
	

Making	High-Performance	Embedded	Instruments	
with	Bela	and	Pure	Data	

Giulio	Moro1,	Astrid	Bin2,	Robert	H.	Jack3,	Christian	Heinrichs4,	Andrew	P.	McPherson5	

Centre	for	Digital	Music,		
Queen	Mary	University	of	London,	UK	

1	g.moro@qmul.ac.uk,	2	a.bin@qmul.ac.uk,	3	r.h.jack@qmul.ac.uk,		
4	c.heinrichs@qmul.ac.uk,	5	a.mcpherson@qmul.ac.uk	

Abstract.	Bela	is	an	embedded	platform	for	ultra-low	latency	audio	and	sensor	processing.	We	present	here	the	hardware	
and	software	features	of	Bela	with	particular	focus	on	its	integration	with	Pure	Data.	Sensor	inputs	on	Bela	are	sampled	at	
audio	rate,	which	opens	to	the	possibility	of	doing	signal	processing	using	Pure	Data’s	audio-rate	objects.	

Keywords:	embedded	audio,	sonic	interaction	design,	sensors,	low	latency,	musical	instrument	design.		

Introduction	
The	increasing	power	and	availability	of	microcontrollers	and	single-board	computers	has	given	rise	to	many	new	platforms	
for	creating	musical	instruments	and	platforms	for	interactive	audio.	Choosing	a	suitable	platform	can	be	a	challenge,	
involving	tradeoffs	between	computing	power,	hardware	connectivity,	ease	of	programming	and	price.	

Many	current	approaches	to	designing	sounding	objects	combine	two	or	more	devices	together,	for	instance	an	Arduino	
which	handles	analog	and	digital	sensor	input	communicating	via	USB-serial	with	a	a	computer	running	the	audio	
processing.	Using	a	self-contained	embedded	platform	in	the	creation	of	DMIs	and	interactive	audio	systems	has	several	
advantages	over	such	a	setup.	

• Reliability	Using	a	single	device	is	less	prone	to	communication	errors	and	it	is	easier	to	provide	a	backup	solution	
for	a	simpler	system.	

• Performance	With	a	composite	setup	as	the	one	described	above,	the	serial	connection	is	slow	and	the	throughput	
is	limited.	As	such,	the	latency,	sampling	rate	and	jitter	of	the	acquired	data	are	all	affected	negatively,	which	may	
in	turn	affect	the	expressiveness	of	the	performance.	MIDI	devices	typically	perform	better	than	serial	ones,	while	
wireless	links	may	be	affected	by	packet	loss	or	channel	congestion	(McPherson,	Jack,	and	Moro	2016).	

• Reproducibility	It	is	easier	for	other	people	to	recreate	a	device	if	it	does	not	rely	on	multiple	pieces	of	software	
and	hardware	devices	and	specific	revisions	of	each	of	them.	

• Sustainability	Similarly,	the	developers	themselves	will	find	it	easier	to	maintain	and	develop	a	system	that	does	
not	have	multiple	dependencies,	also	to	the	advantage	of	making	software	version	control	easier.	

Recent	Embedded	Platforms	for	Digital	Musical	Instrument	Creation	
Arduino	and	similar	boards	are	an	accessible	way	of	providing	low-level	connectivity	to	analog	and	digital	sensors,	but	the	
low-powered	AVR	microcontroller	does	not	allow	audio	on-board	audio	processing.	The	x-OSC	board	provides	analog	and	
digital	I/Os	over	a	wireless	link	(Madgwick	and	Mitchell	2013).	

Two	audio-oriented,	self-contained	platforms	based	on	a	168MHz	Cortex	M4	microcontroller	hit	the	market	in	the	past	few	
years:	the	Owl1	programmable	digital	effect	(Webster,	LeNost,	and	Klang	2014),	which	surfaced	in	2013,	and	Axoloti2,	which	

																																																																				
1	http://hoxtonowl.com/	
2	http://www.axoloti.com/	



	

came	out	early	2015.	The	former	can	be	programmed	through	a	C++	API	or	can	run	Pure	Data	patches	using	the	Heavy	
Audio	Tools	from	Enzien	Audio,3	while	the	latter	provides	a	custom	graphical	patcher	which	includes	DSP	modules	and	can	
be	expanded	with	C++.	

