
 1

Object recognition within cluttered scenes employing a 

Hybrid Optical Neural Network (HONN) filter 

 

Ioannis Kypraios, Rupert Young∗, Philip Birch, Chris Chatwin 

 

Laser and Photonics Systems Research Group 

Department of Engineering and Design 

University of Sussex 

Brighton BN1 9QT 

 

ABSTRACT 

We have recently proposed a hybrid filter, which we call the Hybrid Optical Neural Network 

(HONN) filter.  This filter combines the optical implementation and shift-invariance of 

correlator-type filters with the non-linear superposition capabilities of artificial neural 

network methods.  The filter demonstrates good performance in maintaining high quality 

correlation responses and resistance to clutter to non-training in-class images at orientations 

intermediate to the training set poses.  This paper presents the design and implementation of 

the HONN filter architecture and assesses its object recognition performance in clutter.   
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1 Introduction 

There are three main considerations31−  in the design and performance 

assessment of a pattern recognition filter.  Firstly, the filter must be able to detect the 

in-class object and demonstrate tolerance to in-plane and out-of-plane rotation.  

Secondly, it must possess good discrimination abilities between the in-class and the 

out-of-class objects.  Usually, we are interested in designing the filter to give a wide 

distortion range in order to reduce the number of intermediate object poses in the 

training set images.  Thirdly, the filter must exhibit good detection of the object in 

cluttered scenes, i.e. demonstrate good tolerance to noise and clutter in the input 

scene.  Kumar and Hasserbrook1 have presented several performance measures for 

correlation-type filters to enable their comparison, such as peak sharpness, peak 

location, light efficiency, discriminability, distortion invariance and target-to-clutter 

ratio.   

In an effort to keep consistency between the different mathematical symbols 

of the artificial neural networks and optical correlators we need to unify their 

representation.  We denote the variable names and functions by non-italic letters, the 

names of the vectors by italic lower case letters and the matrices by italic upper case.  

The frequency domain vectors, matrices, variable names and functions are represented 

by bold letters and the space domain vectors, matrices, variables and functions by 

plain letters.   

The Synthetic Discriminant Function4  (SDF) correlation filter belongs in the 

wider category of Linear Combination Filters75−  (LCF).  The main idea of the SDF 

filter is the inclusion of the expected distortions in the filter design such that improved 

immunity to these distortions is achieved.  Multi-class object recognition is also 
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possible by including the out-of-class objects (non-targets) in the filter design.  The 

conventional SDF filter is based on using a weighted linear combination of distorted 

reference images to create a composite image, which should cross-correlate with input 

images to produce equal on-axis height correlation peaks for all the input images 

belonging to the same class.  Let ( )n,mH  denote the composite image in the space 

domain and ( )n,mX i  denote the training image set of size [ ]nm×  in the space 

domain, where N,,2,1i �=  and N  is the number of the training images used in the 

synthesis of the SDF.  The basic filter’s transfer function, from the weighed linear 

combination of iX , is given by:   

( )
�

=

=
N

1i

n,mH ia ( )n,mX i      (1) 

where the coefficients ( )N,,2,1iai �=  are to set the constraints on the peak given by 

c.  The ia  values are determined from:   

=ia 1−R c        (2) 

where R is the correlation matrix of iX  and c is the peak constraint vector.  The 

elements of this are usually set to zeros for false class objects and to ones for true 

class objects.   

Recent advances in the area of optical processing and in particular enabling 

the spatial light modulator (SLM) technology, has made possible the implementation 

of compact optical correlator systems.  Chao et al.8  have demonstrated experimental 

results taken from the realisation of the maximum average correlation height 

(MACH) 118−  filter in their grayscale optical correlator.  However, the modulation 

levels afforded by the SLM limit the number of the training set images in the 
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implementation of the optical filter.  Several efforts13,12  have been made to overcome 

this limit by designing filters to produce acceptable uniformity of performance over 

the training set and being optimal to multiple performance criteria goals, such as those 

mentioned above.   

There are several implementations presented in the literature of optical 

pattern-recognition neural networks (OPRNN), such as the vector-matrix-multiplier-

based14  OPRNN, the photorefractive-crystal-based holographic15  OPRNN and the 

spatial light modulator 17,16  (SLM) -based OPRNN.  The SLM-based system and the 

vector-matrix-based systems are operated in the spatial domain.  So, their main 

drawback is that shift invariance18  can be achieved only at the expense of massive 

and redundant interconnections.  The main drawback of the photorefractive-crystal-

based holographic OPRNN20,19 , which is operated in the Fourier-transform plane, is 

the limited shift invariance achievable due to the narrow Bragg-angle restriction 

within a thick photorefractive medium.  Chao and Stoner22,21  presented a technique 

for optical implementation of a feature-based optical neural network.  It uses the 

neocognitron22  paradigm as a development guideline and it is implemented by a 

multichannel correlator, forming a generic neural network layer to provide parallel 

and shift invariant feature correlation.  Talukder and Casasent24,23  presented a method 

called the maximum representation and discriminanating feature (MRDF) extraction 

technique to compute nonlinear features for simultaneous representation and 

classification.  The method has been demonstrated to perform better than the most 

discriminating feature (MDF) techniques25  and the Fisher linear discriminant 

technique and its variations.  However, it is stated that the MRDF discrimination 

technique requires a large feature database in order to find the useful discrimination 



 5

information present24 .  For practical applications and for non-deformable objects with 

constant volume, usually only a limited number of training images is available.   

