
	

Colliding:	a	SuperCollider	environment		
for	synthesis-oriented	live	coding	

Gerard	Roma		

CVSSP,	University	of	Surrey	Guildford,	United	Kingdom		
g.roma@surrey.ac.uk	

Abstract.	One	of	the	motivations	for	live	coding	is	the	freedom	and	flexibility	that	a	programming	language	puts	in	the	
hands	of	the	performer.	At	the	same	time,	systems	with	explicit	constraints	facilitate	learning	and	often	boost	creativity	in	
unexpected	ways.	Some	simplified	languages	and	environments	for	music	live	coding	have	been	developed	during	the	last	
few	years,	most	often	focusing	on	musical	events,	patterns	and	sequences.	This	paper	describes	a	constrained	
environment	aimed	at	exploring	the	creation	and	modification	of	sound	synthesis	and	processing	networks	in	real	time,	
using	a	subset	of	the	SuperCollider	programming	language.	The	system	has	been	used	in	educational	and	concert	settings,	
two	common	applications	of	live	coding	that	benefit	from	the	lower	cognitive	load.	

Keywords:	Live	coding,	sound	synthesis,	live	interfaces		

Introduction	
The	world	of	specialized	music	creation	programming	languages	has	been	generally	dominated	by	the	Music-N	paradigm	
pioneered	by	Max	Mathews	(Mathews	1963).	Programming	languages	like	CSound	or	SuperCollider	embrace	the	division	
of	the	music	production	task	in	two	separate	levels:	a	signal	processing	level,	which	is	used	to	define	instruments	as	
networks	of	unit	generators,	and	a	compositional	level	that	is	used	to	assemble	and	control	the	instruments.	An	exception	
to	this	is	Faust,	which	is	exclusively	concerned	with	signal	processing.	Max	and	Pure	Data	use	a	different	type	of	
connection	for	signals	and	events,	although	under	a	similar	interaction	paradigm.	Similarly,	Chuck	has	specific	features	for	
connecting	unit	generators	and	controlling	them	along	time.	The	availability	of	languages	capable	of	generating	music	in	
real	time	has	fostered	the	development	of	live	coding	(Collins	et	al.	2003),	which	has	the	advantage	of	giving	the	audience	
the	possibility	to	read	computer	music	performances	in	a	way	that	is	comparable	to	improvisation	with	physical	
instruments.	Live	coding	is	also	helpful	in	classroom	environments,	allowing	students	to	grasp	the	mental	process	
involved	in	using	a	programming	language	or	command	line.	One	feature	that	has	inspired	the	live	coding	practice	is	the	
freedom	and	power	that	a	programming	language	gives	to	the	performer.	On	the	other	hand,	restricted	environments	
often	result	in	unexpected	creative	outcomes.	Facing	the	infinite	possibilities	offered	by	computers,	musicians	and	artists	
commonly	design	their	systems	on	the	basis	of	constraints	(Magnusson	2010).	Constraints	can	be	seen	as	the	rules	that	
define	a	game,	and	thus	are	considered	by	many	to	play	an	essential	role	in	creativity	(Boden	2004;	Merker	2006).	

Some	constrained	languages	are	available	for	live	coding,	most	often	with	a	strong	focus	on	musical	events	(Magnusson	
2011;	McLean	2014).	In	the	Music-N	paradigm,	this	means	not	creating	new	instruments	on	stage,	but	improvising	new	
control	sequences	for	pre-defined	instruments.	The	system	presented	in	this	paper	explores	the	other	side.	In	this	sense,	
the	concept	of	"synthesis-oriented"	live	coding	can	be	opposed	to	"event-oriented"	live	coding.	There	is,	as	a	matter	of	
fact,	a	long	tradition	in	challenging	the	distinction	between	composition	and	timbre,	precisely	on	the	basis	of	the	
possibilities	offered	by	computers	(Döbereiner	2011).	Under	this	point	of	view,	musical	events	can	be	seen	as	signals,	and	
music	can	be	created	using	exclusively	signal	processing	networks.	