Raspberry	Pi	is	arguably	the	most	popular	single-board-computer	in	the	world	and	its	latest	revision	3	features	a	quad-core	
1.2GHz	64bit	CPU.	The	CCRMA	Satellite	distribution4	(Berdahl	and	Ju	2011)	was	developed	to	provide	an	efficient	audio-
oriented	environment	for	the	Raspberry	Pi.	

Coala	is	an	audio	processing	platform	based	on	the	BeagleBone	Black5	which	was	presented	in	(Piéchaud	2014).	The	
software	and	hardware	architecture	of	Coala	were	developed	for	the	specific	task	of	modal	control6,	which	requires	a	very	
tight	feedback	loop.	The	platform	is	therefore	optimized	for	fast	sample-by-sample	processing	in	order	to	minimize	round-
trip	latency.	

Bela:	an	embedded	platform	for	audio	and	sensor	processing	
Bela7	(formerly	known	as	BeagleRT)	is	a	combined	hardware	and	software	environment	that	consists	of	a	BeagleBone	Black	
with	an	expansion	“cape”	(McPherson	and	Zappi	2015a).	It	was	originally	developed	for	the	D-Box	Hackable	Digital	
Instrument	(Zappi	and	McPherson	2014)	which	required	multiple	low-latency	hybrid	analog-digital	feedback	loops	
(McPherson	and	Zappi	2015b).	Bela	combines	the	connectivity	of	a	microcontroller	with	the	processing	capability	of	a	single-
board	computer.	The	cape	provides	stereo	audio	I/O	including	1W	speaker	amplifiers,	8	channels	each	of	16-bit	analog	I/O,	
and	16	digital	GPIO	pins.	Bela	is	open-source	hardware	and	software.	Source	code	and	design	materials	are	publicly	
available.8	

The	Bela	software	uses	a	Debian	Linux	distribution	with	the	Xenomai9	real-time	kernel	extensions.	The	Programmable	
Realtime	Unit	(PRU),	a	200MHz	microcontroller	on	the	same	chip	as	the	BeagleBone	Black	CPU,	transfers	audio	and	sensor	
data	directly	to	the	hardware,	bypassing	the	kernel	drivers.	The	user’s	Bela	code	therefore	runs	at	the	highest	priority	of	any	
task	on	the	board,	including	the	Linux	kernel	itself.	This	allows	audio	block	sizes	as	low	as	2	samples,	resulting	in	round-trip	
audio	latency	of	1ms	(or	even	down	to	100us	if	using	the	analog	inputs	and	outputs	rather	than	the	audio	converters)	
(McPherson,	Jack,	and	Moro	2016).	

On	Bela,	every	analog	and	digital	channel	is	automatically	sampled	at	audio	rates,	synchronously	with	the	audio	clock.	The	
high	sampling	rate	of	the	analog	and	digital	channels	are	unique	to	Bela	and	their	jitter-free	alignment	with	the	audio	makes	
it	ideal	for	interactive,	intuitive,	responsive	audio	applications.	

