
Improvising with the Threnoscope: Integrating Code,
Hardware, GUI, Network, and Graphic Scores

Thor Magnusson
Department of Music
University of Sussex

Brighton, BN1 9RH, UK
t.magnusson@sussex.ac.uk

ABSTRACT
Live coding emphasizes improvisation. It is an art practice merging
the act of musical composition and performance into a public act of
projected writing. This paper introduces the improvisational features
of the Threnoscope system, which implements a live coding micro-
language for drone-based microtonal composition. The paper
discusses the aims and objectives of the system, elucidates design
decisions, and describes its code score that can render a visual
representation of past and future events in a real-time performance.

Keywords
Live coding, improvisation, code scores, notation, graphic scores.

1. INTRODUCTION
Live coding addresses a key problem of interaction in improvisation
with computers, where the programming language is considered to
have the potential for being an elegant instrument for musical
expression [1]. As a method for computer-based performance, the
typical setting is widely documented: it involves performers on stage
programming computers in real-time where their actions are
projected onto the wall for the audience to follow [4][6]. Live coding
can be seen as a performance form where the instrument, the
composition, and the performance are defined in front of audience
members; an ad-lib public writing where the written text serves both
as communication with the audience and as specific instructions that
delegate actions to a musical system in constant state of revision.
 The systems used in live coding have typically been designed for
high-level musical expression through code, i.e., a few keystrokes
result in expressive sound synthesis or musical patterns that can be
changed in real-time. In this respect, live coders compose their
systems as much as they code them. This is typically done prior to a
performance, where musicians build their patches, libraries, or
languages in concordance with their musical goals. Thus, behind
every live coding system lies a well grounded set of compositional
decisions, although they vary at the levels of abstraction. During
performance the projected code can be seen as a musical score
written in an improvisational context that emphasizes the dialogue
between musician, audience, and the system [10].

2. THE THRENOSCOPE
This paper presents the Threnoscope, originally conceived of as a live
coding piece for microtonal performance. It is a system built in
SuperCollider [7] and makes use its powerful audio server to run
complex synth instances that can be controlled through the interface
modalities discussed in section 4. The design goal was to create a
helpful graphical representation of the sonic texture in microtonal

drone music. The system notates selected features of the drones, such
as the spatial location, pitch, amplitude, filtering, and other
parameters in a two dimensional score. Instead of the traditional
linear score, the Threnoscope is circular, where drones (or the notes)
circumnavigate a multichannel pitch space. The piece is composed
for multichannel surround where the idea is to visualize the location
of sound in space.
 Figure 1 shows the score interface of the Threnoscope, with the
harmonic series represented by the circles and the speakers by the
lines crossing the score. In this instance the system is set up for eight
channels. The colored annular wedges represent “drones”, or long-
duration note events. A drone intersecting a speaker line will sound
out of that speaker. Thus, if the system is set for eight channels, we
might say that we have eight static playheads, each of flexible rates,
since the drones can travel at different speeds. This form of
descriptive score represents the static and circular nature of the music,
reducing the importance of linearity and temporality; the drones are
not ephemeral musical events, but rather constants that can be altered
in various ways, for example by silencing, pitch shifting, filtering,
and moving them around in space.

	

 Figure 1. The Threnoscope’s representational score in

harmonics-mode. The crossing lines represent the speakers.
The center of the score is 0 Hz and the first circle is the tonic of the
system, by default an A of 55 Hz. The second circle is the second
harmonic, or 110 Hz, the third is 165 Hz, the fourth is 220 Hz, etc.
The performer can create drones on any of these harmonics or
anywhere in-between, using the following creation arguments:
frequency, harmonic, ratio, degree, or combinations thereof. A drone
could therefore be created like this:

// a saw wave on the first circle, with a cutoff on the third harmonic
~drones.createDrone(\saw, tonic: 1, harmonics: 3);

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
NIME’14, June 30-July 3rd, 2014, Goldsmiths University, London, UK.
Copyright remains with the author(s).