With	the	release	of	version	3	(McCartney	2002),	the	SuperCollider	language	was	split	into	two	separate	programs:	the	
synthesis	server	(scsynth)	and	the	language	interpreter	(sclang).	A	subset	of	the	language	is	used	to	specify	synth	
definitions,	which	the	scsynth	server	can	execute.	It	is	not	uncommon	to	find	discussions	among	the	SuperCollider	
community	on	creating	music	structures	purely	in	the	server	side.	Among	other	reasons,	creating	synth	definitions	can	be	
less	demanding	with	respect	to	dealing	with	the	full	language	and	the	distributed	architecture.	Given	the	amount	of	unit	
generators	available,	focusing	on	the	synthesis	side	of	SuperCollider	is	both	simple	and	powerful.	In	terms	of	user	



	

interface,	the	evolution	of	SuperCollider	as	a	general	purpose	language	led	to	a	struggle	between	the	need	of	a	"proper	
IDE"	for	object-oriented	programming,	and	the	interest	in	the	document-oriented	rich	text	editor	that	was	available	on	
OSX.	

In	this	context,	Colliding	was	designed	as	a	constrained	interface	for	creating	SuperCollider	synth	definitions.	Apart	from	
music	creation	and	performance,	the	focus	on	synthesis	provides	a	compelling	environment	for	music	and	signal	
processing	education	settings,	allowing	easy	experimentation	with	a	wide	variety	of	synthesis	techniques.	The	idea	of	
creating	a	simplified	environment	emerged	when	observing	engineering	students	trying	to	create	procedural	programs	
with	all	the	asynchronous	calls	required	to	start	the	server,	create	a	synth	definition	and	instantiate	it.	Loading	audio	
buffers	and	network	resources	require	asynchronous	calls	as	well,	which	assume	an	understanding	of	anonymous	
functions.	Both	the	classroom	and	the	concert	environments	benefit	from	the	reduced	complexity	and	focus.	In	the	case	
of	music	performance,	the	constraint	is	in	part	aesthetic,	but	still	many	different	styles	of	music	can	be	played.	The	rest	of	
the	paper	describes	the	functionalities	implemented	so	far	and	the	use	of	the	program	in	both	education	and	
performance.	

Related	work	
Constrained	environments	for	live	coding	are	common	in	classroom-oriented	applications.	Two	well-known	examples	are	
Earsketch	(Freeman	et	al.	2014)	and	Sonic	Pi	(Aaron	and	Blackwell	2013).	The	first	is	based	on	an	Application	
Programming	Interface	(API)	which	can	be	used	in	Javascript	or	Python	in	a	web	environment.	This	API	is	complemented	
with	a	library	of	audio	loops	that	can	be	manipulated	and	positioned	in	an	audio	sequencer	time	line	through	the	
programming	API.	The	second	exposes	also	a	basic	API,	in	this	case	as	a	Ruby	domain-specific	language	that	controls	
SuperCollider	synths.	The	programming	environment	is	designed	to	run	on	a	Raspberry-Pi	embedded	computer.	Both	
environments	offer	limited	capabilities	in	terms	of	synthesis.	The	main	idea	behind	live	coding	music	environments	in	the	
classroom	is	to	engage	students	into	programming	by	doing	something	fun	and	creative.	

Such	environments	allow	experimentation	with	generative	music,	but	are	not	so	well	suited	for	synthesis-oriented	music	
or	learning.	While	these	systems	generally	focus	on	learning	programming	skills,	Colliding	emphasizes	signal	processing,	
requiring	only	basic	programming	concepts.	In	this	sense,	perhaps	a	more	similar	approach	would	be	using	the	compiled	
language	Faust	in	an	interactive	setting.	FaustLive	(Denoux	et	al.	2014)	is	a	just-in-time	compiler	aimed	at	facilitating	this	
kind	of	set-up,	however,	it	does	not	provide	an	interface	for	coding.	Faust	is	used	live	by	Julius	O.	Smith	for	teaching	signal	
processing	using	Emacs1.	

As	the	name	suggests,	Colliding	is	mainly	influenced	by	Processing	(Reas	and	Fry	2006)	and	its	cousin	the	Arduino	IDE.	
Both	have	succeeded	in	creating	simplified	development	environments	for	activities	that	traditionally	required	specialized	
training.	Processing	was	originally	presented	as	a	subset	of	the	Java	language	that	can	be	embedded	in	Java	programs.	
Arduino	offers	a	simple	C	API	for	embedded	systems.	Similarly,	Colliding	uses	a	subset	of	the	SuperCollider	language.	

