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ABSTRACT

We have recently proposed a hybrid filter, whichea#t the Hybrid Optical Neural Network
(HONN) filter. This filter combines the optical ptementation and shift-invariance of
correlator-type filters with the non-linear supespion capabilities of artificial neural
network methods. The filter demonstrates goodgperdnce in maintaining high quality
correlation responses and resistance to clutteotstraining in-class images at orientations
intermediate to the training set poses. This papesents the design and implementation of

the HONN filter architecture and assesses its obgaognition performance in clutter.
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1 Introduction

There are three main consideratibdsin the design and performance
assessment of a pattern recognition filter. Birdte filter must be able to detect the
in-class object and demonstrate tolerance to inepland out-of-plane rotation.
Secondly, it must possess good discrimination taslibetween the in-class and the
out-of-class objects. Usually, we are interestedasigning the filter to give a wide
distortion range in order to reduce the numbernbérmediate object poses in the
training set images. Thirdly, the filter must exhigood detection of the object in

cluttered scenes, i.e. demonstrate good toleramcaoise and clutter in the input

scene. Kumar and Hasserbrodkave presented several performance measures for
correlation-type filters to enable their comparis@uch as peak sharpness, peak
location, light efficiency, discriminability, distton invariance and target-to-clutter

ratio.

In an effort to keep consistency between the diffemathematical symbols
of the artificial neural networks and optical cdaters we need to unify their
representation. We denote the variable nameswamadidns by non-italic letters, the
names of the vectors by italic lower case letteid e matrices by italic upper case.
The frequency domain vectors, matrices, variableasgaand functions are represented
by bold letters and the space domain vectors, cestrivariables and functions by

plain letters.

The Synthetic Discriminant Functibn(SDF) correlation filter belongs in the
wider category of Linear Combination Filtéf$ (LCF). The main idea of the SDF
filter is the inclusion of the expected distortionghe filter design such that improved

immunity to these distortions is achieved. Multdss object recognition is also



possible by including the out-of-class objects ¢tamgets) in the filter design. The
conventional SDF filter is based on using a weidghieear combination of distorted
reference images to create a composite image, vehighld cross-correlate with input
images to produce equal on-axis height correlapeaks for all the input images

belonging to the same class. L}dt( m,n) denote the composite image in the space
domain and X (m,n) denote the training image set of sikmxn] in the space
domain, where =1,2,---,N and N is the number of the training images used in the

synthesis of the SDF. The basic filter’s trangterction, from the weighed linear

combination ofX;, is given by:

a, X (m,n) @

H(m, n)=

e

where the coefficients, (i =12, N) are to set the constraints on the peak given by

c. The a, values are determined from:

a=R™c (2)

whereR is the correlation matrix ofX; and c is the peak constraint vector. The

elements of this are usually set to zeros for false clagsts and to ones for true

class objects.

Recent advances in the area of optical processing apdriicular enabling
the spatial light modulator (SLM) technology, has mpdssible the implementation
of compact optical correlator systems. Chao ét lave demonstrated experimental
results taken from the realisation of the maximum averageelation height
(MACH)®™* filter in their grayscale optical correlator. Howevere tmodulation

levels afforded by the SLM limit the number of thaiming set images in the



implementation of the optical filter. Several effdftS have been made to overcome
this limit by designing filters to produce acceptabléarmity of performance over
the training set and being optimal to multiple perfance criteria goals, such as those

mentioned above.

There are several implementations presented in the literatfiroptical
pattern-recognition neural networks (OPRNN), such asvdttor-matrix-multiplier-
based® OPRNN, the photorefractive-crystal-based holograph@®PRNN and the
spatial light modulatdf*” (SLM) -based OPRNN. The SLM-based system and the
vector-matrix-based systems are operated in the spatiadidomSo, their main
drawback is that shift invariantfecan be achieved only at the expense of massive
and redundant interconnections. The main drawback of thenefaictive-crystal-
based holographic OPRNMN?, which is operated in the Fourier-transform plane, is
the limited shift invariance achievable due to the narrowg8angle restriction
within a thick photorefractive medium. Chao and Stérérpresented a technique
for optical implementation of a feature-based optical neoealork. It uses the
neocognitro® paradigm as a development guideline and it is implemeyed
multichannel correlator, forming a generic neural netwaslel to provide parallel
and shift invariant feature correlation. Talukder and Cas&$émresented a method
called the maximum representation and discriminanating fe@MRDF) extraction
technique to compute nonlinear features for simultaneopsesentation and
classification. The method has been demonstrated torpelfetter than the most
discriminating feature (MDF) techniqués and the Fisher linear discriminant
technique and its variations. However, it is stated thatMRDF discrimination

technique requires a large feature database in order toh&éndseful discrimination



information preserit. For practical applications and for non-deformablectsjwith

constant volume, usually only a limited number of tragnimages is available.