// a saw wave as a just intonation fifth above the tonic
~drones.createDrone(\saw, tonic: 3/2);

// triangle wave based on the second harmonic, on the fifth degree of
the selected scale (depending on tuning, the fifth of the 2nd harmonic
might, or might not, be equal to the third harmonic)
~drones.createDrone(\tri, tonic: 2, degree: 5);

A saw wave created on the tonic (55 Hz) with high cutoff frequency
would naturally contain energy on all of the harmonics. A saw wave
created on the second harmonic would contain energy on every other
harmonic of the tonic, a saw wave created on the third harmonic
would contain energy on every third harmonic, and so on. Drones
can easily be transposed in pitch, supporting scale creation based on
harmonic intervals. The system has two graphical pitch-notation
modes: harmonics or scales. By default the circles represent
harmonics, but the user can switch to pitch intervals of a selected
scale. When displaying a scale, the octaves are indicated by a special
color, and the degrees of the scales are drawn in another color
between the octaves (unless it is a non-octave repeating scale). The
Threnoscope supports the Scala file format (http://www.huygens-
fokker.org/scala/scl_format.html), and custom made scales and
tunings can be written in this format. Figure 2 shows the score in the
scale display mode.

	

 Figure 2. The Threnoscope in scale-mode. The live coding

terminal is on the right. In the center a drone machine is
working on the drones according to defined rules.

 The drones themselves can be of various waveforms (e.g., a saw,
triangle, square, noise, custom made waveform, or a sample). In
addition to defining pitch, the initial arguments when a drone is
created are the waveform type, harmonics, location, size, speed,
amplitude, etc. The drones are color-coded according to the
waveform type and have transparency according to their amplitude.
Their width is the frequency bandwidth of the resonant lowpass filter.
The drones represent complex synth instances, where any of the
synthesis parameters can be controlled from the live coding interface,
the visual interface, hardware, through the network, or from a score.
Since all these parameters can be easily defined, the drone can range
from a static drone that spreads over all the speakers, to a small fast-
moving drone that triggers quick sounds when crossing speaker lines.
Fast sequencing patterns can therefore be created using the system,
for example drum beats or melodies, but the general system design
discourages such compositional approach.
 Various types of drone classes exist. DroneChords are a
combination of two or more drones at specified intervals.
DroneSatellites is a form of multi-drone creation that results in a
cluster of short drones appearing randomly or within a scale at a
certain range, often moving fast, and by default at a random speed.
There are also DroneGroups, where information like pitch,
amplitude, and location is defined and stored in a preset of relative

features, so a group can be created at any pitch. The general state of
the system can be stored and recalled at any time, superimposed upon
other states, and set to appear or disappear over a longer time period.

// a minor 7th chord created on the fifth of the second octave
~drones.createChord(\saw, \minor7th, octave: 2, degree: 5);

// a group of 40 satellites in in the iwato scale over four harmonics
~drones.createSatellites(\saw, \iwato, tonic:4, range:4, num:40);

 Finally, the system allows for the creation of a code score, where
code snippets can be evaluated at specific points in time. The code
score will be discussed below, as it presents unique opportunities for
a live performance supported by either a linear or a generative score.
 The performer can delegate control to the system itself through
creating machines that operate on the drones. The drone machines
work on diverse properties of the drones, such as pitch, amplitude,
harmonics, etc. As seen in Figure 2, the machines appear in the
middle of the circular score, and can be live coded during
performance, allowing the user to specify their behavior in real-time.
The machines function as co-players, or agents, that affect changes to
the music, yielding more variety and excitement than the live coder
might be able to create on their own with their single-task focus.