Section 2 presents the overall structure of the hybrid optical neural network 

(HONN) filter 26  and gives details of the artificial neural network (NNET) block of 

the filter.  It describes two possible custom NNETs realisable within the system.  

Section 3 presents our choice of the custom NNET and analyses its design.  Section 4 

presents the experiments carried out to evaluate the performance of the HONN filter; 

first the filter’s peak sharpness and detectability, second its distortion range, then the 

filter’s discrimination ability and finally the filter’s tolerance-to-clutter performance.  

Section 5 concludes.   

 

2 The Hybrid Optical Neural Network (HONN) Filter 

The hybrid optical neural network filter combines the digital design of a filter 

by artificial neural network techniques with an optical correlator-type implementation 

of the resulting combinatorial correlator type filter (see Fig. 1).  Thus in effect, there 

are two main design blocks in the hybrid optical neural network filter, the NNET and 

here we choose for the correlator type block to be an SDF-like filter 28,27 .  The original 

images pass first through the NNET block.  The output of the SDF block is a 

composite image of the hybrid optical neural network filter’s output.  To test the 

HONN filter, we correlate the filter with an input image.   

2.1 The Artificial Neural Network   

We have designed a custom artificial neural network architecture to fit our 

purposes.  If we assume we have a training set consisting of N images, we train a 

specifically configured neural net with this set of images.  The network has N neurons 
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at the hidden layer, i.e. equal to the number of training images.  There is a single 

neuron at the output layer to separate two different object classes.  (In a multi-class 

object recognition problem, the increase of the different classes of objects would 

require more than one neuron at the output layer to correctly separate all the training 

images.)  The net input of each of the neurons in the hidden layer is given by:   

( )
�×

=

=
nm

j
j jxwnet

1
11         (3) 

where net is the net input vector of each of the hidden neurons.  jw  is the input vector 

from the input layer to the hidden neurons for the training image 1x  in vector form of 

size ( )[ ]nm1 ×× .  Similarly, for the training image Nx  of size ( ( )[ ]nm1 ××  in 

vector form) the net input, Nnet , is given by:   

( )
�×

=

=
nm

j
NNN jxwnet

1

       (4) 

From Eqns.(1) and (3) and (4) there is a direct analogy between the SDF filter 

synthesis procedure and the combination of all the layers’ weighted input vectors.   

Two possible and equivalent custom designs of artificial neural network 

architectures (NNET) are suggested to form the basis of the SDF filter synthesis.  

Assume there are three training images of a car, size [ ]100100×  

( ( )[ ]1001001 ××  in vector form), of different angle of view, to pass through the 

NNET.  The first design (see Fig. 2) assumes one input source used for all the training 

images.  (The input source in Fig. 2 consists of 10,000 i.e. ( )[ ]1001001 ××  input 

neurons equal to the size of each training image (in vector form).  Each layer needs, 

by definition, to have the same input connections to each of its hidden neurons.  

However, Fig. 2 is referred to as four layer since there are three hidden layers (shown 
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here aligned under each other) and one output layer.  The input layer does not contain 

neurons with activation functions and so is omitted in the numbering of the layers.  

Each of the hidden layers has only one hidden neuron.  Though the network initially is 

fully connected to the input layer during the training stage, only one hidden layer is 

connected for each training image presented through the NNET.  Fig. 2 is thus not a 

contiguous three layer network during training, which is why the distinction is made.   

The second design assumes three separate input sources each of 10,000 or 

( )[ ]1001001 ××  input neurons for each training set image (see Fig. 3).   Each 

layer consists of a single hidden neuron but all the layer weights are fully connected 

to the output layer.  As before, there is a single output neuron.  The weights from the 

input layer to the hidden layers, called the input weights, are partially connected with 

the neurons of the hidden layers.  The input weights of the first input source are 

connected only with the hidden layer 1, the input weights of the second input source 

are connected only with the hidden layer 2 and the third input source are connected 

only with the hidden layer 3.  Each layer has only a single hidden neuron.  All the 

weights of the hidden layers are connected fully to the output layer.  In this case there 

is a single output neuron, since we want to recognise two different classes of objects.  

In contrast to the first design, now both the input weights and the weights from the 

hidden layers to the output layer, i.e. the layer weights, stay connected during the 

training session.   

In both of the designs each neuron of the hidden layer is trained only with one 

of the training set images.  In effect, 1neuron  with the training image 1x , 2neuron  

with the training image 2x  and so on, ending with nneuron  with the training image 

nx .  In the first design the number of the input sources is kept constant whereas in the 
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second design the number of the input sources is equal to the number of the training 

images.  In both designs each hidden neuron learns one of the training images.  In 

effect the number of the input weights for both designs increases proportionally to the 

size of the training set:   

    [ ]nmNN wi ××=       (5) 

where wiN  is the number of the input weights, N , is the size of the training set equal 

to the number of the training images and [ ]nm×  is the size of the image of the 

training set.  The latter design would allow parallel implementation, since all the 

training images could be input through the NNET in parallel due to the parallel input 

sources.  However, to allow easier implementation, we chose the former design of the 

NNET.   

