
The Threnoscope
A Musical Work for Live Coding Performance

Thor Magnusson
Faculty of Arts

University of Brighton
Brighton, United Kingdom

T.Magnusson@brighton.ac.uk

Abstract—This paper introduces a new direction in the field of
artistic live coding where musical works are presented as pieces
in the form of a live coding system. The system itself and the code
affordances become equivalent to score system in an open
musical work for strong improvisation.

Index Terms—Live coding, music, musical work, interface

I. INTRODUCTION
This year is the tenth anniversary of organized live coding

in the arts (see www.toplap.org). Diverse live coding systems,
festivals, club nights, conference tracks, journal issues, and
research projects have appeared in the last decade that have
made this form of practice well known within the fields of art,
music and science (in particular computer science). With its
foundation in musical performance, live coding has now
become common in visual arts, light systems, robotics, dance,
poetry, and other art forms that can operate with algorithmic
instructions. Although the coding languages differ, interpreted
programming languages are typically used, although some have
coded in C or Java, and others made use of paper drawings,
written or even verbal instructions.

Journal and conference papers on live coding, most often
written by the practitioners themselves, have defined the
practice [6][28][16], explored it in a computer science context
[24][3][17], described particular systems and solutions
[25][27][18][10][14], explored live coding as musical scores
[3][15], and described it as an embodied musical practice that
requires practicing just as acoustic instruments do [26][7][1].
After a decade of fruitful experiments and global dissemination
of practices, this paper will identify a new direction in live
coding that can currently be detected, namely where systems
are designed with increasing constraints, to the degree that they
can be seen as musical pieces in themselves.

II. MANIFESTATIONS BUT NO DEFINITIONS
Live coding in the field of arts is a strongly heterogeneous

practice and thus hard to define. It is evident that live coding is
not a specific genre or a practice, but rather a heterogeneous
multiplicity of practices that have one thing – the codeness – in
common: that algorithmic instructions are written in real-time.
Or as McLean defines it, “Rules must be explicit. We may be
inventing and changing rules all the time in our heads, but
unless those rules are written down and modified while they are

being followed by a computer (or other agent), that is not live
coding.” [16]. Collins states that “[t]he more profound the live
coding, the more a performer must confront the running
algorithm, and the more significant the intervention in the
works, the deeper the coding act.” [7]. For Collins, most
performances fail to “live up to this promise.”

Live coding is therefore about the composition of music (or
other art forms, including games) where notation is written in
the form of algorithms; about writing step-by-step rules for
machines or humans to execute. Finally, it is an empirical fact
that most live coding is communicating something in a form
other than the code itself. The coding results in music, visuals,
dance instructions, games, robotics, etc. Of course, one could
imagine a purely conceptual live coding without any other
output than the code itself, but I am not aware of such work in
the field of live coding, although they do exist in offline
coding, for example by Pall Thayer’s Microcodes [21].

 What about the liveness? Here we enter a more difficult
area, as the term might signify two things: that the act is
happening in front of live audience (and thus the polite gesture
of projecting the screen to that audience), or that the act is
simply part of a setup where the coder can change instructions
live without having to recompile or restart the program. An
archaeology of live coding would show that the former
meaning quickly established itself and became the accepted
connotation, although live coding does certainly not have to be
in front of audience. In fact Fabrice Mogini, an early
practitioner of live coding in the field of art, recently described
how he uses live coding in his own practice as “bringing
together improvisation and composition. The real-time
feedback while editing code is useful to prevent compositional
systems from getting out of hand and forgetting about
perception (eg: serialist techniques)” [19].

Many (McLean, Nilson, etc.) argue that a true liveness also
requires that the performer not only manipulates prewritten
code in real-time, but actually writes and changes algorithms
during the execution of the program. This is arguably a fair
condition of live coding, as simply running code and changing
variables within a prewritten program in real-time is more
comparable to operating buttons, sliders and knobs on a screen
interface or a MIDI controller. This stricter definition of live
coding is more contended and would result in the fact that
some “live coding” performances do not include any live
coding at all. Interestingly, the tension between the strong and

weak definition of live coding happens to be strikingly
analogous to the dichotomy between composition and
performance in written sheet music since the 19th century.