3. THE CODE SCORE
The system’s initial design considerations focused on direct real-time
performance through the method of live coding, where any parameter
of a complex synth definition can be programmed. This includes
creating temporal tasks that would change parameters at regular
intervals in time independently of performer control. However, it
slowly became clear that the system ‘suggested’ other performative
modes, such as automated machines, hardware interfaces, GUI
control, networked communication, and a temporal score. The linear
temporal code score is designed for impromptu playback of pre-
composed generative temporal patterns that run along with the
performer’s live coding, but it can also be used for offline or non-
performative contexts. Such a setup mixes the improvisational nature
of traditional live coding with a score-based approach to musical
performance. It also poses questions as to what extent we compose
our instruments, and to what degree musical theory is embedded in
our new interfaces for musical expression. Can musical instruments
be designed with inherent timelines? When does the system stop
being an instrument and become a playback system? These concerns
are not new, as arpeggios or chord structures in traditional synths are
examples of such harmonic and temporal design. Early work with
Max at IRCAM or controller design at STEIM are fine examples of
this line of thinking in the areas of algorithmic composition and
instrument design.
 The code score in the Threnoscope is a two dimensional array
listing the scheduled time and the associated code to be executed.
The score is written in a simple, linear and human readable format
that can be written in any text editor. It can be composed by hand,
recorded from a live coding performance, or both (where the
performer improvises on top of an already running score). Such
textual format is not ideal for gaining an overview of what the piece
is doing in time as array-based chronographics do not use the spatial
dimension as an ordering principle [3]. There might be large
quantities of code appearing within the same second, but then
nothing might happen for a while. In order to gain a visual overview
of the code score, it can be represented as a graphical timeline. This
helps the composer to get an overview of the piece, but it also makes
working with it easier as the score is interactive and code can be
moved around using the graphical interface.
 Figure 3 shows a visualisation of the code score as designed in the
Threnoscope interface. The timeline runs from the top and down, like
common tracker interfaces [9]. A general code-track exists where any
system wide code can be inserted: both Threnoscope-specific code

and general SuperCollider code. The drones appear on the vertical
tracks on the timeline. They have a beginning and an end, with code
affecting the drones represented as square blocks on the drone track.
The score can be manipulated in real-time, as we are accustomed to
with MIDI sequencers or digital audio workstations; the drone can be
dragged up and down, and the events within it can also be moved in
time. By clicking on a drone, all the code related to that particular
drone appears in a text field on top of the main circular score left to
the code score. The user can change time values, rewrite instructions
or create new events that will be automatically updated on the
graphical representation of the drone’s score.

	

 Figure 3. The visual representation of the code score.
The drones are drawn on vertical tracks on a timeline. By

clicking on a track, a text view shows the relevant code.
 Most timelines in music software run horizontally from left to
right. In the Threnoscope it was decided for various reasons to make
the score vertical. Firstly, the screen space available, when the
circular score has taken up the main space on the left, is rectangular.
Secondly, when a user clicks on the visual representation of the
drone, its score pops up in textual form where the order of events is
the same in the textual drone score and the visual representation of
the drone track itself.
 Since any SuperCollider code can run within the system and its
score, it is impossible to represent the code’s output and its meaning
as a graphical score: at this level of interpreted programming
languages, the code itself is most often its best representation and its
output (what it presents), such as sound or graphics, demonstrates
best what it does. It should be noted here that we are not concerned
with tracing the code and its internal functionality, but in direct
representation of the code as a score and in its sonified output. There
are impressive code tracing systems, e.g., for JavaScript (such as
TraceGL and Google Trace), but those trace the internal logic and
functionality with some graphical notation, and not representations or
outcomes of the code.

4. PERFORMANCE INTERFACES
The Threnoscope is a work intended for live improvisation. The
method of interfacing with the system is multi-modal as it aims
to provide simple and natural interfaces for different tasks. For
example, if the intention is to create a number of new drones
every ten seconds over a few minutes, the best interface is
probably code. This can be quickly written in a few lines of text
resulting in an automated process, whereas a GUI interface
would make the process complex and inflexible. If, however,
the objective is to create a looping non-linear temporal
trajectory of a drone’s filter cutoff frequency, it might be better
to draw this with the mouse, or some other hardware, as it
would be too time consuming to write the algorithm for such a
gesture. Similar examples can be provided for gestural
interfaces and embodied musical performance. Below the five
different control-modes of the Threnoscope are described.