Section 2 presents the overall structure of the hybrictadpneural network
(HONN) filter®® and gives details of the artificial neural network (NNBT)ck of
the filter. It describes two possible custom NNETsisahle within the system.
Section 3 presents our choice of the custom NNET and analyskssign. Section 4
presents the experiments carried out to evaluate the perfoeroéthe HONN filter;
first the filter's peak sharpness and detectability, sedtsndistortion range, then the
filter’s discrimination ability and finally the fiér's tolerance-to-clutter performance.

Section 5 concludes.

2 The Hybrid Optical Neural Network (HONN) Filter

The hybrid optical neural network filter combines theitdlglesign of a filter
by artificial neural network techniques with an opticaireator-type implementation
of the resulting combinatorial correlator type filter (ség E). Thus in effect, there
are two main design blocks in the hybrid optical neoetvork filter, the NNETand

here we choose for the correlator type block to be an $®@FHter *"*

. The original
images pass first through the NNET block. The outputhe SDF block is a
composite image of the hybrid optical neural network fgterutput. To test the

HONN filter, we correlate the filter with an input image.
2.1 The Artificial Neural Network

We have designed a custom artificial neural network architedb fit our
purposes. If we assume we have a training set considtiNgimages, we train a

specifically configured neural net with this set of imagéke network has N neurons



at the hidden layer, i.e. equal to the number of traiimmages. There is a single
neuron at the output layer to separate two different olojasses. (In a multi-class
object recognition problem, the increase of the diffedasses of objects would
require more than one neuron at the output layer to corssplgrate all the training

images.) The net input of each of the neurons in theehidayer is given by:

mxn

net = Z w, %, () (3)

wherenetis the net input vector of each of the hidden neuramsis the input vector
from the input layer to the hidden neurons for the tngiminagex, in vector form of
size [1x(mxn)]. Similarly, for the training imagex, of size (1x(mxn)] in
vector form) the net inputet, is given by:

mxn

net, = 3wy X ( ) )

From Egns.(1) and (3) and (4) there is a direct analmgfyween the SDF filter

synthesis procedure and the combination of all the layesigihted input vectors.

Two possible and equivalent custom designs of artificedral network
architectures (NNET) are suggested to form the basi®©efSDF filter synthesis.
Assume there are three training images of a car, sﬁzh')ox 100]

([ 1x ( 100x 100)] in vector form), of different angle of view, to passotigh the
NNET. The first design (see Fig. 23sumes one input source used for all the training
images. (The input source iRig. 2 consists of 10,000 i.g.1x ( 100x100) | input

neurons equal to the size of each training image (in vémtor). Each layer needs,
by definition, to have the same input connections td e#cits hidden neurons.

However, Fig. 2 is referred to as four layer since there¢hamee hidden layers (shown



here aligned under each other) and one output layer. phelayer does not contain
neurons with activation functions and so is omittedhim humbering of the layers.
Each of the hidden layers has only one hidden neuron. ghibe network initially is

fully connected to the input layer during the traininggst, only one hidden layer is
connected for each training image presented through the NNHg.2 is thus not a

contiguous three layer network during training, whigkvhy the distinction is made.

The second design assumes three separate input soactesfel0,000 or
[1>< ( 100x 100)] input neurons for each training set image (see Fig. &ach

layer consists of a single hidden neuron but all the laggghts are fully connected

to the output layer. As before, there is a single outputon. The weights from the
input layer to the hidden layers, called the input wisighre partially connected with
the neurons of the hidden layers. The input weighttheffirst input source are
connected only with the hidden layer 1, the input weight$he second input source
are connected only with the hidden layer 2 and the thirdtispurce are connected
only with the hidden layer 3. Each layer has only alsihgdden neuron. All the

weights of the hidden layers are connected fully to thputdayer. In this case there
is a single output neuron, since we want to recognisaiff@yent classes of objects.
In contrast to the first design, now both the input Weigand the weights from the
hidden layers to the output layer, i.e. the layer wsigktay connected during the

training session.

In both of the designs each neuron of the hidden layeasirged only with one
of the training set images. In effecteuron with the training imagg , neuron
with the training imagex, and so on, ending witheuron, with the training image

X, . Inthe first design the number of the input sosiisekept constant whereas in the

n-



second design the number of the input sources is eqtia taumber of the training
images. In both designs each hidden neuron learns ot dfaining images. In
effect the number of the input weigtits both designéncreases proportionally to the
size of the training set:

N, = Nx[mxn] (5)

where N;,, is the number of the input weightl,, is the size of the training set equal

to the number of the training images ahmxn] is the size of the image of the
training set. The latter design would allow pafimplementation, since all the
training images could be input through the NNEpanallel due to the parallel input
sources. However, to allow easier implementatioa chose the former design of the

NNET.