Another	major	influence	is	ixiLang	(Magnusson	2011).	While	heavily	focused	on	musical	events,	ixiLang	stresses	the	
importance	of	reducing	complexity	for	music	live	coding.	Like	ixiLang,	Colliding	can	be	seen	as	a	"SuperCollider	parasite",	
in	this	case	for	synthesis-oriented	live	coding.	

�Interface		

Overview	

The	program	follows	the	interaction	paradigm	of	prototyping	editors	like	Processing.	The	interface	(Figure	1)	allows	the	
user	to	create	up	to	8	tabs,	each	with	a	code	editing	window	configured	with	a	large	font	size.	This	encourages	short	
snippets	and	facilitates	readability.	The	number	of	tabs	(and	also	of	buffers,	as	described	below)	is	not	completely	

																																																																				
1	https://www.youtube.com/watch?v=2lEt7dsziO0	



	

arbitrary.	It	is	generally	agreed	that	similar	numbers	of	elements	are	related	with	working	memory	capacity	(Miller	1956).	
It	is	common	to	find	8-channel	limits	in	music	production	hardware	(small	mixers,	old	tape	recorders)	or	software.	The	
main	actions	consist	in	compiling	the	code	(for	error	checking),	running	it	(which	results	in	a	potentially	infinite	sound	
stream),	and	stopping	the	sound.	These	actions	can	be	run	through	keyboard	short-cuts	or	using	a	set	of	buttons	below	
the	code	window.	Another	set	of	buttons	in	the	top	right	corner	exposes	project-level	operations	(adding	tabs,	getting	
help	for	the	currently	selected	text,	loading	and	saving	projects,	and	a	panic	button	that	stops	all	running	processes).	Text	
color	in	the	code	editing	window	is	used	to	indicate	compilation	state.	White	means	the	code	has	been	compiled,	grey	
means	it	is	being	edited,	and	red	means	there	is	some	error.	

	

Figure	1:	The	Colliding	interface	

Colliding	offers	two	modes	of	operation:	"synth	editing"	and	"advanced".	The	synth	editing	mode	affords	the	metaphor	of	
editing	a	patch	in	a	hardware	synthesizer,	but	it	can	also	be	used	for	live	coding.	In	this	case,	the	code	is	assumed	to	be	a	
synth	definition,	and	the	environment	provides	some	predefined	variables	and	the	means	to	trigger	notes,	if	desired.	In	
advanced	mode,	the	code	can	be	anything	"playable".	In	SuperCollider	this	is	achieved	by	compiling	the	code	and	making	
it	the	source	of	a	NodeProxy,	which	allows	using	the	interface	with	JITLib	(Rohrhuber,	de	Campo,	and	Wieser	2005)	as	a	
back-end	for	live	coding.	This	includes	also	event	patterns,	although	this	possibility	has	not	been	explored	or	specifically	
supported.	One	important	difference	is	that	in	advanced	mode	the	audio	output	channel	is	controlled	by	JITLib,	while	in	
synthesis	editing	mode	it	is	specified	explicitly.	Thus	in	"synth	editing"	mode	it	is	simpler	to	address	multiple	outputs.	For	
synthesis	oriented	live	coding,	i.e.,	in	SuperCollider	talk,	if	only	server	code	is	evaluated,	both	modes	can	be	used,	
although	the	advanced	mode	allows	terser	code.	

A	feedback	panel	below	the	code	window	and	buttons	is	used	for	error	reporting.	Long	stack	traces	can	be	overwhelming	
for	beginners,	and	are	also	undesirable	in	live	situations.	When	the	code	results	in	a	stack	trace,	the	system	selects	the	
relevant	message	and	highlights	the	offending	line	(Figure	2).	In	order	to	provide	such	feedback	without	disrupting	the	
current	interpreter,	it	was	necessary	to	implement	compilation	as	a	separate	process,	by	writing	the	snippet	to	file	and	
calling	sclang	to	parse	it.	All	of	this	happens	under	the	hood.	

