
	

FoxDot	
Live	Coding	with	Python	and	SuperCollider	

Ryan	Kirkbride	

University	of	Leeds,	Leeds,	United	Kingdom	
sc10rpk@leeds.ac.uk	

Abstract.	Live	Coding	is	an	electronic	musical	movement	that	is	growing	in	popularity	as	an	interface	for	musical	
expression	where	laptop	performers	program	in	front	audiences;	executing,	editing,	and	re-executing	blocks	of	code	to	
generate	music.	The	languages	used	in	Live	Coding	are	usually	designed	specifically	for	the	purpose	of	creating	music	
and	distance	themselves	from	the	traditional	paradigms	of	more	general-purpose	languages	such	as	Java	or	Python.	
FoxDot	is	an	application	that	bridges	this	gap	to	bring	the	art	of	performance	programming	and	the	science	of	software	
engineering	together	to	create	music	in	a	way	that	is	accessible	to	coders	or	composers;	novices	and	experts	alike.	

Keywords:	Live	coding,	laptop	performance,	interactive	programming.	

Introduction	
When	I	first	encountered	Live	Coding,	a	method	of	using	programming	languages	to	make	music,	I	had	just	begun	a	
Master	of	Arts	degree	in	Computer	Music	at	the	University	of	Leeds.	It	wasn’t	long	after	I	had	completed	my	bachelor’s	
in	Computer	Science	and	I	considered	myself	a	good	programmer	and,	having	played	music	outside	of	academia	for	
most	of	my	life,	a	novice	in	musical	composition.	However,	my	first	encounter	with	SuperCollider	(McCartney	2002)	
made	me	feel	like	I	couldn’t	do	either	of	these	things.	Over	the	course	of	my	master’s	I	was	fortunate	enough	to	be	
taught	by	Alex	McLean,	of	Live	Coding	acts	Canute	(McLean	2015)	and	Slub	(Collins	et	al.	2003),	and	starting	scouring	
the	web	for	anything	Live	Coding	related.	It	didn’t	take	long	before	I	was	getting	to	grips	with	Tidal	(McLean	2014)	and	
SuperCollider,	among	other	languages,	but	I	still	couldn’t	express	the	musical	ideas	I	wanted	to	with	their	capabilities.	
Furthermore,	Live	Coding	languages	tend	to	be	domain-specific	(or	at	least	domain-specific	implementations	of	more	
general-purpose	languages)	(Guzdial	2014)	and	structured	in	a	way	that	didn’t	fit	with	the	Object-Orientated	
Programming	(OOP)	paradigm	I	had	become	accustomed	to	during	my	undergraduate	studies.	For	example,	Tidal	is	
embedded	in	the	language	Haskell,	which	utilises	a	functional	programming	paradigm,	and	the	Ruby-based	Live	Coding	
language,	SonicPi	(Aaron	and	Blackwell	2013),	uses	a	form	of	procedural	programming.	OOP	is	used	to	represent	
complex	and	real-world	systems	(Kindler	and	Krivy	2011)	and	I	argue	that	music	making	can	be	as	complex	as	any	
system	found	in	the	real	world.	

With	FoxDot	I	wanted	to	create	an	application	that	bridged	the	gap	between	software	engineering	and	Live	Coding	so	
that	users	who	were	entry	level	to	programming,	composition,	or	both	would	still	be	able	to	grasp	the	concepts	and	
make	music,	while	being	able	to	apply	the	theory	to	both	fields.	This	article	begins	by	outlining	the	goals	that	I	wanted	
to	achieve	and	the	purpose	for	creating	FoxDot,	and	its	Interactive	Development	Editor	(IDE),	before	discussing	the	
implementation	of	key	features	and	their	syntax.	It	is	then	concluded	with	a	short	discussion	about	possible	future	
directions	for	this	work.	

Design	
Before	development	could	begin	the	technical	requirements	for	the	project	were	outlined;	the	system	should:	

• Create	music-playing	objects	that	have	a	state	that	changes	over	time	(i.e.	the	note	being	played)	and	this	state	
can	be	accessed	by	any	other	object	at	any	point	

	

• Make	use	of	time-dependent	variables	that,	when	accessed,	return	a	specific	value	depending	on	the	time	in	a	
metronome	

• Utilise	a	global	and	dynamic	variable	system:	an	object’s	default	values	should	be	accessible	via	the	alteration	of	
a	global	variable	e.g.	changing	a	default	scale	variable	should	update	all	objects	using	that	scale	

• Be	written	in,	and	derive	its	syntax	from,	an	existing	high-level	language	that	has	a	large	user	community	and	in-
depth	documentation	but	also	inherit	common	syntax	from	other	Live	Coding	languages	

Development	
Choice	of	Language	

Of	the	three	most	popular	programming	languages	in	the	world	(Java,	Python,	and	PHP)1,	Python	(http://python.org)	is	
the	language	that	fits	the	FoxDot	requirements	best.	The	rationale	for	choosing	Python	for	a	Live	Coding	environment	is	
that	the	combination	of	its	heavy	use	of	OOP	and	class	customisation	allows	for	a	flexible	design	model,	and	its	focus	on	
code	readability	makes	it	ideal	for	use	in	a	performance	context.	

