Engine Testing and Modelling

505H3

School of Engineering & Informatics
University of Sussex
Falmer, Brighton, BN1 9QT
Engine Testing and Modelling

Teaching Pattern
Lectures, 2 hours per week.
Project/tutorial time: 2 hours in every odd week.

Course Convenor
Dr. W.J. Wang
Tel: 01273 877232
Email: w.j.wang@sussex.ac.uk
Office: 3A10 Richmond

Course material
Study Direct or www.sussex.ac.uk/~tafb8/etm/etm.html
Assessments

• 2 individual projects.

• Project reports are required to be handed in to the school office in week 6 and week 10 on the relevant Thursday before 16.00pm.

• Each of the two projects will have an equal weighting of 50%.

• Mark will be deducted in the normal fashion if you are late in handing in.
Course outline

Engine testing technology and test design; the use of sensors including temperature, pressure, force, torque, velocity, displacement, mass flow, vibration, emissions and laser diagnostic techniques.

Calibration and metering technology, instrumentations for mapping and ECU communications. Interpretation of test data.
Engine control systems for fuel economy and emission level;

Modelling and simulation methods for power-trains of conventional IC engines and hybrid power systems.
Energy demand and efficiency in test cycles.
Learning outcomes

A student should be able to:
1. Understand engine testing principles and procedures.
2. Be able to design engine testing cells under practical considerations.
3. Be able to understand sensors and instrumentation, and to analyse and interpret test data.
4. Understand energy efficiency and propulsion modelling.
5. Be able to simulate fuel consumption in standard driving cycles.
6. Understand engine emission control.
Library

- Guzzella, Lino and Sciarretta, Antonio, Vehicle Propulsion Systems, 2005

Assessments

<table>
<thead>
<tr>
<th>Type</th>
<th>Learning outcomes</th>
<th>Timing</th>
<th>Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coursework</td>
<td></td>
<td></td>
<td>100.00%</td>
</tr>
<tr>
<td>Project Report</td>
<td>1-3</td>
<td>Autumn Week 6</td>
<td>equal weighting</td>
</tr>
<tr>
<td>(3500 words)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Report</td>
<td>4-6</td>
<td>Autumn Week 10</td>
<td>equal weighting</td>
</tr>
<tr>
<td>(3500 words)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Resit mode of assessment

Same mode
Internal-combustion Engines

-Internal-combustion Engines are Heat engines.

-Fuel is burned inside the engine, contrasting with an external combustion engine (e.g. steam engine) in which fuel is burned in a separate unit.

-The diesel engine and petrol engine are internal-combustion engines.

-Gas turbines and jet and rocket engines are also internal-combustion engines. (Fuel is burnt inside their combustion chambers.)
An engine of 1930’s
Modern engine brings technology complications
Engines have to be tested in test rooms before installation
Engine Testing and Modelling
Nicholson McLaren
A typical engine testing control room
Manifold Wave Dynamics

Kistler 4505 Pressure Transducers
Control Room Layout 2002

Electronic supply of test program instructions

Electronic configuration of Channel data acquisition system

Automation of basic test programs leading to full test automation

Electronic test result data storage
Data acquisition and control at Nicholson McLaren 2005
Caterpillar Truck Race engine 1650 BHPc
Emissions measurement system

Exhaust Emission Laboratory of BOSMAL Automotive R&D Centre
A Test cell of 1970’s to 1990’s Ford Dunton

- 72 Channels Primary Data
- (Pressure Temperature)
- 72 Channels Calculated Data
- CorrTorque, Vol Effy, AFR Calc
- Eddy Current Dynamometer
 (150 kW @ 8000rpm Typical)
- Pierburg Fuel Flow Meter
- Horiba Emission Analysis
- MEXA 9000, 7000 series
- THC (total hydrocarbon), NOx, CO, CO2, O2 Analysis
- Full Induction & Exhaust System
Vehicle Testing
Testing in anechoic chamber
Outside look: CRITT M2A - Automotive Research Centre at Bethune 2006
Layout of A Typical Test Laboratory