3 Architecture and Implementation of the NNET

The hybrid optical neural network is implementedaageedforward multi-
layer architecture trained with a backpropagatitgodthm. It has a single input
source of input neurons equal to the size of theitrg image in vector form. In

effect, for the training imageX,_, , of size [mxn], there are[mxn] input

neurons in the single input sourceé.is emphasised that the training set images of the
NNET consist of several images of the object at diffiepases and at regular angular
increments. Each image is passed through the NNET yasgede form, without an
explicit amplitude scale normalisatiohe actual size of the training set images is
[256x25Q in matrix form (i.e. m=n=256) or of sizflx 256x256 =[1x6553€q in
vector form. The input weights are initially fully-connected finothe input layer to

the hidden layerdut do not stay fully connected during trainindrhere areN,,,



input weights proportional to the size of the tiagnset. The number of the hidden

layers,N,, is equal to the number of the images of thenitngi set,N :
N=123.i (6)
N, =N (7

Each hidden layer consists of a single neuron. |ayer weights are fully connected
to the output layer. Since there is a single auteuron, the number of the layer

weights, N, , equals the number of the training imagis,

Iw 7

Ny, =NxN_, ®)
where N, =1 is the number of the output neurons. There @® donnections to

each one of the hidden layers:
Ny =N ©)
where N, is the number of the bias connections. Theoméstarget connection from

the single output neuron of the output layer.

The initial values of the input weights, the layeeights and the biases are
based on the Nguyen-Widrdwinitialisation algorithmi®. The transfer function of
the hidden layers is set as the Log-Sigmoidal fonctwhereas the transfer function
of the output layer is linear. When a new trainimgge is presented to the NNET we
leave connected the input weights of only one efftldden neurons. In order not to
upset any previous learning of the rest of the éndthyer neurons we do not alter
their weights when the new image is input to theENIN It is emphasised that there is
no separate feature extraction stage applied tdr#iging set images. To achieve

faster learning we used a modified steepest des@mkipropagation algorithm based

on heuristic techniqués The adaptive training algorithm updates the Wwsigand



bias values according to the gradient descent mbmeand an adaptive learning

rate:
Aw(t,t+1)=pxAw(t -1t )+ axpx il (10)
S SRR (FETY)
Ab(t,t+1)=u><Ab(t—1,t)+axuxi (11)
Ab(t+1t)
a=a+c¢ if AR, <O
o =4 a =nochange if 0<AP & & AP, > maxP,); (12)
a=a-¢g if AP, > maxP)

where Aw is the update of the input and layer weiglb, is the update of the biases
of the layers, t is the iteration index of the NNBAdy is the momentum constant.
The momentum allows the network to respond not tmiye local gradient, but also
to recent trends in the error surface. It acte Bklow-pass filter by removing the
small features in the error surface of the NNEThe Tomentum allows the network
not to get stuck in a shallow local minimum, butstme through such a minimum.

P, is the performance function, usually set as bémegmean square errangg and

AP, is the derivative of the performance functitn The learning rate is indicated

with the lettera . It adapts iteratively based on the derivativettef performance

function 4P, . In effect, if there is a decrease in tH, , then the learning rate is
increased by the constaait If 4P, increases but the derivative does not take a value
higher than the maximum allowed value of the pentamce function,max( P )

then the learning rate does not changeRf increases more thanmax( P ) then

the learning rate decreases by the constantThe layer weights remain connected

with all the hidden layers for all the training s@td throughout all the training
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session.The NNET typically converges for each training iraag under one hundred
iterations, requiring only few tens of millisecon@PU time on a 2.5GHz Pentium 4
based PC. Also, due to the generalization pragsedf a NNET structure, the number
of the training images decreases, in comparisainedypical number of images in the

training set of linear combinatorial filters (suafthe SDF filter).

The motivation to use the hybrid optical neuralwak filter comes from the

ability of neural network methods to provide a rimiear interpolation of the training

set poses of the test objetts The enhancement of the non-linear propertiethef
NNET in the SDF filter synthesis procedure is nasarly seen from eqn. (14). We

extract the layer and input weights and compute thet product,/;_,..,. We then
calculate the dot product df, _, . with the corresponding training imag¥;_, -
Assume we have N training images of sizm xn ] and we represent each training

image withx , _, (m, n), the weights from neuron to neuronk with w%,

and the layer weights with’/.. Then:

11
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(13)
Sician =/_i:l---N|:|Xi:l---N(m’n) (14)

whereW™ and L™ are the matrices of the input and layer weightg,: are the

input and layer weights from the input neuron of ithgut vector element at row m

and column n to the associated hidden layer for theingpimagex; -, .. 4 (m, n).

I, are the input and layer weights from the hiddeoroe of the layer vector

element at row m and column n to the associatepgubueuron. In our case, q =1

since the output layer has only one neur@®).,. . (m, n) is the transformed image
calculated from the dot product &f, _, ..., with the corresponding training image
X,y n(m,n).