Alongside	Python,	SuperCollider	will	be	used	to	synthesise	sounds	using	Open	Sound	Control	(OSC)	(Wright,	Freed,	and	
others	1997)	in	a	similar	vein	to	the	live	coding	language	“ixilang”	(Magnusson	2011).	While	“ixilang”	has	a	similar	
implementation	design	to	FoxDot,	it	is	written	in	the	programming	language	used	to	write	SuperCollider,	SCLang,	and	
does	not	have	the	established	popularity	and	support	that	is	offered	by	a	language	like	Python.	Another	language,	
SuperDirt	(Rohrhuber	2016),	is	currently	being	developed	that	acts	as	interface	between	Tidal	and	SuperCollider,	but	it	
is	still	in	an	early	and	experimental	phase	of	development	and,	as	mentioned	earlier,	does	not	adhere	to	the	OOP	
paradigm	that	is	central	to	the	principles	of	FoxDot.	

Interface	

FoxDot	uses	a	custom	IDE	written	in	its	base	language,	Python,	that	can	execute	the	’block’	of	code	(consecutive	lines	of	
text	with	no	empty	lines)	that	the	text	cursor	is	in	by	pressing	’Ctrl+Return’.	It	shares	many	similarities	to	the	interactive	
interpreter	that	comes	packaged	with	the	standard	installation	of	Python	but	allows	for	the	user	to	easily	edit	and	re-
execute	code	instead	of	executing	each	line	as	it	is	typed	in.	The	editor	also	features	a	console	output	that	displays	the	
Python	code	executed	and	any	printed	output	from	it,	allowing	users	to	program	in	Python	in	a	much	more	interactive	
way	than	previously	available.	

Player	Objects	

In	FoxDot,	music	is	performed	by	creating	Player	Objects	(POs)	that	take	several	keyword	arguments.	Instead	of	defining	
a	new	PO	for	each	sound	the	user	wants	to	create	we	define	one	main	class	that	takes	a	SuperCollider	SynthDef	as	an	
argument	and	sends	OSC	messages	to	SuperCollider	to	create	a	sound.	The	first	argument	is	a	string	that	refers	to	the	
name	of	the	SuperCollider	SynthDef	to	be	used	and	the	second	argument	is	the	degree	(the	index	of	the	note	of	the	
scale,	which	is	0	by	default).	The	duration	of	each	note	can	also	be	specified	and	this	value	is	used	in	the	scheduling	
process	(see	TempoClock	for	more	information).	Other	keywords	can	be	specified	that	correlate	to	the	keyword	
arguments	used	in	the	specified	SynthDef.	To	create	a	PO	that	uses	a	SynthDef	named	“pads”	that	plays	the	first	8	notes	
of	the	default	scale	using	1/2	beats,	the	following	syntax	can	be	used:	

p >> pads(range(8), dur=1/2)
p = Player('pads', range(8), dur=1/2)

																																																																				

1	Source:	http://pypl.github.io/PYPL.html,	Accessed:	13-02-16	

	

These	lines	are	equivalent	but	the	first	line	has	a	much	cleaner	syntax	and	implies	that	“pads”	is	a	Python	object	itself	
when,	in	reality,	it	is	not.	FoxDot	examines	each	block	of	code	before	it	is	executed	and	detects	when	special	FoxDot	
syntax	is	used	(the	>>	assignment	syntax	in	this	case).	When	creating	a	PO,	the	first	argument	is	always	the	degree(s)	
of	the	PO’s	scale	(a	globally	defined	default	scale	is	used	unless	specified	with	a	keyword	argument),	which	is	followed	
by	keyword	arguments	such	as	note	length	(’dur’)	or	sustain	(’sus’).	Player	Objects	can	play	simultaneous	notes	(useful	if	
you	want	to	play	chords,	for	example)	by	grouping	multiple	degree	values	using	a	tuple	by	enclosing	values	in	round	
brackets	‘()’.	For	example:	

p >> pads([0,2,4,(0,2,4)])

This	snippet	of	code	creates	a	new	PO	that	plays	the	first,	third,	and	fifth	note	of	the	scale2	and	then	all	three	of	these	
notes	simultaneously.	FoxDot	automatically	laces	any	nested	lists	in	Player	Objects	such	that	the	nested	list	[[0,1,2,3],7]	
would	be	equivalent	to	the	list	[0,7,1,7,2,7,3,7].	