All	code	is	run	in	SuperCollider’s	internal	server,	which	facilitates	visualization	of	the	output.	The	bottom	end	contains	an	
oscilloscope	that	provides	visual	feedback	about	everything	that	is	happening	in	the	server.	



	

Synth	editing	

Additional	features	are	provided	in	the	synth	editing	mode.	In	this	mode,	the	code	is	wrapped	to	build	and	instantiate	a	
synth	definition,	with	several	pre-defined	parameters.	A	window	representing	the	computer	keyboard	allows	triggering	
notes	using	the	synth	that	has	been	defined	in	the	current	tab.	The	keyboard	uses	an	isomorphic	mapping.	A	slider	next	
to	the	code	window	allows	controlling	the	gain.	This	results	in	the	following	pre-defined	variables.	It	is	up	to	the	coder	to	
make	use	of	them.	

• key:	The	MIDI	number	corresponding	to	the	key	pressed	in	the	computer	keyboard.	4	
• freq:	The	frequency	in	Hz	corresponding	to	the	key.		
• gate:	A	gate	input	for	envelopes.	
• amp:	The	value	defined	by	the	slider.	

It	is	trivial	to	extend	this	system	with	other	widgets,	for	example	additional	sliders	could	be	attached	to	the	keyboard.	
For	the	moment,	the	system	provides	the	minimum	to	leverage	the	input	devices	already	available	in	every	computer.	
The	mouse	is	accessed	using	the	traditional	SuperCollider	unit	generators.	This	is	a	convenient	setup	for	classroom	PCs	
and	laptop	performances.	It	is	also	easy	to	extend	the	concept	to	MIDI	controllers.	

	

Figure	2:	Error	reporting	

Buffers	and	files	

Besides	synth	definitions,	another	area	that	requires	asynchronous	calls	is	dealing	with	audio	files.	This	is	often	a	source	
of	confusion	in	SuperCollider.	Graphical	interfaces	are	generally	appreciated	for	browsing	the	file	system	and	
accommodating	the	time	for	file	loading.	Colliding	provides	8	slots	for	buffer	management.	Buffers	are	simply	accessed	
via	their	buffer	number	(0-7).	A	separate	window	is	used	for	loading,	visualizing	and	pre-listening	each	buffer.	Empty	



	

buffers	can	be	allocated	for	recording	signals,	and	small	buffers	can	be	converted	to	wavetable	format	for	wavetable	
synthesis.	In	addition	to	loading	sound	files	from	disk,	the	system	includes	an	interface	for	the	Freesound	quark2,	so	that	
the	user	can	make	basic	text	queries	to	the	Freesound	database	(Akkermans	et	al.	2011),	and	download	sounds.	For	the	
moment,	the	search	is	restricted	to	wav	files.	However,	if	ogg	support	is	compiled	with	the	SuperCollider	binaries,	it	
should	be	possible	to	access	the	whole	Freesound	database	via	high-quality	ogg	previews3.	

Finally,	some	basic	project	management	facilities	are	provided.	A	project	consists	of	the	text	in	each	tab	and	all	the	
sound	files	corresponding	to	the	buffer	slots.	This	is	especially	useful	for	learning	environments,	but	can	also	be	useful	to	
preserve	the	state	of	a	live	coding	session.	In	the	future	it	might	be	interesting	to	add	some	simple	interface	to	version	
control	(e.g.	git)	which	is	also	usually	hard	for	beginners.	

Initial	Experiences	
Colliding	was	developed	while	the	author	was	at	the	Sonology	department	at	Escola	Superior	de	Música	de	Catalunya	
(ESMUC).	While	no	formal	evaluation	was	conducted,	it	was	used	in	4	overlapping	semester	courses	between	2013	and	
2015,	covering	basic	and	advanced	synthesis	techniques.	During	the	previous	year,	the	SuperCollider	language	and	IDE	
were	used.	The	difference	with	respect	to	using	plain	SuperCollider	was	dramatic.	By	freeing	students	from	learning	to	
use	the	SuperCollider	editor	and	language,	it	was	possible	to	focus	on	synthesis	and	processing	as	opposed	to	
programming.	At	the	same	time,	thanks	to	the	large	number	of	unit	generators	available	and	the	general	power	of	
SuperCollider	it	was	possible	to	explore	many	different	algorithms	and	concepts,	from	basic	subtractive	and	modulation	
techniques	to	physical	and	spectral	synthesis.	Colliding	was	used	as	a	kind	of	lab	notebook	editor	that	could	run	in	
classroom	PCs	and	student	laptops.	Assignments	consisted	in	Colliding	projects	where	different	variants	were	explored	
in	each	tab.	A	small	code	snippet	was	usually	seeded.	