III. CONSTRAINED SYSTEMS FOR LIVE CODING
All live coding systems allow the programmer to write and

alter the program in real-time. This is the most fundamental
condition of a live coding system, rendering compiled
languages, such as C or Java, problematic in this context.
Typically, live coders have made use of programming
languages such as Perl, Python, Lua, JavaScript, Scheme or
SuperCollider some of which were general programming
languages but others domain specific (SuperCollider being an
example of a dedicated computer music programming
language). For reasons of demonstration, novelty and
performance, the ‘blank slate’ has become the norm [22][18] of
live coding performances. It means that the performer starts
with an empty text document and writes the program “from
scratch.” This is not an essential requirement, but an
understandable practice since ‘full slate’ coding [4] might
obscure whether the recital is actually an algorithm-writing or a
parameter-tweaking performance, the former preferred in live
coding circles for reasons mentioned above.

The blank slate is always bound to be a relative concept.
For example a blank slate in my own ixi lang [14] is
impregnated with more musical sounds and patterns than the
blank slate of SuperCollider, which in turn is more pregnant
than C/C++. This reflects the system’s hierarchy of code: ixi
lang is written in SuperCollider which is written in C/C++.
Live coders have always used their own libraries and
convenience classes to make live coding faster and less of an
inventing-the-wheel-in-front-of-live-audience process.

Increasingly people package these systems as self standing
live coding environments, a unique system derived from that
person’s coding style. Specific systems such as LOLC [10],
Gibber [23], Al-Jazari [12], Scheme Bricks [17], or Texture
[18], are all good examples of constrained and limited systems
that explore a particular idea, yet providing a wide scope for
general musical expression. ixi lang is an example of such a
system: it was released in 2009 and has received widespread
distribution and use. Users opt to register their emails when
downloading the system, allowing me to conduct surveys,
studying the use of the language. A survey was conducted with
ixi lang users and reported on in the paper “ixi lang: A
SuperCollider Parasite” [14]. The survey demonstrated that
users enjoy the constraints of the system and find its limitations
inspiring (e.g., “a great catalyst for a new project”).

Recently, I have begun to explore creating even higher
level live coding systems, where the system can hardly be
conceived of as a general environment for musical expression,
but more comparable to a score or a musical piece. The design
of such live coding framework is based on principles that relate
to the open work as Eco defined it in the early 1960s [9]. For
Eco, the open work can be exemplified as a musical piece that
allows for diverse interpretations; an approach found in various
late 20th-century works, such as Karl-Heinz Stockhausen’s
Plus Minus, Terry Riley’s In C, La Monte Young’s Dream

House, or John Zorn’s Cobra. This new representation of the
ontology of the musical work imposes new roles for the
interpreter of the piece, a fact picked up by Roland Barthes in
1971, “We know today that post-serial music has radically
altered the role of the ‘interpreter,’ who is called on to be in
some sense the co-author of the score, completing it rather than
giving it ‘expression.’” [2].

Fig. 1. A screenshot showing the normal ixi lang and the “ixi lang matrix”

where agents jump between nodes running SuperCollider code.

When the live coding system in the form of a software
package becomes so narrow and focused in its musical scope, it
is questionable whether distributing it resembles more the
dissemination of a musical score, and if so, whether the user of
the system becomes an “interpreter” of the piece. There are
many predecessors that have paved the way for this exposition:
making art in the form of software is an old and established
practice and software artists have published their software for
decades now [11]. Instruction pieces also have a strong
tradition in the 20th century, Young and Ono being good
examples [13]. Recently, Nick Collins published scores for
such instruction works, but this time with a strong live coding
elements [8]. However, it is uncommon that a live coding
system is released in the form of a software; as a musical piece
to be interpreted by human performers other than the creator of
the piece. This is one of the research aims behind the
Threnoscope project presented in the next section. As an open
work, in Eco’s definition, it allows for wide interpretive scope,
like many of the instruction works of the 60s, e.g., Cardew’s
Scratch Orchestra [5]. However, it is yet to be seen whether
indeed users of the system do agree with the definition of the
system as a musical piece or whether they see it as a more
general live coding platform. The dissemination of this piece
will be subject to future research.