If we do not put a hard constraint on the corretapeak heights generated by
the filter, and add the newly transformed ima&es _,, then we can synthesise the

unconstrainedybrid optical neural networkJ-HONN) filter in the spatial domain

12




or in the frequency domain the same equation isittew as:

U-HONN = s (x,y) (14)

i=1---N
Based on a similar technique to SDF filter synthiésive can constrain the
correlation peak of the HONN filter:

N
C-HONN= Y a, S,(m,n)
=1.--N

= a,0S,(m,n) + a,0S,(m,n) + - + a, 0S,(m,n)
=a, 0 7,0X,(m,n)) + a, 0 7,0X,(mn)) + - + a, O 7 OX y(m,n))

or the same equation in the frequency domain is rewritten as:

C-HONN= Y a, 5,(m,n) (15)

N
i=1-N

This is the filter's transfer function. The HONNfilter is composed of a non-linear
space domain superposition of the training set imagesmihitiplying coefficient,
a [ ,, now becomes a function of the input weights and ther leveights, rather
than a simple linear multiplying constant as used in a caioveal SDF filter. Thus,
the non-linear HONN filter is inherently shift invamtaand it may be employed in an
optical correlator as would a linear superposition SDF tifee.f It may be used as a

space domain function in a joint transform correlator itecture or be Fourier

13



transformed and used as Fourier domain filter in a 4-f fahdgt type optical

correlator®.

4 Computer Simulation
4.1 Test Data

A data set of input imagésr the overall HONN filterwas constructed of an S-type
Jaguar car model at 1@hcrements of out-of-plane rotation at an elevation angle of
approximately 45 Another set of images was constructed for the Polcenodel
Mazda Efini RX-7 at the same elevation angle to serve asuhefalass data for
discrimination tests (see Fig. 4. (a) and (b)). Adthilata set consisted of the
background images of typical car parks (see Fig. 5) ananthges of the S-type car

model and the Mazda RX-7 car model added in the backgsneme. The size of all
the images was{ 256 % 256] and the grey-scale bitmap format is used. All the
images of the training set for the NNET are concatenatecdyoww into a vector of
size[ 1x ( 256x 256 ) | prior to input to the neural net. Normally this sifémage

is not possible, since to be implemented by enough mpaitayer weights:

N,, =10x [ 256x 256
10 x 65536 (16)
655360

This would be impossibly large since for a training @etN = 10 of individual
vector size[ 256x 256] there would be more than half-a-million input wig

connections needed. Thus the selective weightezdiom architecture is employed to
overcome this problem. Also, introducing into tNENET training session the

heuristic training algorithm with momentum and adagtive learning rate has

14



speeded up the learning phase and reduced the meimemeeded to complete fully

the training session.

It was found experimentally that by choosing difier values of the
classification levels for the true cla€$, and false clas€l. objects, one can control

the HONN filter's behaviour to suit different apmiion requirements. Thus we

define:
ACI = | Cl; - Cl; | a7

where ACI is the absolute distance of the classificatiorlebetween the true class
objects and the false class objects. For examgien Cl, =+ 80 and Cl. = - 80,

the resulting filter behaves more like a high-plissed filter, which generally gives
sharp peaks and good clutter suppression but ise nsensitive to intra-class

distortions. If Cl; =+ 10and Cl. = - 1Q then the filter behaves more like a

MVSDF filter3* with relatively good intra-class distortion invamce but producing
broad correlation peaks. In effect, whARI increases, the HONN filter possesses
better discriminatory properties but whén @tcreases the HONN filter has better
generalising properties. Fig. 6. (a) shows themusite image of the SDF filter and
Fig. 6. (b) shows the composite image generatethbySDF-MACH filter for the
training images over the orientation rar[gm 40 6080] degrees. Fig. 6. (c) shows
the composite image of the HONN filter for the lass training images over the same

orientation range with the settinig,,, =+ &0dT, =- 80Fig. 6. (d) shows the

false
composite image of the HONN filter for setting fineclass training images over the

same range witfl, _ =+ 28aGndT___ =- 280

true false
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Fig. 7. (a) and (b) show the correlation planenstrsic of the HONN filter for

the training set over the orientation rar[g@ 4060 80] degrees and the test image of

the 80° orientation view, when the targets were seéffg, =+ 0 aB8dT ., =- 80

false
Fig. 7. (c) and (d) show the correlation planamistric and the grey-level image of
the correlation plane of the HONN filter for theretraining set and the test image of

the 80° orientation view, but now the targets were setTt, =+ 280 and

true

T =-280. It is clear that the filter becomes more disanmbiive when we

false
increase the absolute distanfe @ classification levels between the true class
objects and the false class object$hus increasingACI| leads to an increased
emphasis of the high spatial frequency contenthefdomposite images comprising

the filter, which in turn leads to a more localissmrelation response.
4.2 Results
4.2.1 Peak Sharpness and Detectability