A	special	PO,	known	as	a	SamplePlayer	Object	(SPO),	can	be	used	to	play	back	samples	and	is	created	using	a	$	sign	and	
a	string	of	characters	(in	a	similar	syntax	to	Tidal).	The	following	line	of	code	plays	a	kick	drum	(’x’),	closed	hi-hat	(’-’),	
snare	drum	(’o’),	and	another	closed	hi-hat	and	repeats:	

beat $ “x-o-"

Each	character	in	the	string	is	mapped	to	a	buffer	id	used	in	SuperCollider	to	play	using	a	SynthDef	called	
“sample_player”	and	represents	one	1/2	beat.	A	character’s	duration	can	be	halved	by	putting	them	in	square	brackets.	
Round	brackets	are	used	to	lace	patterns,	similar	to	nested	lists	in	regular	POs,	such	that	the	following	two	lines	of	code	
are	equivalent:	

beat $ “x-o-[xx]-o(-[-o])"
beat $ “x-o-[xx]-o-x-o-[xx]-o[-o]"

POs	are	designed	to	be	flexible	and	accessible.	Two	POs	can	be	connected	by	using	a	PO’s	“follow()”	method,	taking	
another	PO	as	an	argument.	Attributes,	such	as	the	panning	or	the	durations	of	a	PO,	are	not	altered	by	following	a	
different	PO,	but	when	it	comes	to	calculating	the	note	value	to	send	to	SuperCollider,	note	data	is	retrieved	from	the	
source	PO	and	a	different	frequency	is	calculated	instead.	Basic	algorithmic	composition	can	be	done	by	using	
traditional	mathematical	operators	in	combination	with	POs.	Adding	or	subtracting	a	list	of	numbers	creates	a	PO	
expression	and	modifies	its	note	degree	by	the	value	in	the	list	at	the	index	of	the	current	event.	A	simple	way	to	
demonstrate	this	is	with	the	example	below	where	the	PO	’p’	will	play	the	same	note	as	’b’	but	every	third	note	will	be	a	
fifth	higher,	even	when	the	degree	of	’b’	is	changed.	

b >> bass([0,2,5,3], dur=1, sus=1/2).stutter(4)
p >> pads(dur=1/4).follow(b) + [0,0,4]

TempoClock	

A	dedicated	time-keeping	object,	known	as	a	TempoClock,	is	instantiated	at	runtime	that	contains	an	empty	queue.	POs	
are	added	to	this	queue	with	a	corresponding	time	value	that	denotes	when	they	should	next	be	played.	The	
TempoClock	plays	the	PO’s	next	note	by	calling	them	as	if	they	were	a	programmatic	function,	which	means	any	Python	
function	can	also	be	scheduled	to	be	executed	in	the	future.	By	default	these	are	scheduled	at	the	start	of	the	next	bar	
as	calculated	by	the	TempoClock’s	time	signature	attribute.	

																																																																				

2	Python,	like	most	programming	languages,	used	zero-based	numbering	for	its	arrays	whereas	musical	
scales	use	a	one-based	numbering	system.	Consequently,	the	1st,	3rd,	and	5th	notes	of	a	scale	are	
accessed	with	the	indices	0,	2,	and	4,	respectively.	

	

While	running,	the	clock	continually	increments	its	internal	counter	at	the	rate	of	its	specified	beats-per-minute	(BPM).	
Once	this	counter	is	equal	to	the	scheduled	time	of	the	first	item	in	its	queue,	them	item	is	’popped’	from	the	queue	
and	then	called.	If	the	item	is	a	PO,	it	creates	an	OSC	message	based	on	its	current	state	and	sends	it	to	SuperCollider	to	
generate	a	sound	before	re-scheduling	itself	into	the	TempoClock’s	queue	again.	This	means	notes	can	be	any	duration	
and	complex	polyrhythms	can	be	created	easily	by	scheduling	multiple	POs	with	uneven	durations.	The	code	snippet	
below	shows	two	POs	playing	the	same	note	but	player	’a’	plays	it	three	times	over	the	course	of	two	beats	and	player	
’b’	plays	it	four	times:	

a >> pads(dur=2/3)
b >> pads(dur=1/2)

