING WITH SCORES
The code score was implemented for two purposes: to
enable small designed temporal patterns to be started at
any point in a performance: just like jazz improvisers
often memorize certain musical phrases or licks, the code
score would enable the live coder to pre-compose musical
phrases. The second reason for designing the code score
system is to provide a format for composers to write
longer pieces for the system, both linear and generative.

The score duration can therefore range from being a
short single event to hours of activity; it can be started
and stopped at any point in a performance, and the per-
former can improvise on top of it. Scores can include
other scores. As an example, a performer in the middle of
a performance might choose to run a 3-second score that
builds up a certain tonal structure. The code below shows
the code required to start a score.

~drones.playScore(\myScore, 1) // name of score & time scale
~drones.showScore(\myScore) // visual display of the score

The first method simply plays the score without a graph-
ical representation. This is very flexible, as multiple
scores can be played simultaneously, or the same score
started at different points in time. Scores can be stopped
at will. Whilst the scores are typically played without any
visual representation, it can be useful to observe the score
graphically. The second method creates the above-
mentioned graphical representation of the score shown in
Figure 7. For a live performance, this can be helpful as it
allows the performer to interact with the score during
execution. The visual representation of the score can also
assist in gaining an overview of a complex piece.

For this author, the code score has been a fruitful and
interesting feature of the system. Using scores for digital
systems aimed at improvisation becomes equivalent to
how instrumentalists incorporate patterns into their motor
memory. The use of code scores question the much bro-
ken unwritten ‘rule’ that a live coding performance
should be coded from scratch. It enables the live coder
work at a higher level, to listen more attentively to the
music (which, in this author’s experience, can be difficult
when writing a complex algorithm), and generally focus
more on the compositional aspects of the performance.

7. CONCLUSION
This short paper has discussed domain specific program-
ming languages as notational systems. Live coding sys-
tems are defined as often being idiosyncratic and bespoke
to their authors’ thought processes. The Threnoscope and
its code score was presented as a solution to certain prob-
lems of performance and composition in live coding,
namely of delegating activities to actors such as machines
or code scores.

8. REFERENCES
[1] N. Collins, A. McLean, J. Rohrhuber, and A. Ward.

“Live coding in laptop performance.” Organised
Sound, vol 8. no. 3. pp. 321-330. 2003.

[2] T. Magnusson. “Herding Cats: Observing Live
Coding in the Wild” in Computer Music Journal,
vol. 38 no. 1. pp. 8-16. 2014.

[3] T. Magnusson. “Algorithms as Scores: Coding Live
Music” in Leonardo Music Journal. vol 21. no. 1.
pp. 19-23. 2011.

[4] C. Kiefer. "Interacting with text and music:
exploring tangible augmentations to the live-coding
interface" in Proceedings of the International
Conference for Life Interfaces. 2014.

[5] A. F. Blackwell, and T. R. G. Green. “Notational
systems - the Cognitive Dimensions of Notations
framework” in J.M. Carroll (Ed.) HCI Models,
Theories and Frameworks: Toward a
multidisciplinary science. San Francisco: Morgan
Kaufmann, pp. 103-134. 2003.

[6] A. Sorensen, B. Swift, and A. Riddell. “The Many
Meanings of Live Coding” in Computer Music
Journal. vol. 38. no. 1. pp. 65-76. 2014.

[7] A. McLean. “Making programming languages to
dance to: Live coding with Tidal” in Proceedings of
the 2nd ACM SIGPLAN International Workshop on
Functional Art, Music, Modelling and Design. 2014.

[8] T. Magnusson. “Designing constraints: composing
and performing with digital musical systems” in
Computer Music Journal, vol. 34. No. 4. pp. 62-73.
2010.

[9] M. Resnick, J. Maloney, A. Monroy-Hernández, N.
Rusk, E. Eastmond, K. Brennan, A. Millner, E. Ros-
enbaum, J. Silver, B. S. Silverman, and Y. Kafai.
“Scratch: Programming for All” in Communications
of the ACM, vol. 52. no, 11. 2009.

[10] T. Magnusson. “ixi lang: a SuperCollider parasite
for live coding” in International Computer Music
Conference, 2011.

[11] C. Roberts, and J. Kuchera-Morin. “Gibber: Live
Coding Audio in the Browser.” in Proceedings of
the International Computer Music Conference. pp.
64-69. 2012.

[12] A.F. Blackwell, and T.R.G. Green. “Notational
systems - the Cognitive Dimensions of Notations
framework” in J.M. Carroll (Ed.) HCI Models,
Theories and Frameworks: Toward a
multidisciplinary science. San Francisco: Morgan
Kaufmann, pp. 103-134. 2003.

[13] T. Magnusson. “Scoring with code: composing with
algorithmic notation” in Organised Sound, vol. 19.
no. 3. pp. 268-275. 2014.

[14] T. Magnusson. “Improvising with the threnoscope:
integrating code, hardware, GUI, network, and
graphic scores” in Proceedings of the New Interfaces
for Musical Expression Conference. 2014.