Several tests were carried out to test the perfoceaf the hybrid optical

neural network in terms of peak sharpness and gedetectability * for the out-of-
plane orientation considered. The aim of the tests to assess the ability of the filter
to detect non-training in-class images that arentated at an intermediate angle of

view between the training images. The training cmbsisted of images over a
distortion rangg 2080] degrees at increments 2. To compare the filter with an

SDF-type filter, we used the SDF- MACH filter, torstrain the correlation peaks
generated by the MACH filter to achieve better €lagparation of the different

objects. We tested the SDF-MACH filter and the HOMlter with the object’'s
intermediate car poses over the same rangé&Oatincrements. We added two

randomly chosen intermediate car posed43& and afl40 , in the training set of the

16



HONN filter to create a false class. The Targettlodé false class object is

T....=—40 and of the true class object B, =+ .40Both filters have no

false false

information on the non-training, intermediate caages in the construction of their
composite images. We constrained the correlateakp in the constraint matrix of

both filters to be+ 1 for the images of the true class object &dor the images of

the false class object. We employed SDF-MACH ffilfgarameter$*! set to:

a =0002 B= 00landy = 01

Fig. 8. plots the correlation-peak height for eagbut image for both the
HONN and the SDF-MACH filters. Both filters coratr the correlation peak height,
using the constraint matrix, for the in-class timinset images and the out-of-class

training set images t&  and 0, respectively. From the plot of Fig. 8. it is ebged

that the HONN filter and the SDF-MACH filter arevariant to the out-of-plane
rotation, since they both have produced consisterrelation peaks for both in-class
training and non-training images. However, thepgrindicates better out-of-plane
rotation invariance for the hybrid optical neuratwork filter. The consistency of the

correlation peak values produced from the HONNIfitemonstrate the filter’s ability

to interpolate well between the intermediate casgsoatl0” increments. The SDF-
MACH filter produced correlation peak values thalt fo a greater degree around the
intermediate non-training images as compared taHO®&N filter’'sresponses. The
improvement in the HONN filter's interpolation abjl must result from the non-
linear function applied in the construction of tbemposite image comprising the

SDF filter formed from the NNET output images.

A second set of tests was carried out to evalinateéterioration of the filters’

correlation response for the intermediate car podeg. 9. shows the normalised

17



PCE values for both filters. The hybrid opticalured network filter and the SDF-
MACH filter were normalised to the maximum valuewsded for both filters, which
was the80° orientation test image. From the graph, itlsammbserved that the SDF-
MACH filter and the HONN filter produced PCE valugs the intermediate non-
training images close to those produced by theitrgicar images. In effect, both
filters maintain correlation peak sharpness forithelass training images. However,
the SDF-MACH filter demonstrates the highest PClies producing sharper peaks
and fewer sidelobes evident on the correlationglabhe values of the HONN filter’s

PCE values are, however quite acceptable.

From our experiments, we found that the changéhefabsolute distance of
the classification level&Cl, between the true class objects and the falss olajects
affects the PCE values produced from the HONN filt&Vhen we increased the
distance, the PCE values increased and, conversbbn we decreased it, the PCE
values produced decreased. This is because asonease the value afCl, the
hybrid optical filter increases its discriminatiability, but when we decreased it the
filter increases its generalisation ability anditsodiscrimination ability deteriorates.
The correlation peak broadens As i€tecreased i.e. there is very similar trade-off
in discrimination and generalisation ability to ttHfaund in SDF type correlation

filters.
4.2.2 Distortion Range of the Filter

A second group of test sets was carried out tauat@lthe distortion range of

the hybrid optical neural network filter. The trimg set consisted of images for a

distortion range ovel® to 90°. For comparison with an SDF-filter, we used the

SDF-MACH filter, which we trained with the sameitiag set. We used several

18



smaller test sets for both filters, which consistédwo in-class training images at a
widely separated angle within the rar{g@" 20 30° 40° 50 60° 70° 80 90°J and a
third non-training in-class image lying on the biee angle of the two in-class

training images. Fig. 10. shows the referencdeaofjview image at®,, the first
training car pose image a@, , the second training car pose image@t and the
intermediate non-training car pose image @i, where éSD[5°,45°] ie.
o, =[5° 10" 15 20° 25 30" 35 40 45 J We define A®to be the absolute
distance between the two training set images, baangle©, to be on the bisector

angle of©, and©,. Thus:

AGO = [10° 20° 30" 40° 50" 60" 70" 80" 90 J

prO =0, -0,
0,-29
2 (18)
7O, =|0, - 0,
0O, =[O, -0,
0,=0

As for the first group of tests used for evaluatithg peak sharpness and the

detectability of the filter, we added three randpctiosen training images, namely at
orientations 0f110, 130 and 140 , in the training set of the hybrid optical redur
network filter which fall inside the false clas3he Targets of the true class objects

and of the false class objects are kept the sameefise, i.e.T, . =+40 and

true

T.... =—40. None of the filters have any information buiitd them on the test

false
images of the intermediate car poses. We kepstdéhee constrained values in the
constraint matrix of both filters for the in-clagmages and for the out-of-class

images. The SDF-MACH filter was tuned to the saalees as for the first group of
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test sets, i.ea = 0. 0023 = 001 and y = 0. in order not to change the SDF-

MACH filter’'s behaviour and to obtain, if possiblan overall comparison to the

HONN filter.