 

3 Architecture and Implementation of the NNET 

The hybrid optical neural network is implemented as a feedforward multi-

layer architecture trained with a backpropagation algorithm.  It has a single input 

source of input neurons equal to the size of the training image in vector form.  In 

effect, for the training image NiX �1=  of size [ ]nm× , there are [ ]nm×  input 

neurons in the single input source.  It is emphasised that the training set images of the 

NNET consist of several images of the object at different poses and at regular angular 

increments.  Each image is passed through the NNET in gray-scale form, without an 

explicit amplitude scale normalisation.  The actual size of the training set images is 

]256256[ × in matrix form (i.e. m=n=256) or of size ]536,651[]2562561[ ×=××  in 

vector form.  The input weights are initially fully-connected from the input layer to 

the hidden layers but do not stay fully connected during training.  There are wiN  
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input weights proportional to the size of the training set.  The number of the hidden 

layers, lN , is equal to the number of the images of the training set, N :   

i,,3,2,1N �=        (6) 

NN l =         (7) 

Each hidden layer consists of a single neuron.  The layer weights are fully connected 

to the output layer.  Since there is a single output neuron, the number of the layer 

weights, lwN , equals the number of the training images, N :   

opnwl NNN ×=        (8) 

where 1Nopn =  is the number of the output neurons.  There are bias connections to 

each one of the hidden layers:   

NNb =         (9) 

where bN  is the number of the bias connections.  There is one target connection from 

the single output neuron of the output layer.   

The initial values of the input weights, the layer weights and the biases are 

based on the Nguyen-Widrow29  initialisation algorithm30 .  The transfer function of 

the hidden layers is set as the Log-Sigmoidal function, whereas the transfer function 

of the output layer is linear.  When a new training image is presented to the NNET we 

leave connected the input weights of only one of the hidden neurons.  In order not to 

upset any previous learning of the rest of the hidden layer neurons we do not alter 

their weights when the new image is input to the NNET.  It is emphasised that there is 

no separate feature extraction stage applied to the training set images.  To achieve 

faster learning we used a modified steepest descent backpropagation algorithm based 

on heuristic techniques31.  The adaptive training algorithm updates the weights and 
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bias values according to the gradient descent momentum and an adaptive learning 

rate:   

( ) ( ) ( )t,tw

P
t,twt,tw f

1
11

+∆
∆

×µ×α+−∆×µ=+∆              (10) 

( ) ( ) ( )t,tb

P
t,tbt,tb f

1
11

+∆
∆

×µ×α+−∆×µ=+∆              (11) 

( )
( )
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�

�

�
�

�
�

�

>∆ε−α=α
>∆∆<=α

<∆ε+α=α
=α

ff

fff

f

PmaxPif

PmaxP&&P0ifchangeno

0Pif

  (12) 

where w∆  is the update of the input and layer weights, b∆  is the update of the biases 

of the layers, t is the iteration index of the NNET and �  is the momentum constant.  

The momentum allows the network to respond not only to the local gradient, but also 

to recent trends in the error surface.  It acts like a low-pass filter by removing the 

small features in the error surface of the NNET.  The momentum allows the network 

not to get stuck in a shallow local minimum, but to slide through such a minimum.  

fP  is the performance function, usually set as being the mean square error (mse) and 

fP∆  is the derivative of the performance function31.  The learning rate is indicated 

with the letter α .  It adapts iteratively based on the derivative of the performance 

function fP∆ .  In effect, if there is a decrease in the fP∆ , then the learning rate is 

increased by the constant ε .  If fP∆  increases but the derivative does not take a value 

higher than the maximum allowed value of the performance function, ( )fPmax , 

then the learning rate does not change.  If fP∆  increases more than ( )fPmax , then 

the learning rate decreases by the constant ε .  The layer weights remain connected 

with all the hidden layers for all the training set and throughout all the training 
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session.  The NNET typically converges for each training image in under one hundred 

iterations, requiring only few tens of milliseconds CPU time on a 2.5GHz Pentium 4 

based PC.  Also, due to the generalization properties of a NNET structure, the number 

of the training images decreases, in comparison to the typical number of images in the 

training set of linear combinatorial filters (such as the SDF filter).   

The motivation to use the hybrid optical neural network filter comes from the 

ability of neural network methods to provide a non-linear interpolation of the training 

set poses of the test objects32 .  The enhancement of the non-linear properties of the 

NNET in the SDF filter synthesis procedure is most clearly seen from eqn. (14).  We 

extract the layer and input weights and compute their dot product, Ni �1=Γ .  We then 

calculate the dot product of Ni �1=Γ  with the corresponding training image, NiX �1= .  