Compared	to	Axoloti	and	Owl,	Bela	has	more	processing	power,	while	still	providing	hard	real-time	performances,	with	the	
added	convenience	of	a	full	Linux	OS	and	while	being	minimally	affected	by	system	load.	It	is	more	general-purpose	than	
Coala	which	addresses	the	specific	field	of	real-time	control,	though	Coala	is	capable	of	even	lower	latencies	than	Bela.	On	a	
Raspberry	Pi	running	CCRMA	Satellite,	despite	the	high	processing	power	available	on	board,	audio	depends	on	the	standard	
Linux	audio	drivers,	so	that	low-latency	processing	is	difficult	because	of	the	presence	of	other	processes	on	the	board,	
which	may	cause	underruns	at	small	audio	blocksizes	even	when	the	CPU	load	is	low	on	average.	The	BeagleBone	Black	CPU	
is	less	powerful	overall	but	the	Xenomai	extensions	used	in	the	Bela	software	allow	reliable	and	consistent	performance	
with	sub-millisecond	latency.	Additionally,	the	number	of	I/Os	available	in	Bela	is	greater	than	those	on	commonly	available	
Raspberry	Pi	hats.	

																																																																				
3	http://enzienaudio.com/	
4	https://ccrma.stanford.edu/~eberdahl/Satellite/	
5	http://beagleboard.org/black	
6	http://instrum.ircam.fr/smartinstruments/	
7	http://bela.io	
8	http://bela.io/code/	
9	http://xenomai.org/	



	

Bela,	providing	a	large	number	of	I/Os	for	audio	and	sensors,	power	output	for	loudspeakers,	and	providing	enough	
processing	power	to	satisfy	most	needs,	entirely	fulfills	the	requirements	of	a	self-contained	device,	which	can	be	
embedded	in	a	stand-alone	Digital	Musical	Instrument	or	sounding	object.	

Pure	Data	on	Bela	
Pure	Data10	(Pd)	is	a	popular	open	source	graphical	programming	language	widely	used	by	musicians	and	sound	designers	
alike,	which	allows	for	quick	prototyping	of	sound	and	sensor	mappings.	Pd	patches	are	usually	run	within	Pd	itself,	or	using	
the	shared	library	libpd11.	The	messaging	architecture	and	the	audio	engine	of	Pd	was	not	designed	to	be	fast	and	
computationally	efficient	which	can	lead	performance	penalties	on	platforms	with	limited	computational	power.	

									 	

��		 Figure	1:	The	Bela	cape																																 								Figure	2:	Using	a	force	sensitive	resistor	with	Bela	

Heavy	Audio	Tools	The	Heavy	Audio	Tools	from	Enzien	Audio	use	Pd	as	a	front-end	to	generate	optimised	C	code.	By	
analyzing	the	graph	of	connections	between	objects	in	the	Pd	code,	Heavy	is	capable	of	producing	high-performance	
vectorized	C	code	which	can	outperform	libpd,	making	it	particularly	well	suited	for	embedded	devices	and,	more	generally,	
hardware	with	limited	computational	power.	Heavy	is	a	proprietary,	cloud-based	service	and	the	generated	code	is	licensed	
under	the	MIT	non-commercial	license.	

The	C	code	produced	by	Heavy	is	well-suited	to	be	integrated	in	a	Xenomai	environment,	as	memory	is	allocated	on	the	
stack,	thus	avoiding	system	calls	during	execution.	An	automated	script	takes	care	of	uploading	the	Pd	patch	to	Heavy’s	
server,	collect	the	generated	C	code	and	compile	it	on	the	Bela	board.	The	entire	process	generally	takes	less	than	one	
minute	and	most	of	the	time	is	spent	compiling	the	C	code	on	the	BeagleBone	Black.	

libpd	Minimal	modifications	were	required	to	port	libpd	for	Bela,	these	included	allowing	blocksizes	as	small	as	8	samples	
per	block	and	removing	socket	and	disk	I/O	from	the	audio	thread.	Additionally,	the	calls	to	the	pthread	functions	were	
wrapped	into	Xenomai	functions.	The	resulting	shared	library	can	be	linked	to	a	Bela	program	and	
libpd_process_float()	is	then	invoked	from	within	Bela’s	audio	callback.	