Fig. 11. shows the correlation-peak height forheaput image for both the
HONN filter and the SDF-MACH filter. It is apparethat both filters have good

performance in recognising all the intermediate pases of the test set. The
correlation-peak height of the in-class input inmgep to é3 =15, that are

intermediate between two training images, lie withiband of greater than 90% of
the pre-specified peak-height constant in the camstmatrixC for the HONN filter
and more than 40% of the pre-specified peak-heaighstant in the constraint matrix
C for the SDF-MACH filter. From the graph it can béserved that both filters
demonstrated some degree of invariance to rotatien a range oD, [J [ 5,45 ]
The correlation peak-height of the in-class testismges which are intermediate
between the two training images fall inside a bafdgreater than 70% of the
specified peak-height constant in the constraintrimm& for almost all the test set
images of the HONN filter, whereas there is a clearation in the peak-heights from
that specified for the training in-class imagestied SDF-MACH filter. Thus it
appears that the non-linear interpolation of théntng set images of the intermediate
car poses, inherent in the hybrid optical neuréivpek filter, has resulted in less peak

deterioration when®, gradually increased, and succeeded in keepingmiost a

constant peak-height for the ran@g = 40°.

4.2.3 Discrimination Ability

The third group of test sets was carried out tduata the discrimination ability of the

HONN filter. The main aim of the tests was to diminate between objects of
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different classes while retaining invariance tociass distortions. The training set
consisted of images of the Jaguar S-type for adish range overo® to 70° at10°
increments. Again, for comparison we used the S¥EGH filter and we trained it
with the same set of images. The test set, usdabih filters, consisted of one
training image a#0" orientation of the Jaguar S-type and a secoadenof the out-
of-class Police RX-7 at the same angle of viewis Time we only added two images
at 130 and 140 , for the false class of the HONN filter and edor the SDF-
MACH filter. We did not have to constrain the falslass images of the objects to
zero peak-height in the construction of both fdteromposite images. The Target of

the false class object isT,,.=—40, and the Target of the true class object is,

T...=140. Both filters have no built-in information on thest images of the in-

true
class object or the out-of-class object. The \&lokthe parameters of the SDF-

MACH filter were kept constarfio =0.002 3= 001,y=0.1).

Table 1 was drawn from the tests we performed for hE-BACH and the
HONN filters. The third column of the table contains th&ies taken for the in-class
training image and the fourth column contains all the vatalen for the out-of-class

training image.

It can be observed from the Table 1 entries that bothdilemonstrated good
discrimination ability between the two objects, the Jagi+#type car and the RX-7
Police patrol car. The SDF-MACH filter produced approxeha®2% or more class

separation, whereas the HONN filter produced 72% or higass separation.
4.2.4 Clutter Tolerance

A fourth group of tests was carried out to evaluatedhezance of the filter to

background clutter in the input scene by the insertiotrahing images and non-
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training out-of-class images into different car park scefidse training set consisted
of images of the Jaguar S-type for a distortion range 20 to70° degrees &0
increments. As with the previous test sets, we used tHe-NBACH filter for
comparison and we trained it with the same training tehages. We added three
background images of typical empty car park scenes itrdiveng set of the hybrid
optical neural network to fall inside the false classe Wad to constrain the false
class images of the objects to zero peak-height constnaihé construction of both
filters’ composite images. The test set, used in hidigrs, consisted of one of the
training in-class images inserted in a car park scene, amana@hosen non-training
in-class image of an intermediate car pose inserted in the canpark scene and one
out-of-class non-training image of the RX-7 Police @atar also inserted in the car
park scene. The rest of the test set images were thersages of the Jaguar S-type
and the RX-7 Police patrol car inserted in a second car pankes The Targets of the

true class objects wergé, . =+ 4hd of the false class background images of the

true

empty car park scenes wefle,, =—40. The false class image of the out-of-class
non-training RX-7 Police car image was,., =—40. We kept the same values of

the parameters for the Output Noise Variance (ONV), Avefigelarity Measure

(ASM) and the Average Correlation Energy (ACE) ie=0. 0@= 001 and

y=0.1, respectively.

Fig. 12. (a) and (b) show the in-class Jaguar S-tgveand the out-of-class
RX-7 Police patrol car, resized and inserted into thet Background scene of a car
park. Fig. 13. shows the isometric correlation plasfethe in-class training view
Jaguar S-type car image 40 (resized and insertadto the first car park scene).