Since	students	were	generally	beginners	in	computer	programming,	a	very	simple	grammar	was	adopted	which	worked	
for	all	assignments	(as	can	be	seen	in	the	figures):	each	line,	except	the	last	one,	is	a	variable	definition	and	assignment,	
where	part	of	the	signal	processing	graph	is	represented.	This	suggests	that,	for	the	purpose	of	defining	synth	
definitions,	the	language	could	be	further	simplified.	

The	only	limitation	was	the	project	management	feature,	which	was	not	always	trusted	by	the	students	because	of	its	
simplicity.	However	in	case	of	doubt	the	project	structure	was	simple	enough	and	text	snippets	could	be	open	with	a	
standard	text	editor.	Some	synthesis	techniques	that	require	additional	processing,	such	as	in	the	case	of	wavetable	
synthesis,	were	more	difficult	to	accommodate.	For	advanced	techniques,	such	as	spectral	modeling	or	vocoding,	it	was	
generally	convenient	to	use	"black-box"	unit	generators	available	from	sc3-plugins4.	

Colliding	has	also	been	used	in	several	live	coding	performances	by	the	author.	Up	to	8	synthesis	processes	may	run	in	
parallel	while	one	of	them	is	being	edited.	The	big	font,	oscilloscope,	and	the	constraint	to	synthesis-based	coding	
contribute	to	the	readability	of	the	performance.	In	live	coding,	the	simplified	grammar	is	not	needed,	and	instead	a	
terse	syntax	is	more	common,	in	line	with	the	use	of	Twitter	for	sharing	small	SuperCollider	programs.	

Conclusions	
The	SuperCollider	syntax	for	building	synthesizers	allows	for	creating	sophisticated	patches	with	very	few	lines	of	code.	
Such	concise	descriptions	often	contrast	with	the	complications	one	ends	dealing	with	when	trying	the	same	things	with	
graphical	patching	systems	and	modular	synthesizer	metaphors.	However,	learning	an	object-oriented	language	

																																																																				
2	https://github.com/g-roma/Freesound.sc	
3	This	depends	on	the	version	of	libsndfile,	which	for	historical	reasons	was	fixed	to	an	older	version	on	OSX	
binaries.	At	the	time	of	this	writing	the	problem	is	fixed	in	SuperCollider	3.7	binaries,	so	the	restriction	to	wav	for	
Freesound	searches	will	be	removed.	
4	https://github.com/supercollider/sc3-plugins	



	

enriched	with	functional	programming	constructs	can	easily	scare	tinkerers	and	musicians	with	little	programming	
background.	The	Colliding	environment	provides	a	simplified	interface	that	is	particularly	useful	when	focusing	on	sound	
synthesis	and	processing,	as	opposed	to	event-based	music	composition	and	performance.	This	focus	can	be	seen	as	a	
design	constraint	that	is	useful	in	educational	environments	and	in	synthesis-oriented	live	coding.	While	the	current	
implementation	mainly	stresses	the	concept	and	interface,	these	ideas	can	be	further	extended	without	leaving	the	
SuperCollider	language,	by	defining	more	helper	variables	and	functions.	Also,	the	system	is	amenable	to	encapsulation	
of	synthesis	processes	as	unit	generators,	a	practice	used	by	some	live	coders	which	allows	growing	a	personal	sonic	
palette	without	losing	simplicity.	Adding	support	for	this	kind	of	encapsulation	will	be	investigated	in	the	future.	The	
code	is	available	as	a	SuperCollider	quark,	and	can	be	downloaded	from	the	github	repository5.	

Acknowledgements	
The	author	was	supported	by	Escola	Superior	de	Musica	de	Catalunya	(ESMUC)	and	the	Music	Technology	Group	(MTG)	at	
Universitat	Pompeu	Fabra	(UPF)	during	the	development	of	this	work.	