Assume we have N training images of size [ ]nm ×  and we represent each training 

image with ( )n,mx Ni �1= , the weights from neuron ι  to neuron κ  with ix
nmw  

and the layer weights with ix
nml .  Then:   
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( )n,mXS NiNiNi 			 111 === ⋅= Γ               (14) 

where ixW  and ixL  are the matrices of the input and layer weights.  xx
nmw  are the 

input and layer weights from the input neuron of the input vector element at row m 

and column n to the associated hidden layer for the training image ( )n,mx Ni 
1= .  

ix
qnl  are the input and layer weights from the hidden neuron of the layer vector 

element at row m and column n to the associated output neuron.  In our case, q = 1 

since the output layer has only one neuron.  ( )n,mS Ni �1=  is the transformed image 

calculated from the dot product of Ni �1=Γ  with the corresponding training image 

( )n,mX Ni 1= .   

If we do not put a hard constraint on the correlation peak heights generated by 

the filter, and add the newly transformed images NiS �1= , then we can synthesise the 

unconstrained hybrid optical neural network (U-HONN) filter in the spatial domain:   
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or in the frequency domain the same equation is rewritten as: 

 (((( ))))y,xSHONNU
N

Ni
i

�
====

====−−−− �
1

               (14) 

Based on a similar technique to SDF filter synthesis10  we can constrain the 

correlation peak of the HONN filter:   

�
=

=−
N

Ni

HONNC �
1

ia ( )n,mS i⋅   

=  1a ( )n,mS1⋅ +  2a ( )n,mS 2⋅ + � +  Na ( )n,mS N⋅  

= 1a ( )( ) +⋅⋅ n,mX 11Γ   2a ( )( ) +⋅⋅ n,mX 22Γ � +  Na ( )( )n,mX NN⋅⋅ Γ  

or the same equation in the frequency domain is rewritten as: 

�
====

====−−−−
N

Ni

HONNC �
1

ia (((( ))))n,mS i⋅⋅⋅⋅                (15) 

This is the filter’s transfer function.  The HONN26  filter is composed of a non-linear 

space domain superposition of the training set images; the multiplying coefficient, 

⋅ia iΓ , now becomes a function of the input weights and the layer weights, rather 

than a simple linear multiplying constant as used in a conventional SDF filter.  Thus, 

the non-linear HONN filter is inherently shift invariant and it may be employed in an 

optical correlator as would a linear superposition SDF type filter.  It may be used as a 

space domain function in a joint transform correlator architecture or be Fourier 



 14

transformed and used as Fourier domain filter in a 4-f Vander Lugt type optical 

correlator33 .   

 

4 Computer Simulation 

4.1 Test Data 

A data set of input images for the overall HONN filter was constructed of an S-type 

Jaguar car model at 10° increments of out-of-plane rotation at an elevation angle of 

approximately 45°.  Another set of images was constructed for the Police car model 

Mazda Efini RX-7 at the same elevation angle to serve as the out-of-class data for 

discrimination tests (see Fig. 4.  (a) and (b)).  A third data set consisted of the 

background images of typical car parks (see Fig. 5) and the images of the S-type car 

model and the Mazda RX-7 car model added in the background scene.  The size of all 

the images was [ ]256256×  and the grey-scale bitmap format is used.  All the 

images of the training set for the NNET are concatenated row by row into a vector of 

size ( )[ ]2562561 ××  prior to input to the neural net.  Normally this size of image 

is not possible, since to be implemented by enough input and layer weights:   

[ ]

360,655

536,6510

25625610N wi

=
×=

××=

               (16) 

This would be impossibly large since for a training set of 10N =  of individual 

vector size [ ]256256×  there would be more than half-a-million input weight 

connections needed.  Thus the selective weight connection architecture is employed to 

overcome this problem.  Also, introducing into the NNET training session the 

heuristic training algorithm with momentum and an adaptive learning rate has 
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speeded up the learning phase and reduced the memory size needed to complete fully 

the training session.   

It was found experimentally that by choosing different values of the 

classification levels for the true class TCl  and false class FCl  objects, one can control 

the HONN filter’s behaviour to suit different application requirements.  Thus we 

define:   

FT ClClCl −=∆                 (17) 

where Cl∆  is the absolute distance of the classification levels between the true class 

objects and the false class objects.  For example, when 80ClT +=  and 80Cl F −= , 

the resulting filter behaves more like a high-pass biased filter, which generally gives 

sharp peaks and good clutter suppression but is more sensitive to intra-class 

distortions.  If 10ClT +=  and 10ClF −= , then the filter behaves more like a 

MVSDF filter 34  with relatively good intra-class distortion invariance but producing 

broad correlation peaks.  In effect, when Cl∆  increases, the HONN filter possesses 

better discriminatory properties but when Cl∆  decreases the HONN filter has better 

generalising properties.  Fig. 6. (a) shows the composite image of the SDF filter and 

Fig. 6. (b) shows the composite image generated by the SDF-MACH filter for the 

training images over the orientation range [ ]80604020  degrees.  Fig. 6. (c) shows 

the composite image of the HONN filter for the in-class training images over the same 

orientation range with the setting 80T true +=  and 80T false −=  Fig. 6.  (d) shows the 

composite image of the HONN filter for setting the in-class training images over the 

same range with 280T true +=  and 280T false −= .   
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Fig. 7.  (a) and (b) show the correlation plane isometric of the HONN filter for 

the training set over the orientation range [ ]80604020  degrees and the test image of 

the �80  orientation view, when the targets were set to 80T true +=  and 80T false −= .  