Fig. 13. (a) shows the HONN filter response and (b} tf the SDF-MACH filter.
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The correlation planes of the out-of-class non-traiftXg7 Police patrol car a40 ,
are shown in (c) for the HONN filter and (d) for the [SDIACH filter. Fig. 14 show

the isometric correlation planes of the in-class trainiegv\daguar S-type car image

at 40 and of the in-class non-training Jaguar S-type intaateedar pose ab5 ,

respectively.

From the above results, it is apparent that the HONN filees able to detect

and classify correctly the Jaguar S-type car pogiJatand suppress the background
clutter scene. The HONN filter rejected the out-of-class/RXalice patrol car in the
background scene. Both filters performed better withnkhagass training set Jaguar
car image and their performance deteriorated with tieenmediate in-class in-training
Jaguar S-type car image. The hybrid optical neural netfittmkas well as the SDF-
MACH filter were able to detect more easily the object in its¢ hackground than in
the second background scene. This is due to the highpkexity of the second car
park scene in comparison to the first. Table 2 showsviues of the Target-to-
Clutter Ratio (TCR) of the two filters. It is clearmtithe HONN filter demonstrates
higher TCR values for the two tested background sceaesttie SDF-MACH filter.

The SDF-MACH filter response deteriorates more when detgdhie intermediate

Jaguar S-type car image®® in both background scenes.

5 Concluson

The combination of an artificial neural network (HN) with the linear
combination filter, such as the synthetic discriamhfunction (SDF) design method,
results in the hybrid optical neural network (HONfjer. The motivation for the

HONN filter's creation was to combine the shift amance inherent in the
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combinatorial filter synthesis process and the lvmgar superposition of the training
set generated by neural network methods. The HON®& so created is shift-
invariant but incorporates a non-linear space domaperposition of the training set
making it suitable for direct implementation in @ptical correlator. For a filter to be
of practical use it should demonstrate good ddiditia good discrimination ability

and invariance to distortions in the input scene.

In this paper several tests were carried out testigate the performance of
the HONN filter, giving emphasis to its performaneéhin cluttered images. The
filter has shown a good quality correlation resgoms the non-training in-class
images at angles of view intermediate to the tngirset images. The HONN filter
has kept almost constant, good sharpness, coorelagiéaks of over 93% of the
correlation peak height value set in the filtermstraint matrixC for the intermediate
car poses a0’ increments. Further tests have demonstratedighedistortion range
of the HONN filter. It has produced good qualityrielation peak-height values for

all the in-class test set images which are interatedetween the two training images
over the range o’éSD[S" A5 ] falling inside a band of greater than 70% of the

specified peak-height constant value set in thesttamt matrixC. The non-linear
interpolation of the training set images of theeintediate car poses achieved in the
HONN filter resulted in less peak deterioration dmgh distortion range. The filter
was found to have good discrimination ability. TH®NN filter successfully rejected
the out-of-class RX-7 Police patrol car and hagaet and classified correctly the
Jaguar S-type car pose within the background clasttenes. It has kept overall high
TCR values for all the tested cluttered imageshefih-class training set and in-class

intermediate car poses.
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By changing the absolute distance of the classifindevels, ACI, we have
controlled the correlation plane peak and therfdtbehaviour has varied from highly
discriminating to more generalising properties.e Tasults presented have been very
promising for the realisation of the HONN filter aptical implementations for real-
time applications. It should be possible, usirg HONN filter, to incorporate fewer
views in the training set for a given distortionnga. This makes its optical
implementation easier, since this is limited by thgnamic range of the input

transducer.
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HIDDEN

DESIGN A Layers Assume 3 Input IMAGES of size
:-NPUT INPUT-to 1,23 [100>< 100] in matrix form or
ayer -lo- ;
Y HIDDEN Layers [1x10000] in vectorsize
WEIGHTS (IW) HIDDEN-to-

OUTPUT

OUTPUT
Laver 4

Tirue

T false

Single Neuron
OUTPUT
Layer

The NNET has 4 Layers (3 HIDDEN

I:I.O,O(:O 3 Single Neuron Layers and 1 OUTPUT Layer). There
Neurons HIDDEN Layers is a SINGLE INPUT source.

N1 is the Hidden Layer 1 Neuron learned the finsage,
N2 is the Hidden Layer 2 Neuron learned the setwredie,
N3 is the Hidden Layer 3 Neuron learned the thindde.