IV. THE THRENOSCOPE
Issues of time, latency, and sample rate have been of central

concern to computer music. All live coding systems contain
solutions as to how musical events are scheduled in time and
those are often quite original solutions. In ixi lang alphabetical
characters are used to represent events (either numbers for
notes or letters for sounds) and the spaces between them are
non-eventful or silent. The code thus gets a graphical, spatial,

and score-like representation of the music. Since the system
updates the written code according the algorithms running, it is
concurrently a prescription and description of both the music
and the system’s state. The ixi lang typically encourages the
user to work with beats, polyrhythms, and agents of varied
tempi. However, a conscious effort has been made to lessen
this event-based focus of ixi lang, for example with the
concrete mode and the morphing of samples in the rhythmic
mode [14]. Whilst this system has served me well, and I have
performed diverse musical sets with it, a fallow musical ground
seemed to lie ahead - resulting from a long-lasting interest in
drones and microtones - and I wanted to explore it further by
designing a specific system addressing certain musical topics.

Fig. 2. The Threnoscope live coding system

An extended interest in tuning systems, spectralism, scales,
and drone music in general, became the conceptual foundation
for the Threnoscope system. The piece is designed for live
coding of drones where affordances are provided for
manipulations of spectra, wave form, filtering, tuning, and
envelopes. Refraining from linear representation of music, the
circular interface gives connotations of stasis as the drones
slowly circumnavigate the pitch centre. The work focuses
on representations of timelessness, the eternal, and emphasizes
space rather than time. The drones are harmonic waveforms
that can be instantiated anywhere on the circle, but their state
can change and pitch, harmonics, resonance, direction and
spread, are all properties that can affected by the performer, by
pre-composed scores, or by rule-based agents – called drone
machines – that appear in the middle of the circle.

The Threnoscope is designed for up to 8 channel speaker
systems (but also supports 7.1, 5.1, quadrophonic, stereo, and
mono), where virtual output speaker channels are arranged in a
circle around a central point. In a typical club setting, a two
channel system is used, where a performer sits on stage
performing the piece. However, using the eight channels, this
circular interface questions the boundaries between a musical
piece and an installation: projected on a lateral plane, the
surrounding speakers engulf the audience that are able to
observe the piece’s movement, affected by the behavior of the
drone machines. In this manifestation, the piece has no

particular beginning or ending, it becomes an attempt to engage
with space, happily ignoring its existence in time.

The performance interface is split into three areas. On the
left there is the visual score representation with drawn circles
of harmonics from the fundamental note that defaults to an A1
(55 Hz). The circles can also display scales of any tuning and
scale including custom made ones. Crossing the circles are
lines representing the speakers; if a drone intersects a speaker
line, it starts sounding out of that speaker. On the right there is
the live coding terminal, where the performer can write any
SuperCollider code in addition to specific code for the
Threnoscope. Below the terminal is the post window,
displaying the state of the system and error messages.

The drones themselves can have various waveforms (a saw,
triangle, square, noise, sample, etc). They are color coded
according to the waveform type. The initial arguments when a
drone is created is the wave form, ratio (from fundamental),
harmonics, location, size, speed, etc. The drones represent a
complex synth instance from a SuperCollider Server synth
definition and any of the parameters of that synth can be
controlled. The drone can be controlled from code, from the
visual interface, and through a network. Since all these
parameters can be so easily defined, the drone can range from a
static drone that spreads over all the speakers, to a fast moving
small drone that triggers quick sounds when crossing speaker
lines. Whilst it is theoretically possible to perform the same
music with the Threnoscope system and ixi lang, the systems
are constructed from a radically different musical concepts,
“suggesting” particular ways of thinking and performing.