Fig. 7.  (c) and (d) show the correlation plane isometric and the grey-level image of 

the correlation plane of the HONN filter for the same training set and the test image of 

the �80  orientation view, but now the targets were set to 280T true +=  and 

280T false −= .  It is clear that the filter becomes more discriminative when we 

increase the absolute distance Cl∆  of classification levels between the true class 

objects and the false class objects.  Thus increasing Cl∆  leads to an increased 

emphasis of the high spatial frequency content of the composite images comprising 

the filter, which in turn leads to a more localised correlation response.   

4.2 Results 

4.2.1 Peak Sharpness and Detectability 

Several tests were carried out to test the performance of the hybrid optical 

neural network in terms of peak sharpness and general detectability 31−  for the out-of-

plane orientation considered.  The aim of the tests was to assess the ability of the filter 

to detect non-training in-class images that are orientated at an intermediate angle of 

view between the training images.  The training set consisted of images over a 

distortion range [ ]8020  degrees at increments of 
�

20 .  To compare the filter with an 

SDF-type filter, we used the SDF- MACH filter, to constrain the correlation peaks 

generated by the MACH filter to achieve better class separation of the different 

objects.  We tested the SDF-MACH filter and the HONN filter with the object’s 

intermediate car poses over the same range at 
�

10  increments.  We added two 

randomly chosen intermediate car poses, at 
�

130  and at 
�

140 , in the training set of the 
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HONN filter to create a false class.  The Target of the false class object is 

40T false −=  and of the true class object is 40T false += .  Both filters have no 

information on the non-training, intermediate car images in the construction of their 

composite images.  We constrained the correlation peaks in the constraint matrix of 

both filters to be 1+  for the images of the true class object and 0  for the images of 

the false class object.  We employed SDF-MACH filter parameters 119−  set to:  

002.0=α , 01.0=β  and 1.0=γ .   

Fig. 8.  plots the correlation-peak height for each input image for both the 

HONN and the SDF-MACH filters.  Both filters constrain the correlation peak height, 

using the constraint matrix, for the in-class training set images and the out-of-class 

training set images to 1+  and 0 , respectively.  From the plot of Fig. 8. it is observed 

that the HONN filter and the SDF-MACH filter are invariant to the out-of-plane 

rotation, since they both have produced consistent correlation peaks for both in-class 

training and non-training images.  However, the graph indicates better out-of-plane 

rotation invariance for the hybrid optical neural network filter.  The consistency of the 

correlation peak values produced from the HONN filter demonstrate the filter’s ability 

to interpolate well between the intermediate car poses at 
�

10  increments.  The SDF-

MACH filter produced correlation peak values that fell to a greater degree around the 

intermediate non-training images as compared to the HONN filter’sresponses.  The 

improvement in the HONN filter’s interpolation ability must result from the non-

linear function applied in the construction of the composite image comprising the 

SDF filter formed from the NNET output images.   

A second set of tests was carried out to evaluate the deterioration of the filters’ 

correlation response for the intermediate car poses.  Fig. 9.  shows the normalised 
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PCE values for both filters.  The hybrid optical neural network filter and the SDF-

MACH filter were normalised to the maximum value recorded for both filters, which 

was the 
�

80  orientation test image.  From the graph, it can be observed that the SDF-

MACH filter and the HONN filter produced PCE values for the intermediate non-

training images close to those produced by the training car images.  In effect, both 

filters maintain correlation peak sharpness for the in-class training images.  However, 

the SDF-MACH filter demonstrates the highest PCE values, producing sharper peaks 

and fewer sidelobes evident on the correlation plane.  The values of the HONN filter’s 

PCE values are, however quite acceptable.   

From our experiments, we found that the change of the absolute distance of 

the classification levels,Cl∆ , between the true class objects and the false class objects 

affects the PCE values produced from the HONN filter.  When we increased the 

distance, the PCE values increased and, conversely, when we decreased it, the PCE 

values produced decreased.  This is because as we increase the value of Cl∆ , the 

hybrid optical filter increases its discrimination ability, but when we decreased it the 

filter increases its generalisation ability and so its discrimination ability deteriorates.  

The correlation peak broadens as Cl∆  is decreased i.e. there is very similar trade-off 

in discrimination and generalisation ability to that found in SDF type correlation 

filters. 

4.2.2 Distortion Range of the Filter 

A second group of test sets was carried out to evaluate the distortion range of 

the hybrid optical neural network filter.  The training set consisted of images for a 

distortion range over 
�

0  to 
�

90 .  For comparison with an SDF-filter, we used the 

SDF-MACH filter, which we trained with the same training set.  We used several 
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smaller test sets for both filters, which consisted of two in-class training images at a 

widely separated angle within the range [ ]���������

908070605040302010  and a 

third non-training in-class image lying on the bisector angle of the two in-class 

training images.  Fig. 10.  shows the reference angle of view image at 0Θ , the first 

training car pose image at 1Θ , the second training car pose image at 2Θ  and the 

intermediate non-training car pose image at 3Θ , where [ ]��

45,5ˆ
3 ∈Θ  i.e. 