Scale	Objects	

Without	the	use	of	the	keyword	argument	“scale”	POs	use	a	default	scale	found	in	the	Scale	module	(accessed	as	
“Scale.default”	from	the	FoxDot	IDE).	At	start-up	it	is	set	to	the	major	scale	but	can	be	changed	easily	(see	below).	
When	Scale.default	is	updated,	any	Player	Object	that	is	using	it	is	also	updated	(which	makes	for	incredibly	easy	key	
changes	etc.).	The	default	scale	can	be	changed	in	a	number	of	ways	and	can	include	floating	point	numbers	(as	seen	in	
“Scale.justMajor”	for	example).	The	following	lines	of	code	are	equivalent	to	each	other	and	set	the	default	scale	to	the	
natural	minor:	

Scale.default('minor')
Scale.default(Scale.minor)
Scale.default([0,2,3,5,7,8,10])

Accessing	an	element	in	an	array	(referred	to	as	lists	in	Python)	is	usually	done	by	specifying	the	index	of	the	item	you	
want	to	retrieve	as	a	whole	integer.	FoxDot	Scale	objects	can	take	floating	point	values	when	being	accessed	in	order	to	
return	a	value	between	two	elements	in	a	Scale.	For	example;	when	a	Scale	object	is	defined	as	S=[0,2,4],	then	S[1.5]	
will	return	the	midpoint	value	of	the	numbers	at	indices	1	and	2	(in	this	case,	3).	This	means	that	values	used	for	a	PO’s	
degree	attribute	can	be	floating	point	numbers	and	emulate	micro-tonal	systems	quickly	and	easily.	

Time-Dependent	Variables	

A	time	dependent	variable	(it	will	be	referred	to	as	a	‘Var’	from	here	on	in)	is	a	variable	that,	when	accessed	by	a	PO	or	
user,	returns	a	value	derived	from	the	current	state	of	the	global	TempoClock.	These	variables	are	created	using	the	
following	syntax:	

a = Var([0,3,4],[8,4,4])

The	Var	above,	’a’,	returns	the	values	0	for	8	beats,	then	3	for	4	beats,	and	finally	4	for	4	beats	before	starting	over.	This	
can	be	very	useful	for	creating	multiple	Player	Objects	that	share	the	same	underlying	music	based	on	chord	sequences,	
like	so:	

a = Var([0,4,5,3],8)
p >> pads(a, dur=1).offbeat() + (0,2,4)
b >> bass(a, dur=1/4, sus=1)

Calling	the	update	method	on	a	Var	will	change	the	values	for	all	POs	that	are	accessing	it,	which	means	patterns	can	be	
shared	very	easily	between	POs.	Vars	can	be	used	for	any	keyword	argument,	e.g.	setting	a	PO’s	amplitude	to	be	loud	
for	8	beats	and	then	silent	for	24,	and	used	in	PO	expressions.	Figure	1	is	the	passage	of	music	equivalent	to	what	would	
be	produced	on	repeat	with	three	simple	lines	of	code	such	that	both	players	are	following	the	common	chord	
sequence	I	V	VI	IV	with	’p’	oscillating	around	the	fifth	and	third	notes	of	the	chord,	and	’v’	playing	sustained	notes	with	
alternating	harmonies.	

	

a = Var([0,4,5,3],4)
p >> pads(a + var([4,[2,0],1] [2,1,1]), dur=[1/2,1/4,1/4]) + [0,[-1,1]]
v >> viola(a, dur=4) + (0,var([[9,2],4],4))

	

Figure	1:	Nominal	score	representation	of	output	from	FoxDot	code	

When	Statements	

A	common	component	of	any	programming	language	are	conditional	statements	(commonly	known	as	“if”	statements),	
which	execute	a	block	of	code	only	if	a	certain	condition	is	satisfied.	FoxDot	implements	a	“when”	statement	that	
evaluates	this	condition	at	regular	points	in	the	TempoClock’s	cycle	and	executes	any	code	assigned	to	that	condition	
when	it	is	evaluated	to	be	true.	Some	useful	applications	of	this	feature	include	allowing	POs	to	change	their	state	based	
on	the	state	of	other	POs	over	time,	and	changing	multiple	POs’	states	based	on	a	variable	that	may,	or	may	not,	be	
affected	by	POs.	Below	is	an	example	of	an	implementation	of	two	’parts’	of	a	piece	of	music	that	can	be	alternated	by	
changing	the	value	of	the	variable	’val’	to	0	or	1:	

val = 0
a = Var()
when val == 0:
 a.update([0,-3,-4],[4,4,8])
 p >> pads([0,2,4], dur=[1/2,1/4,1/4])
 b >> bass(a, dur=[1.5,0.5,2], sus=0.5) + Var([0,2],4)
else:
 a.update([7,4,5,3],4)
 p >> pads(a, dur=[1.5,1.5,1], sus=2) + var([2,4],4)
 b >> bass(a, dur=1/4, sus=1) + [0,0,(0,9)]