Deploying	a	Pd	patch	using	libpd	is	virtually	instantaneous	as	it	does	not	require	compiling.	As	soon	as	the	patch	is	saved	on	
the	BeagleBone’s	filesystem,	the	Bela	program	can	be	restarted	and	it	will	load	the	updated	patch.	An	added	advantage	of	
using	libpd	is	that	it	is	easier	to	port	Pd	externals	when	their	source	code	is	available.	The	same	precautions	listed	above	
should	be	taken	for	new	externals	in	order	to	make	sure	that	new	objects	do	not	introduce	Xenomai	mode	switches	in	the	
audio	thread12.	

																																																																				
10	http://puredata.info	
11	http://libpd.cc/	
12	https://xenomai.org/2014/08/porting-a-linux-application-to-xenomai-dual-kernel/	



	

Performance	comparison	Running	an	example	patch	containing	a	generative	audio	composition,	Heavy	code	compiled	with	
the	clang13	compiler	uses	26%	of	the	CPU.	The	same	Heavy	code,	compiled	with	gcc14,	occupies	43%	of	the	CPU	cycles.	
Running	the	patch	using	libpd	uses	53%	of	the	CPU.	

Traditionally,	the	highest-performance	platforms	have	also	placed	the	most	technical	demands	on	the	programmer.	For	
many	years,	custom	DSP	boards	offered	the	best	balance	of	hard	real-time	performance	and	high	processing	power,	but	
they	were	generally	programmed	in	low-level	languages	using	custom	development	environments.	High-level	music	
programming	languages	often	come	with	significant	processing	overhead.	Running	Pure	Data	on	Bela,	especially	through	the	
Heavy	Audio	Tools,	provides	a	convenient	graphical	environment	with	minimal	sacrifice	in	performance	compared	to	
programming	in	C++.	

	

��(a)	Smoothing																																																																								(b)	Re-centering	

		 	

(c)	Differentiating		 	 	 	 (d)	Thresholding	

Figure	3:	Using	Pure	Data	objects	to	process	sensor	data	

Sensor	processing	in	PureData	
Many	interactive	systems	take	approaches	where	sensors	are	sampled	at	low	and	non-constant	rates	and	the	most	recent	
frame	of	sensor	data	is	used	to	modulate	a	particular	sonic	parameter.	But	in	actual	fact,	the	meaning	of	sensor	data	is	often	
deeper,	in	its	behaviour	over	time	or	its	frequency	content.	A	high	sampling	rate	yields	a	very	high	bandwidth	of	interaction	
which	captures	subtle	details	that	might	be	lost	at	lower	sample	rates.	Though	all	the	same	techniques	could	be	
implemented	at	control	rate,	audio-rate	sensor	data	can	help	reorient	the	designer’s	thinking	to	become	more	aware	of	
these	possibilities.	When	using	Bela	with	Pd,	this	allows	to	conveniently	process	sensor	signals	using	audio-rate	objects.	
Some	examples	include:	

• Smoothing	Some	sensors	are	inherently	noisy,	for	instance	a	potentiometer	may	generate	high-frequency	noise	
when	it	is	actuated,	or	an	infra-red	optical	sensor	may	be	subject	to	transient	perturbations	from	other	emitting	
sources.	The	noise	in	the	sensor	readings	may	leak	into	the	audio	signal,	depending	on	the	signal	flow.	An	easy	
approach	to	remove	high-frequency	noise	is	to	apply	a	low-pass	filter	with	an	appropriate	cut-off	frequency,	as	in	
Figure	3a.	

																																																																				
13	http://clang.llvm.org/	
14	https://gcc.gnu.org/	



	

• Re-centering	Readings	from	accelerometers	and	other	sensors	have	inherent	DC-offsets	which	may	be	undesirable	
for	certain	applications.	A	quick	way	of	removing	them	which	does	not	require	calibration	is	using	an	high-pass	
filter	with	an	appropriate	cut-off	frequency,	as	in	Figure	3b.	

• Differentiating	Some	sound-generator	parameters	are	better	controlled	using	the	velocity	of	a	sensor	reading,	
rather	than	with	the	raw	reading.	A	high-pass	filter	with	a	cut-off	frequency	of	0,	properly	rescaled	can	used	for	this	
purpose,	as	in	Figure	3c.	