4.1 The Terminal
On the right of the Threnoscope interface we find the live
coding terminal where any SuperCollider code can be written.
Below the terminal is a post window, displaying the state of the
system and error messages.
 This author has found that textual control over sound is often
the ideal interface as graphical user interfaces or hardware are
always at a higher abstraction level, limited to certain ranges
and resolutions. Furthermore, graphical user interfaces
“present” or even “suggest” possible actions through their
visibility and prominency. Of course, some degree of
algorithmic design and control can be achieved through
graphical user interfaces, where the interface practically
becomes a visual programming language, but at a certain level
this flips over to the user interface becoming a much more
complex and time consuming interface than the pure textual
input of the programming language.
 One limitation of the textual interface, as opposed to the
graphical interface that “presents” its options, is remembering
the right command names, the order of arguments, and what
methods actually exist. The Threnoscope has methods that
remind you of all these, printed in the post window (provided
that the user remembers the names of those). For the well
trained live coder, the lack of a GUI means freedom from
compositional imperatives.

4.2 The Graphical User Interface
The representational score in the Threnoscope can be considered to
be one large graphical user interface controller, although it serves
mostly as a representation of the state of the music. However, the
user can click on a drone to select it and alter its state in various ways,
such as using the arrow keys to move it, number keys to jump to
degrees in the scale, or use the delete key to remove the drone. As
mentioned above, the user can also draw more complex patterns to
be used as part of automating algorithms. This is shown in Figure 4.
For example the following two commands:

~drones.setParameter(\freq, 300, 500);
~drones.recParameter(\harmonics, 2, 12);

create a line with crossing the interface with a number next to the
box-shaped handle, enabling the performer to drag the handle to set
the desired value of a selected parameter within the specified range.
In this case, it is a frequency parameter in the range of 300 to 500 Hz.
Since we don’t always know what we want to do, this interface
enables live coders to be less “cerebral” and get to a satisfying result
through a more circular feedback process of constant action and
evaluation. In the case of the “recParameter” method, the performer
can drag the handle over a longer period of time, and on release, the
recorded gestures are played back in a loop. These two examples
illustrate cases where live coding is not an ideal interface due to either
not knowing what you want, or the algorithm being to complex or
time consuming to code in a live context.

4.3 Tangible User Interfaces
The system supports a range of tangible user interface methods, from
basic mouse and keyboard to bespoke hardware communicating via
OSC. MIDI controllers can be used although a majority of them are
not particularly suitable for microtonal music.

4.4 Networked Music
Networked music is an interesting research area related to live
coding. Projects vary in their design solutions, but the way the
Thenoscope supports networked collaboration is through one
computer being the server computer where other computers can send
messages over the OSC protocol to the main server. This practically
requires performers to be present in the same space although working
on separate computers. However, future plans involve using the

OSCthulhu system as a server [8]. This is a system with a global
server that receives commands from distributed clients and pushes
the global state back.

	

 Figure 4. Drawing parameters with a handle on the

graphical interface of the representational score.

4.5 The Code Score
The code score was initially implemented to enable small designed
temporal patterns to be started at any point in a performance.
However, it immediately became clear that the code score also served
well as a notation system for offline composition, not necessarily
deterministic as the code can be generative. The score can range from
being a single event to hours of activity – it can be started and
stopped at any point in a performance, and the performer can
improvise on top of it. As an example, a performer in the middle of a
performance might choose to run a three-second score that builds up
a certain tonal structure. Another example would be a performer who
might choose to run a long and slow score, improvising on top of it.
The code below shows the code required to start a score.

~drones.playScore(\myScore, 1) // name of score and time scale
~drones.showScore(\def, 1) // visual display of the score

The first method simply plays the score. This is very flexible, as
multiple scores can play simultaneously, or the same score started at
different points in time. Scores can be stopped at any point. However,
the “showScore” method creates the graphical representation of the
score described above and shown in Figure 3.
 For this author, the code score has been an interesting feature of
this instrument. The code score could be characterized as an
automation of the live performance, turning the instrument into a
playback system, but we should note that most musical instruments
contain parameters that happen outside the performer’s control (such
as timbre and amplitude envelopes, arpeggios, feedback, sympathetic
strings, etc.). Here the digital instrument is simply given the feature of
a designed process in the form of an extended score. This relates to
what, in another paper, was called the parameter axes of autonomy
and music theory in the epistemic dimension space used to analyze
digital musical instruments [5].