Further	Work	
Expanding	Content	

The	basic	concepts	and	functionality	for	FoxDot	have	already	been	programmed	but	there	is	still	a	lot	of	work	to	be	
done.	The	library	of	samples	is	very	small	and	needs	to	be	expanded	to	incorporate	more	“interesting”	sounds	in	
addition	to	those	of	a	basic	drum	kit.	FoxDot	currently	comes	with	a	SuperCollider	.scd	file	that	contains	several	
SynthDefs	already	written	but,	like	the	sample	library,	needs	to	be	expanded.	FoxDot	is	designed	to	be	flexible	and	
customisable;	both	the	collections	of	samples	and	SynthDefs	should	be	accessible	by	the	user	and	changeable	at	their	
choosing	through	the	use	of	an	easily	edited	configuration	file.	Similarly,	the	types	of	musical	patterns	available	to	the	
user	will	also	be	expanded	upon,	drawing	inspiration	from	existing	definitions	(Spiegel	1981).	

User	Testing	

FoxDot	is	currently	in	its	alpha	stage	of	development	and	it	will	be	quite	some	time	before	a	stable	release	version	
exists,	but	between	now	and	that	time	the	collection	of	user	feedback	would	be	useful	for	adding	ideas	to,	and	

	

furthering	the	development	of,	FoxDot.	If	you	would	like	try	FoxDot	for	yourself,	the	most	up-to-date	version	is	available	
at	https://github.com/Qirky/FoxDot	and	any	feedback	will	be	more	than	welcome.	

References	
Aaron,	Samuel,	and	Alan	F	Blackwell.	2013.	“From	Sonic	Pi	to	Overtone:	Creative	Musical	Experiences	with	Domain-
Specific	and	Functional	Languages.”	In	Proceedings	of	the	First	ACM	SIGPLAN	Workshop	on	Functional	Art,	Music,	
Modeling	&	Design,	35–46.	ACM.	

Collins,	Nick,	Alex	McLean,	Julian	Rohrhuber,	and	Adrian	Ward.	2003.	“Live	Coding	in	Laptop	Performance.”	Organised	
Sound	8	(03).	Cambridge	University	Press:	321–30.	

Guzdial,	Mark.	2014.	“Live	Coding,	Computer	Science,	and	Education.”	Collaboration	and	Learning	Through	Live	Coding	
(Dagstuhl	Seminar	13382)	3	(9).	Schloss	Dagstuhl-Leibniz-Zentrum	fuer	Informatik:	162.	

Kindler,	Eugene,	and	Ivan	Krivy.	2011.	“Object-Oriented	Simulation	of	Systems	with	Sophisticated	Control.”	International	
Journal	of	General	Systems	40	(3).	Taylor	&	Francis:	313–43.	

Magnusson,	Thor.	2011.	“Ixi	Lang:	A	SuperCollider	Parasite	for	Live	Coding.”	In	Proceedings	of	International	Computer	
Music	Conference,	503–6.	University	of	Huddersfield.	

McCartney,	James.	2002.	“Rethinking	the	Computer	Music	Language:	SuperCollider.”	Computer	Music	Journal	26	(4).	
MIT	Press:	61–68.	

McLean,	Alex.	2014.	“Making	Programming	Languages	to	Dance	to:	Live	Coding	with	Tidal.”	In	Proceedings	of	the	2nd	
ACM	SIGPLAN	International	Workshop	on	Functional	Art,	Music,	Modelling	&	Design,	63–70.	ACM.	

McLean,	Alex.	2014.	2015.	“Reflections	on	Live	Coding	Collaboration.”	In	XCoAx	2015:	Proceedings	of	the	Third	
Conference	on	Computation,	Communication,	Aesthetics	and	X,	213.	

Rohrhuber,	Julian.	2016.	https://github.com/musikinformatik/SuperDirt.	

Spiegel,	Laurie.	1981.	“Manipulations	of	Musical	Patterns.”	In	Proceedings	of	the	Symposium	on	Small	Computers	and	
the	Arts,	19–22.	

Wright,	Matthew,	Adrian	Freed,	and	others.	1997.	“Open	Sound	Control:	A	New	Protocol	for	Communicating	with	
Sound	Synthesizers.”	In	Proceedings	of	the	1997	International	Computer	Music	Conference,	10.	8.	International	
Computer	Music	Association	San	Francisco.	