[ ]���������

454035302520151053 =Θ   We define Θ∆ to be the absolute 

distance between the two training set images, and the angle 3Θ  to be on the bisector 

angle of 1Θ  and 2Θ .  Thus:   

[ ]

�

���������

0

2

908070605040302010

0

022

011

3

21

=Θ

Θ−Θ=Θ∆

Θ−Θ=Θ∆

Θ∆
=Θ

Θ−Θ=Θ∆
=Θ∆

            (18) 

As for the first group of tests used for evaluating the peak sharpness and the 

detectability of the filter, we added three randomly chosen training images, namely at 

orientations of 
��

130,110  and 
�

140 , in the training set of the hybrid optical neural 

network filter which fall inside the false class.  The Targets of the true class objects 

and of the false class objects are kept the same as before, i.e. 40T true +=  and 

40T false −= .  None of the filters have any information built into them on the test 

images of the intermediate car poses.  We kept the same constrained values in the 

constraint matrix of both filters for the in-class images and for the out-of-class 

images.  The SDF-MACH filter was tuned to the same values as for the first group of 
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test sets, i.e. 002.0=α , 01.0=β  and 1.0=γ , in order not to change the SDF-

MACH filter’s behaviour and to obtain, if possible, an overall comparison to the 

HONN filter.   

Fig. 11.  shows the correlation-peak height for each input image for both the 

HONN filter and the SDF-MACH filter.  It is apparent that both filters have good 

performance in recognising all the intermediate car poses of the test set.  The 

correlation-peak height of the in-class input images up to 
�

15ˆ
3 =Θ , that are 

intermediate between two training images, lie within a band of greater than 90% of 

the pre-specified peak-height constant in the constraint matrix C for the HONN filter 

and more than 40% of the pre-specified peak-height constant in the constraint matrix 

C for the SDF-MACH filter.  From the graph it can be observed that both filters 

demonstrated some degree of invariance to rotation over a range of [ ]��

45,5ˆ
3 ∈Θ .  

The correlation peak-height of the in-class test set images which are intermediate 

between the two training images fall inside a band of greater than 70% of the 

specified peak-height constant in the constraint matrix C for almost all the test set 

images of the HONN filter, whereas there is a clear variation in the peak-heights from 

that specified for the training in-class images of the SDF-MACH filter.  Thus it 

appears that the non-linear interpolation of the training set images of the intermediate 

car poses, inherent in the hybrid optical neural network filter, has resulted in less peak 

deterioration when 3Θ  gradually increased, and succeeded in keeping it almost a 

constant peak-height for the range 
�

403 =Θ .   

4.2.3 Discrimination Ability 

The third group of test sets was carried out to evaluate the discrimination ability of the 

HONN filter.  The main aim of the tests was to discriminate between objects of 
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different classes while retaining invariance to in-class distortions.  The training set 

consisted of images of the Jaguar S-type for a distortion range over 
�

20  to 
�

70  at 
�

10  

increments.  Again, for comparison we used the SDF-MACH filter and we trained it 

with the same set of images.  The test set, used in both filters, consisted of one 

training image at 
�

40  orientation of the Jaguar S-type and a second image of the out-

of-class Police RX-7 at the same angle of view.  This time we only added two images 

at 
�

130  and 
�

140 , for the false class of the HONN filter and none for the SDF-

MACH filter.  We did not have to constrain the false class images of the objects to 

zero peak-height in the construction of both filters’ composite images.  The Target of 

the false class object is, 40T false −= , and the Target of the true class object is, 

40T true += .  Both filters have no built-in information on the test images of the in- 

class object or the out-of-class object.  The values of the parameters of the SDF-

MACH filter were kept constant ( )1.0,01.0,002.0 =γ=β=α .   

Table 1 was drawn from the tests we performed for the SDF-MACH and the 

HONN filters.  The third column of the table contains the values taken for the in-class 

training image and the fourth column contains all the values taken for the out-of-class 

training image.   

It can be observed from the Table 1 entries that both filters demonstrated good 

discrimination ability between the two objects, the Jaguar S-type car and the RX-7 

Police patrol car.  The SDF-MACH filter produced approximately 92% or more class 

separation, whereas the HONN filter produced 72% or higher class separation.   