Fig. 2 The architecture of Design A of the artificial n@unetwork (NNET)
Block of the HONN Filter.
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DESIGN B HIDDEN
INPUT Layers Assume 3 Input IMAGES (GRAY-scale) of
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HIDDEN-to-
OUTPUT Layer
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L

(W) OUTPUT

Layer 4 Ttrue

PUT-to-HIDDEN

INPUT SOURCE P

NPUT-to-HIDD T false

Layer 2 WEIGH

Single Neuron
OUTPUT
Layer

The NNET has 4 Layers (3 HIDDEN Layers and 1
/3 Single Neuron OUTPUT Layer). Practically, there are 3 INPUT
HIDDEN L ayers sources connected to one of the 3 single Neuron
HIDDEN Layers working in parallel on one of the

INPUT SOURCE 3
10,000 Input Neurons

3 IMAGES.
3 Separate
INPUT N1 is the HIDDEN Layer 1 Neuron learned the firsabe,
SOURCES N2 is the HIDDEN Layer 2 Neuron learned the seclomage,

N3 is the HIDDEN Layer 3 Neuron learned the thimhge

Fig. 3 The architecture of Design B of the NNET Blocktlné HONN filter.
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(@ (b)

Fig. 4 (a) the Jaguar S-type car model and (b) the MEfithd RX-7
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() (d)

Fig. 5 (a), (b), (c) and (d) The Background Car Park 8sgrart of the
third data set used in the experiments.
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(c) (d)

Fig. 6 (a) The composite image of the basic SDF filterthe training set over ¢hrange [20 4!
60 80] of the car images, (b) the composite imagin® SDFMACH filter for the training se
over the same range of the car images, (c) the asitepmage of the HONN filter over the sa
range of the training images fdr, .=+ 8&hd T, =—80 and (d) the composite image

the HONN filter over the same range of the trairimgges forT,,, = +280 and Ty, = —280.
All the images of the training set used are grafesof size[256>< 256] .
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Fig. 7 (a) and (b) The correlation plane isometric anelydgvel image, respectively, of tt
HONN filter for the training set over the orientatirange of{20 40 60 80] degrees of the c:
images for the test image &0° orientation. T, =+ 80and T, =— 80 (c) and (d)
show the correlation plane isometric and the deegl image of the HONN filter for the sar
training set and the same test image, byt. = + 280 and T ;5. = — 280.
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Correlation Peak Height
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Fig. 8 The plot shows the correlation peak height, oftthining set over the orientatit
range[20 80] at increments oR0° , for the HONN and the SDF-MACH filters. Thettes

set consisted of the car images over the same rahgerements 010°. The correlatiot
peak height of both filters for the training setciass images and the out-@éss training
images was constrained in the filters’ constraiatrinto + 1 and 0 respectively.
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Peak Correlation Energy (PCE)
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Fig. 9 The plot shows the peak correlation energy (PGE) the orientation rang[éZO 80]

at increments oR0” of the training set, for the HONN and the SMIRCH filters. The tes

set consisted of the car images over the same raigecrements ofl0°. The peal
correlation energy values of both filters were nalised to the maximum value. T

maximum value of both of the filters was recorde@®@ orientation.
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All images are
256% 256

© ; 0n the bisector angle
of @, and @,

Fig. 10 The diagram shows the reference an@g,, and the two in-class training images at the

angles,®, and©,. The test image is at the bisector angle at afgle
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Fig. 11 The graph plots the correlation peak height of H@NN filter and the SDF-MACH filter
for the training set over the range an@g from 5° to 45 . Any two inelass training image

could be on any angle over the same rar@g,éﬁlO" 90°J and the test image was on -
bisector (range) angle of the two in-class trainingimages, i.e.
0,=|5'1015 20 2530°35 40 45 | .
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Table 1 Discrimination Ability (%) of the HONN and the SENFACH filter for the in-class training
Jaguar S-type image 40° and the out-of-class non-training Mazda RX-7geat the same angle.

Correlation Peak Height

Filter Parameter Values Discr. Ability % JAGUAR MAZDA
@=Q002/= 1yt 92.07 0.9789 0.0776
ACI
72.57 1.008 0.2765
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@) (b)

Fig. 12 (a) The in-class Jaguart$e car inserted in the first background scena
car park and (b) the out-of-class RX-7 Mazda Pgtiaiol car nserted into the san
background scene.
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@ (b)

(c) (d)
Fig. 13 The isometrics of the correlation planes of thelass training viev

Jaguar S-type car image 40° , resized and inserted into the first car park s¢
(a) the HONN filter and (b) the SDF-MACH filter. h& corréation planes of th
out-of-class non-training RX-7 Police car 40°, resized and inserted in t
same car park scene, (c) the HONN filter and (d)SBF-MACH filter.
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@) (b)

c d
Fig. 14 The isonge)trics of the correlation planes( c))f theclass nortraining

intermediate Jaguar S-type car pos®&5it, resized and inserted into the first car [
scene, of (a) the HONN filter and (b) the SDF-MA@Her and resized and inserted
into the second car park scene of (c) the HONRrfiind (d) the SDF-MACH filter.
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Table 2 Target-to-Clutter Ratio (TCR)

Tolerance -to- Clutter (TCR)
Filter BG Scenes IN-CLASS IN-CLASS OUT-of-CLASS
Trainin Non-Training |Non-Trainin
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