Since controlling each drone in a live performance can be
time consuming and tedious, extra control is given to the
system itself. Various automation machines of different
functionalities can be initialised that work on the properties of
the drones, such as pitch, amplitude, harmonics, etc. The
machines appear in the middle of the circle, and they can be
live coded themselves, allowing the user to define specific
behavior according to needs. The idea of using machines to
contribute to the performance is a result of a frustration with
the fact that in live coding the coder typically only works on
one thing at a time, whereas in musical performance using
acoustic instruments, the performer is able to exert
multidimensional control through complex bodily gestures.

Further parameters can be exposed to the score interface
itself, allowing the live coder to set parameters of the drones
through drag-handles, but also draw animation trajectories of
those parameters; something that would take considerably more
time to code algorithmically.

It is my belief that the performer and the audience gain
considerable from the visual representation of the system’s
state. It is as if the descriptive score confirms what the ears are
hearing, but conversely, the ears can tune into specific
frequencies or events by cues from the interface. Since the
Threnoscope has such compositional constraints in its character
I don’t hesitate to call it a musical piece, perhaps echoing the
way Mumma thinks of himself as a “composer who builds his
own instruments, though most of [the] ‘instruments’ are
inseparable from the compositions themselves.” [20].

V. CONCLUSION
This article has described live coding as a multitude of

practices. It is a fuzzy concept that does not share any one
essential requirement, except perhaps that algorithms are
created live. This live coding can equally be aimed at machines
or not; written in text or not; with artistic purpose or not; in
front of an audience or not; by a programmer or not: it just has
to be live algorithms.

Therefore, an attempt to analyze and address the problems
of live coding would necessarily apply only for some systems
and not others and be relevant or interesting to some coders and
not others. In my own live coding practice and in the design of
the ixi lang and the Threnoscope, I have tried to address what I
consider intriguing topics in live coding system design:

• representation: how is the code visualized?
• speed: can the coder quickly make the desired music?
• audience communication: is the code understandable?
• learning curve: is the system easy to learn?
• control: can processes be easily started and stopped?
• undo: can code be reverted if a mistake was made?
• snapshots: can you go back and forth in time?
• audiovisuality: does the visual element represent the

auditory element?
• state update: if an algorithm rewrites the code itself,

does the displayed code represent the new state?
• automation: can the system easily run automated

processes and how can those be visually represented?
• open theory: can a high level system be flexible and

open in terms of tunings, scales and time signatures?
• instrument or a piece: in what sense is the coding

system an instrument or a musical piece?

It is clear that the above presentation of live coding
systems, and their “problems,” might not be conceived as such
by other live coders, and if even if they were, the solutions
might be completely different from what the two discussed
systems present. This is why live coding can be such an
interesting field of research and practice: it deals with problems
of human-machine interaction; of human and machine
languages; and extremely diverse strata of issues in art,
performance, and musical composition. A creative solution in a
live coding system or a live coding performance is likely to be
of an historic interest, due to how young the field is, and how
extremely broad and heterogeneous the practices within it are,
touching equally upon the arts and the sciences.

REFERENCES
[1] Aaron, S., A. F. Blackwell, R. Hoadley, and T. Regan. 2011. “A

principled approach to developing new languages for live
coding.” Proceedings of NIME. Oslo: University of Oslo.

[2] Barthes, R. 1978. Image-Music-Text. New York: Hill and
Wang. p. 163.

[3] Blackwell, A. and N. Collins. 2005. “The Programming
Language as a Musical Instrument.” Proceedings of PPIG05
(Psychology of Programming Interest Group).

[4] Burnard, P. 2012. Musical Creativities in Practice. Oxford:
Oxford University Press.