5. THRENOSCOPE IMPROVISATION
The default mode of live coding performance is improvisation. Live
coding is quite unique in that it is almost unimaginable that a
performer would follow a score or a memorized performance. Since
live coders often begin from the “blank slate,” i.e., starting the
performance with an empty text document, they need to know their
system well. Using systems like SuperCollider or Extempore gives
users much freedom in expression, but at the cost of speed and
simplicity. Live coders therefore typically create their own systems
on top of other languages. The Threnoscope is such a system,
although it began as a constraint musical piece for live improvisation

rather than a general live coding system. Of course, writing any live
coding system involves defining possible sound objects and methods,
their temporal and spatial structure, but when writing a musical piece
the design decisions are stronger, options are closed, and a bespoke
aesthetic is developed and emphasized.
 The compositional limitations of the Threnoscope are primarily
introduced through the graphical score and interface. The system
encourages certain musical decisions and makes other more difficult.
Through a constant visual feedback and limited syntax of the micro-
language, the performer is habituating a space of musical
possibilities, in a manner discussed by musical ecologists [2], where
the surroundings and physical setup of equipment is seen as the
design of performance affordances. Due to the spatio-visual nature of
the Threnoscope, improvising with it is in many ways similar to the
situation of an instrumentalist who has shaped or composed their
instrument and surroundings with external technology and extended
technique, and explored the musical potential of the particular setup.
 Improvisation through code has proven to be very powerful.
However, there are musical events that can better be defined through
notation, drawing, and bodily gestures using hardware. This paper
has introduced the ways in which the live coder can interact with the
Threnoscope, and also explored the coexistence of concurrent score
following and improvisation in a live performance.

6. CONCLUSION
The Threnoscope is a system that visualizes complex microtonal
music, through graphical representation of independent drones. It is a
descriptive score system that helps the performer to better understand
the origins and behavior of the current musical activity and gain
faster and more intuitive control over all the musical parameters.
 This paper has presented a system still in development, and one
that has changed considerably from being a musical piece for live
coding performance to becoming a general musical instrument.
Further possibilities have been suggested, such as the system serving
as a music player for other composers’ music. This author still
considers the work a musical piece, but acknowledges the fact that
categories such as instrument, composition, performer, and composer
typically blur in digital musical systems.

7. REFERENCES
[1] A. Blackwell and N. Collins. The Programming Language as a

Musical Instrument. In Proceedings of PPIG05, 2005.
[2] J. Bowers. Improvising Machines Ethnographically Informed

Design For Improvised Electro-Acoustic Music. Stockholm:
Kungl Tekniska Hogskolan. 2002. Available at:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.219.1
699&rep=rep1&type=pdf [accessed April, 2014]

[3] S. Boyd Davis. History on the Line: time as dimension. In
Design Issues 28, 4, 2012. 4-17.

[4] N. Collins, A. McLean, J. Rohrhuber, and A. Ward. Live
coding in laptop performance. In Organised Sound, 8, 3, 2003.
321-330.

[5] T. Magnusson. An Epistemic Dimension Space for Musical
Devices in Proceedings of NIME. 2010. 43-46.

[6] T. Magnusson. Herding Cats: Observing Live Coding in the
Wild. In Computer Music Journal. 38, 1, 2014. 8-16.

[7] J. McCartney. Rethinking the Computer Music Language:
SuperCollider. In Computer Music Journal. 26, 4, 2002. 61-68.

[8] C. McKinney and C. McKinney. OSCthulhu: Applying Video
Game State-Based Synchronization to Network Computer
Music. In Proceedings of ICMC, 2012.

[9] C. Nash and A. Blackwell. Tracking Virtuosity and Flow in
Computer Music. In Proceedings of ICMC. 2011.

[10] J. Rohrhuber, A. de Campo, R. Wieser, J-K. van Kampen, E.
Ho, and H. Hölzl. Purloined Letters and Distributed Persons. In
Music in the Global Village Conference. 2007.