4.2.4 Clutter Tolerance 

A fourth group of tests was carried out to evaluate the tolerance of the filter to 

background clutter in the input scene by the insertion of training images and non-
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training out-of-class images into different car park scenes.  The training set consisted 

of images of the Jaguar S-type for a distortion range over 
�

20  to 
�

70  degrees at 
�

10  

increments.  As with the previous test sets, we used the SDF-MACH filter for 

comparison and we trained it with the same training set of images.  We added three 

background images of typical empty car park scenes in the training set of the hybrid 

optical neural network to fall inside the false class.  We had to constrain the false 

class images of the objects to zero peak-height constraint in the construction of both 

filters’ composite images.  The test set, used in both filters, consisted of one of the 

training in-class images inserted in a car park scene, a randomly chosen non-training 

in-class image of an intermediate car pose inserted in the same car park scene and one 

out-of-class non-training image of the RX-7 Police patrol car also inserted in the car 

park scene.  The rest of the test set images were the same images of the Jaguar S-type 

and the RX-7 Police patrol car inserted in a second car park scene.  The Targets of the 

true class objects were 40T true +=  and of the false class background images of the 

empty car park scenes were 40T 1false −= .  The false class image of the out-of-class 

non-training RX-7 Police car image was 40T 2false −= .  We kept the same values of 

the parameters for the Output Noise Variance (ONV), Average Similarity Measure 

(ASM) and the Average Correlation Energy (ACE) i.e. 002.0=α , 01.0=β  and 

1.0=γ , respectively.   

Fig. 12. (a) and (b) show the in-class Jaguar S-type car and the out-of-class 

RX-7 Police patrol car, resized and inserted into the first background scene of a car 

park.  Fig. 13.  shows the isometric correlation planes of the in-class training view 

Jaguar S-type car image at 
�

40  (resized and inserted into the first car park scene).  

Fig. 13. (a) shows the HONN filter response and (b) that of the SDF-MACH filter.  
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The correlation planes of the out-of-class non-training RX-7 Police patrol car at 
�

40 , 

are shown in (c) for the HONN filter and (d) for the SDF-MACH filter.  Fig. 14 show 

the isometric correlation planes of the in-class training view Jaguar S-type car image 

at 
�

40  and of the in-class non-training Jaguar S-type intermediate car pose at 
�

55 , 

respectively.   

From the above results, it is apparent that the HONN filter was able to detect 

and classify correctly the Jaguar S-type car pose at 
�

40  and suppress the background 

clutter scene.  The HONN filter rejected the out-of-class RX-7 Police patrol car in the 

background scene.  Both filters performed better with the in-class training set Jaguar 

car image and their performance deteriorated with the intermediate in-class in-training 

Jaguar S-type car image.  The hybrid optical neural network filter as well as the SDF-

MACH filter were able to detect more easily the object in the first background than in 

the second background scene.  This is due to the highercomplexity of the second car 

park scene in comparison to the first.  Table 2 shows the values of the Target-to-

Clutter Ratio (TCR) of the two filters.  It is clear that the HONN filter demonstrates 

higher TCR values for the two tested background scenes than the SDF-MACH filter.  

The SDF-MACH filter response deteriorates more when detecting the intermediate 

Jaguar S-type car image at 
�

55  in both background scenes.   

 

5 Conclusion 

The combination of an artificial neural network (NNET) with the linear 

combination filter, such as the synthetic discriminant function (SDF) design method, 

results in the hybrid optical neural network (HONN) filter.  The motivation for the 

HONN filter’s creation was to combine the shift invariance inherent in the 
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combinatorial filter synthesis process and the non-linear superposition of the training 

set generated by neural network methods.  The HONN filter so created is shift-

invariant but incorporates a non-linear space domain superposition of the training set 

making it suitable for direct implementation in an optical correlator.  For a filter to be 

of practical use it should demonstrate good detectability, good discrimination ability 

and invariance to distortions in the input scene.   

In this paper several tests were carried out to investigate the performance of 

the HONN filter, giving emphasis to its performance within cluttered images.  The 

filter has shown a good quality correlation response to the non-training in-class 

images at angles of view intermediate to the training set images.  The HONN filter 

has kept almost constant, good sharpness, correlation peaks of over 93% of the 

correlation peak height value set in the filter’s constraint matrix C for the intermediate 

car poses at 
�

10  increments.  Further tests have demonstrated the high distortion range 

of the HONN filter.  It has produced good quality correlation peak-height values for 

all the in-class test set images which are intermediate between the two training images 

over the range of [ ]��

45,5ˆ
3 ∈Θ  falling inside a band of greater than 70% of the 

specified peak-height constant value set in the constraint matrix C.  The non-linear 

interpolation of the training set images of the intermediate car poses achieved in the 

HONN filter resulted in less peak deterioration and high distortion range.  The filter 

was found to have good discrimination ability.  The HONN filter successfully rejected 

the out-of-class RX-7 Police patrol car and has detected and classified correctly the 

Jaguar S-type car pose within the background clutter scenes.  It has kept overall high 

TCR values for all the tested cluttered images of the in-class training set and in-class 

intermediate car poses.   
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By changing the absolute distance of the classification levels, Cl∆ , we have 

controlled the correlation plane peak and the filter’s behaviour has varied from highly 

discriminating to more generalising properties.  The results presented have been very 

promising for the realisation of the HONN filter in optical implementations for real-

time applications.  It should be possible, using the HONN filter, to incorporate fewer 

views in the training set for a given distortion range.  This makes its optical 

implementation easier, since this is limited by the dynamic range of the input 

transducer.   
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Fig. 1 Block Diagram of the Hybrid Optical Neural Network (HONN) Filter.   
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Fig. 2 The architecture of Design A of the artificial neural network (NNET) 
Block of the HONN Filter.   