[5] Cardew, C. 1972. Scratch Music. London: Latimer New
Dimensions Ltd.

[6] Collins, N., A. McLean, J. Rohrhuber, and A. Ward. 2003. “Live
coding in laptop performance.” Organised Sound, 8(3):321-330.

[7] Collins, N. 2011. “Live Coding of Consequence.” Leonardo
44(3):207-211.

[8] Collins, N. 2012. “Six Live Coding Works for Ensemble”
Available online at http://www.sussex.ac.uk/Users/nc81/
livecodingworksforensemble.html. [Jan 2013].

[9] Eco, U. 1989. The Open Work. Cambridge: Harvard University
Press.

[10] Freeman, J., and A. Van Troyer. 2011. “Collaborative Textual
Improvisation in a Laptop Ensemble.” Computer Music Journal,
(35)2:8-21.

[11] Goriunova, O., and A. Shulgin. 2004. read_me: Software Art &
Cultures. Aarhus: Aarhus Universitetsforlag.

[12] Griffiths, D. 2007. “Game Pad Live Coding Performance.” In J.
Birringer, T. Dumke, K. Nicolai. eds. Die Welt als virtuelles
Environment, Dresden: TMA Hellerau.

[13] Kotz, L. 2001. “Post-Cagean Aesthetics and the Event Score.”
October 95. Winter 2001. Pp. 101-140.

[14] Magnusson, T. 2011a. “Ixi lang: a SuperCollider Parasite for
Live Coding.” Proceedings of ICMC. Huddersfield. UK.

[15] Magnusson, T. 2011b. “Algorithms as Scores: Coding Live
Music.” Leonardo Music Journal. Leonardo/ISAST.

[16] McLean, A. 2008. “Live coding for free.” In Floss+Art. London:
Mute Publishing Ltd.

[17] McLean, A., and G. Wiggins. 2010. “Bricolage Programming in
the Creative Arts.” Proceedings of PPIG 2010 (Psychology of
Programming Interest Group).

[18] McLean, A., and G. Wiggins. 2011. “Texture: Visual notation
for the live coding of pattern.” Proceedings of ICMC.

[19] Mogini, F. 2013. Email on the livecode list 10 jan 2013.
[20] Mumma, G. 1967. Creative aspects of live-performance

electronic music technology. Audio Engineering Society
Preprint, 33rd Convention. Pp. 348-350

[21] Myers, R. 2009. “Microcodes.” Furtherfield, Available online
http://www.furtherfield.org/reviews/microcodes. [Jan. 2013].

[22] Nilson, C. 2007. “Live Coding Practice.” Proceedings of the
NIME Conference. New York.

[23] Roberts, C., and J. Kuchera-Morin. 2012. “Gibber: Live Coding
Audio in the Browser.” Proceedings of ICMC. Lljubljana.

[24] Rohrhuber, J., A. de Campo, and R. Wieser. 2005. “Algorithms
Today: Notes On Language Design for Just In Time
Programming.” Proceedings of ICMC, San Francisco.

[25] Sorensen, A. 2005. “Impromptu : an interactive programming
environment for composition and performance.” Proceedings of
the ACMC. Queensland University of Technology, Brisbane.

[26] Sorensen, A., and A. Brown. 2007. “aa-cell in practice: An
approach to musical live coding.” In Proceedings of ICMC.

[27] Wakefield, G., W. Smith, and C. Roberts. 2010. “LuaAV:
Extensibility and Heterogeneity for Audiovisual Computing.”
Proceedings of the Linux Audio Conference (LAC).

[28] Ward, A., J. Rohrhuber, F. Olofsson, A. McLean, D. Griffiths,
N. Collins, and A. Alexander. 2004. “Live Algorithm
Programming and a Temporary Organisation for its Promotion.”
In Goriunova, O., and A. Shulgin. Eds. read_me – Software Art
and Cultures. Aarhus: Aarhus University Press.