• Thresholding	A	more	complicated	example	in	Figure	3d	shows	how	to	combine	full-wave	rectification,	smoothing,	
DC	shift	and	constrain	to	threshold	a	signal.	

Conclusion	
There	are	several	tradeoffs	involved	in	different	digital	musical	instrument	design	tools:	processing	power,	latency,	
connectivity,	sensor	bandwidth,	ease	of	programming	and	accessibility.	With	any	of	the	programming	environments,	Bela	
brings	together	the	connectivity	and	CPU	power	of	an	embedded	Linux	computer	with	the	low	latency	and	precise	
synchronisation	of	a	microcontroller	and	brings	a	high-bandwidth	dimension	to	sensor	processing.	Using	either	the	Heavy	or	
the	libpd	environments,	Bela	is	also	suitable	for	rapid	prototyping	using	the	widely-used	Pure	Data	graphical	programming	
language,	with	full	access	to	both	audio	and	sensors.	

Acknowledgements.	This	work	is	supported	by	grants	EP/K032046/1,	EP/K009559/1	and	EP/L019981/1	from	the	UK	
Engineering	and	Physical	Sciences	Research	Council	and	the	Queen	Mary	Centre	for	Public	Engagement.	

References	
Berdahl,	Edgar,	and	Wendy	Ju.	2011.	“Satellite	CCRMA:	A	Musical	Interaction	and	Sound	Synthesis	Platform.”	Proceedings	of	
the	International	Conference	on	New	Interfaces	for	Musical	Expression.	Oslo,	Norway,	173–178.	

Madgwick,	Sebastian,	and	Thomas	J	Mitchell.	2013.	“x-OSC:	A	versatile	wireless	I/O	device	for	creative/music	applications.”	
SMC	Sound	and	Music	Computing	Conference.	Stockholm,	Sweden:	KTH	Royal	Institute	of	Technology.	

McPherson,	A.	P.,	and	V.	Zappi.	2015a.	“An	environment	for	submillisecond-latency	audio	and	sensor	processing	on	
BeagleBone	Black.”	Audio	Engineering	Society	Convention	138.	Audio	Engineering	Society.	

McPherson,	Andrew,	and	Victor	Zappi.	2015b.	“Exposing	the	Scaffolding	of	Digital	Instruments	with	Hardware-	Software	
Feedback	Loops.”	Proceedings	of	the	International	Conference	on	New	Interfaces	for	Musical	Expression.	Baton	Rouge,	
Louisiana,	USA:	Louisiana	State	University,	162–167.	

McPherson,	Andrew	P.,	Robert	H.	Jack,	and	Giulio	Moro.	2016.	“Action-Sound	Latency:	Are	Our	Tools	Fast	Enough?”	
Proceedings	of	the	International	Conference	on	New	Interfaces	for	Musical	Expression.	Brisbane,	Australis.	

Piéchaud,	Robert.	2014.	“A	Lightweight	C++	Real-Time	Active	Control	Framework.”	16th	Real	Time	Linux	Workshop,	October	
12	to	13,	2014	at	the	CCD	Congress	Center	Dusseldorf	collocated	with	LinuxCon	Europe	in	Dusseldorf,	Germany.	

Webster,	Thomas,	Guillaume	LeNost,	and	Martin	Klang.	2014.	“The	OWL	programmable	stage	effects	pedal:	Revising	the	
concept	of	the	on-stage	computer	for	live	music	performance.”	Proceedings	of	the	International	Conference	on	New	
Interfaces	for	Musical	Expression.	London,	United	Kingdom:	Goldsmiths,	University	of	London,	621–624.	

Zappi,	V.,	and	A.	McPherson.	2014.	“Design	and	Use	of	a	Hackable	Digital	Instrument.”	Proceedings	of	the	International	
Conference	on	Live	Interfaces.	Lisbon,	Portugal,	208–219.	