 33

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 The architecture of Design B of the NNET Block of the HONN filter.   
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Fig. 4 (a) the Jaguar S-type car model and (b) the Mazda Efini RX-7 
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Fig. 5 (a), (b), (c) and (d) The Background Car Park Scenes part of the 
third data set used in the experiments.   
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(c) (d) 

Fig. 6 (a) The composite image of the basic SDF filter for the training set over the range [20 40 
60 80] of the car images, (b) the composite image of the SDF-MACH filter for the training set 
over the same range of the car images, (c) the composite image of the HONN filter over the same 
range of the training images for 80T true +=  and 80T false −=  and (d) the composite image of 

the HONN filter over the same range of the training images for 280T true +=  and 280Tfalse −= .  

All the images of the training set used are gray-scale of size [ ]256256× .   
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(a) 

(b) 

(c) 
(d) 

Fig. 7 (a) and (b) The correlation plane isometric and grey-level image, respectively, of the 
HONN filter for the training set over the orientation range of [ ]80604020  degrees of the car 

images for the test image of �80  orientation.  80T true +=  and 80T false −= .  (c) and (d) 

show the correlation plane isometric and the grey-level image of the HONN filter for the same 
training set and the same test image, but 280T true +=  and 280T false −= .   
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Fig. 8 The plot shows the correlation peak height, of the training set over the orientation 

range [ ]8020  at increments of 
�

20 , for the HONN and the SDF-MACH filters.  The test 

set consisted of the car images over the same range, at increments of 
�

10 .  The correlation 
peak height of both filters for the training set in-class images and the out-of-class training 
images was constrained in the filters’ constraint matrix to 1+  and 0  respectively.   
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Fig. 9 The plot shows the peak correlation energy (PCE) over the orientation range [ ]8020  

at increments of 
�

20  of the training set, for the HONN and the SDF-MACH filters.  The test 

set consisted of the car images over the same range, at increments of 
�

10 .  The peak 
correlation energy values of both filters were normalised to the maximum value.  The 

maximum value of both of the filters was recorded at 
�

80  orientation.   
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0Θ  

1Θ  

2Θ  

All images are 
[ ]256256×  3Θ on the bisector angle 

of 1Θ  and 3Θ  

3Θ  

Fig. 10 The diagram shows the reference angle, 0Θ , and the two in-class training images at the 

angles, 1Θ  and 2Θ .  The test image is at the bisector angle at angle 3Θ .   
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Fig. 11 The graph plots the correlation peak height of the HONN filter and the SDF-MACH filter 

for the training set over the range angle 3Θ  from 
�

5  to 
�

45 .  Any two in-class training images 

could be on any angle over the same range, [ ]��

90021 ∈ΘΘ ˆ,ˆ  and the test image was on the 
bisector (range) angle of the two in-class training images, i.e. 

[ ]���������

454035302520151053 =Θ .   
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Table 1 Discrimination Ability (%) of the HONN and the SDF-MACH filter for the in-class training 

Jaguar S-type image at 
�

40  and the out-of-class non-training Mazda RX-7 image at the same angle.   

Correlation Peak Height

Filter Parameter Values Discr. Ability % JAGUAR MAZDA

SDF-MACH 92.07 0.9789 0.0776

HONN 72.57 1.008 0.2765

1.0,01.0,002.0 === ���

lC∆
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(a) (b) 

  

Fig. 12 (a) The in-class Jaguar S-type car inserted in the first background scene of a 
car park and (b) the out-of-class RX-7 Mazda Police patrol car inserted into the same 
background scene.   
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Fig. 13 The isometrics of the correlation planes of the in-class training view 

Jaguar S-type car image at �40 , resized and inserted into the first car park scene, 
(a) the HONN filter and (b) the SDF-MACH filter.  The correlation planes of the 

out-of-class non-training RX-7 Police car at 
�

40 , resized and inserted in the 
same car park scene, (c) the HONN filter and (d) the SDF-MACH filter.   

(a) (b) 

(c) (d) 
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(a) (b) 

(c) (d) 
Fig. 14 The isometrics of the correlation planes of the in-class non-training 

intermediate Jaguar S-type car pose at 
�

55 , resized and inserted into the first car park 
scene, of (a) the HONN filter and (b) the SDF-MACH filter and resized and inserted 
into the second car park scene of (c) the HONN filter and (d) the SDF-MACH filter.   
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Table 2 Target-to-Clutter Ratio (TCR) 
 

Tolerance      - to -            Clutter (TCR)
Filter BG Scenes IN-CLASS IN-CLASS OUT-of-CLASS

Training Non-Training Non-Training
HONN BG1 2.8445 2.0305 2.6557
HONN BG2   4.9869 2.0584 3.7129
SDF-MACH BG1 1.752 1.8801 1.5491
SDF-MACH BG2   1.0208 1.0174 1.0322
 

 

 

 

 

 

 

 

 

 

 

 

 