References	
Aaron,	Samuel,	and	Alan	F	Blackwell.	2013.	“From	sonic	Pi	to	overtone:	creative	musical	experiences	with	domain-
specific	and	functional	languages.”	Proceedings	of	the	first	ACM	SIGPLAN	workshop	on	Functional	art,	music,	modeling	&	
design.	ACM,	35–46.	

Akkermans,	Vincent,	Frederic	Font,	Jordi	Funollet,	Bram	De	Jong,	Gerard	Roma,	Stelios	Togias,	and	Xavier	Serra.	2011.	
“Freesound	2:	An	improved	platform	for	sharing	audio	clips.”	Klapuri	A,	Leider	C,	editors.	ISMIR	2011:	Proceedings	of	the	
12th	International	Society	for	Music	Information	Retrieval	Conference;	2011	October	24-28;	Miami,	Florida	(USA).	
Miami:	University	of	Miami;	2011.	International	Society	for	Music	Information	Retrieval	(ISMIR).	

Boden,	Margaret	A.	2004.	The	creative	mind:	Myths	and	mechanisms.	Psychology	Press.	

Collins,	Nick,	Alex	McLean,	Julian	Rohrhuber,	and	Adrian	Ward.	2003.	“Live	coding	in	laptop	performance.”	

Organised	sound	8	(03):	321–330.	

Denoux,	Sarah,	Stéphane	Letz,	Yann	Orlarey,	and	Dominique	Fober.	2014.	“FAUSTLIVE,	Just-In-Time	Faust	

Compiler...	and	much	more.”	Technical	Report,	GRAME.	

Döbereiner,	Luc.	2011.	“Models	of	constructed	sound:	Nonstandard	synthesis	as	an	aesthetic	perspective.”	Computer	
Music	Journal	35	(3):	28–39.	

Freeman,	Jason,	Brian	Magerko,	Tom	McKlin,	Mike	Reilly,	Justin	Permar,	Cameron	Summers,	and	Eric	Fruchter.	2014.	
“Engaging	underrepresented	groups	in	high	school	introductory	computing	through	computational	remixing	with	
EarSketch.”	Proceedings	of	the	45th	ACM	technical	symposium	on	computer	science	education.	ACM,	85–90.	

Magnusson,	Thor.	2010.	“Designing	constraints:	Composing	and	performing	with	digital	musical	systems.”	Computer	
Music	Journal	34	(4):	62–73.	

Magnusson,	Thor.	2011.	“the	Ixi	Lang	:	a	Supercollider	Parasite	for	Live	Coding.”	Icmc	2011,	no.	August:503–506.	

Mathews,	Max	V.	1963.	“The	digital	computer	as	a	musical	instrument.”	Science	142	(3592):	553–557.	

																																																																				
5	https://github.com/g-roma/Colliding	



	

McCartney,	James.	2002.	“Rethinking	the	computer	music	language:	SuperCollider.”	Computer	Music	Journal	26	(4):	61–
68.	

McLean,	Alex.	2014.	“Making	programming	languages	to	dance	to:	live	coding	with	tidal.”	Proceedings	of	the	2nd	ACM	
SIGPLAN	international	workshop	on	Functional	art,	music,	modeling	&	design.	ACM,	63–70.	

Merker,	Bjorn	H.	2006.	“Layered	constraints	on	the	multiple	creativities	of	music.”	Musical	Creativity:	Multidisciplinary	
Research	in	Theory	and	Practice,	pp.	25–41.	

Miller,	George	A.	1956.	“The	magical	number	seven,	plus	or	minus	two:	some	limits	on	our	capacity	for	processing	
information.”	Psychological	review	63	(2):	81.	

Reas,	Casey,	and	Ben	Fry.	2006.	“Processing:	programming	for	the	media	arts.”	AI	&	SOCIETY	20	(4):	526–538.	
Rohrhuber,	Julian,	Alberto	de	Campo,	and	Renate	Wieser.	2005.	“Algorithms	today	notes	on	language	design	for	just	in	
time	programming.”	International	Computer	Music	Conference.	291.	

�	

	


