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Combustion Quality



Engine Testing and Instrumentation 2

Combustion chambers
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Some classic combustion chambers



Engine Testing and Instrumentation 4

Two stroke diesel
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Pressure/volume indicator diagram for a two stroke engine

Dotted line = 
four  stroke
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Two stroke designs

a= loop scavenge

a’= rotary valve loop 
scavenge

b=reverse loop scavenge

C= opposed piston

d= U-cylinder

e= poppet valve

F = sleeve valve
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AVL advanced 2 stroke automotive concept 1996
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Hesselman injector 1908
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1910 McKechnie of Vicars
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Diesel’s pump with spill valve wedge control
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1914 Rotary valve
Francois Feyens of Belgium
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1910 Peter Bowman Denmark
Pintle valve. Bosch took on patent in 1935
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Electro magnetic injector

• This was patented by Thomas T Gaff in the USA     1913
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1905 Unit injector
combined nozzle and pump
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The pre-combustion chamber
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The Wirl-chamber process
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Sheathed element glow plug
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DI Configuration
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DI with wall distribution



Engine Testing and Instrumentation 21

Silent External 
Combustion

Combustion
Organic Compound+O2>CO2+H20+Heat

Oxygen

Moulton

Wax

Wick

Candle Wax an Organic 
Compound



Engine Testing and Instrumentation 22

Thermal

Energy

Mechanical Energy

Thermal Energy

(exhaust)

Chemical

Energy

(fuel,air)

Engine: an energy 
conversion device that 
converts thermal energy 
(heat) to mechanical energy
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PV Diagram

Clearance 
Volume

Swept volume
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Working PV diagram made
9th May 1876 by Mr Otto
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What you would see 
on your screen
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Phasing Efficiency

• Overall engine loss when spark timing differs 
from overall engine MBT

• Individual cylinder loss when individual cylinder 
MBT differs from overall engine MBT

• Individual cycle loss when individual cycle 
phasing (CA50) differs from optimal phasing

There will always be phasing efficiency loss
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Cylinder Pressure Measurements

Cylinder Pressure vs.Crank Angle

-450        -360           -270           -180           -90           0             90           180             270     360

TDC                  BDC                    TDC                 BDC                    TDC

Intake Stroke   Compression      Expansion         Exhaust

400

800

1200

1600

kPa



Engine Testing and Instrumentation 29

Otto Cycle
Cylinder Pressure (kPa) vs.Cylinder volume (cc)
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Where, ή =thermal efficiency
γ = specific heat ratio

rc = COMPRESSION ratio
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Cylinder Pressure Measurements
Cylinder Volume vs.Crank Angle
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Potential Energy 
input = 100% (Fuel)

Cd Losses

Tyres,brakes, drive train friction

Powertrain 
losses

Tractive Energy 
6% Efficiency !!
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Induction

tract Exhaust 
manifold

EGR valve

Combustion 
System

Losses:
•Thermodynamic cycle
•Real gas
•Heat
•Mass
•Time of event
•Pumping
•Valve overlap
•Mechanical losses
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PV Diagram
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Real Gas Loss
Cylinder Pressure (kPa) vs.Cylinder volume (cc)
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Heat and mass Losses
Cylinder Pressure (kPa) vs.Cylinder volume (cc)
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Incomplete combustion
Losses

Cylinder Pressure (kPa) vs.Cylinder volume (cc)
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Pumping Losses
Cylinder Pressure (kPa) vs.Cylinder volume (cc)
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Time to combust  Losses
Cylinder Pressure (kPa) vs.Cylinder volume (cc)
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Real Gas Loss
Cylinder Pressure (kPa) vs.Cylinder volume (cc)
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Otto Cycle
Cylinder Pressure (kPa) vs.Cylinder volume (cc)
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losses
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Torque versus spark
timing for a complete engine

Spark Timing (Degrees before Top Dead Centre)
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Phasing loss 
Individual cylinder MBVT is not
equal to the overall engine MBT
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IMEP v CA of 50% mass burned
One cylinder average at 5 different spark timings
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IMEP vCA50 mass burned, 
individual cycles at five different 
spark timings

MBT timing
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Phasing Efficiency Loss Summary

• Overall engine loss when spark timing differs from overall 
engine MBT

• Individual cylinder loss when individual cylinder MBT 
differs from overall engine MBT

• Individual cycle loss when individual cycle phasing 
(CA50) differs from optimal phasing

There will always be phasing efficiency loss



Engine Testing and Instrumentation 49

Understanding what 
is happening inside 
the combustion space

•In cylinder pressure 
measurement

•Optical

•Ion Gap

Types of Combustion 
Diagnostics
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AVL optical sparking 
plug. *8 fibre optic 
tubes look at the light 
generated by the burn

FEV Ion 
Gap

+ve

-ve

Ionisation energy level
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Cylinder-Pressure Based 
Combustion Analysis

Measurement and interpretation of
combustion chamber pressure to determine:
• Piston and crankshaft loads
• Torque produced from the burning air/fuel charge
• Torque required to induct the fresh charge and exhaust the burned 

charge
• Time required for the combustion flame to develop and propagate
• Spark timing relative to MBT
• Presence and magnitude of knock
• Cycle to cycle and cylinder to cylinder variability
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Cylinder-Pressure Based 
Combustion Analysis

Some uses of combustion analysis
• Assessing inlet/exhaust port and manifold geometries
• Optimising combustion chamber shape
• Quantifying compression ratio trade offs
• Comparing spark plug parameters
• Selecting valve timing overlap and duration
• Optimising fuel injector timing and opening duration
• Investigating transient response
• Measuring mechanical friction
• Automated mapping (MBT,Knock/Pre ignition control)
• Calibration optimisation
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Combustion Performance Parameters

• Mean Effective Pressure

• Combustion Phasing

• Cyclic Variability

• Heat Release

• Equation Summary
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Indicated Work IMEP
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Indicated Pressure IMEP
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PV Diagram
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PV Diagram
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Indicated
Compression,Combustion and 

expansion
Diff= Pumping

Net Adds Intake & Exhaust 
Processes

Diff = Friction

Brake Adds Rubbing 
Friction Losses

MEP Summary
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Combustion Performance Parameters
Cylinder Pressure vs Cylinder Volume-Influence of Load
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Combustion Performance
Parameters
Cylinder Pressure vs Cylinder Volume-
Influence of Spark Timing



Engine Testing and Instrumentation 63

Combustion Performance
Parameters
Cylinder Pressure vs Crank Angle-
Influence of Spark Timing
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Combustion Phasing

Angular relationship 
between the combustion 
process and piston 
position.  Normally 
expressed as either the 
crank angle at which 
50% of the inducted 
charge mass has 
burned(CA50),or the 
crank angle location of 
peak pressure (LPP)
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Combustion Phasing

Poor phasing, 
either advanced 
or retarded, 
reduces 
efficiency (less 
torque from a 
given mass of 
fuel and air)
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Combustion Phasing
Cyclic combustion variability produces
cyclic phasing varaibility
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Heat Release

Analysis of cylinder pressure from a firing engine to determine the 
burn history of the combustion event on a crank-angle –by- crank-
angle basis
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Approximate Heat Release
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Approximate Heat Release
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Heat Release
Approximate Heat Release
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Heat Release

Approximate Heat Release
• Advantages

– Computationally simple—can be performed in real time
– Requires relatively few, readily available inputs

• Major assumptions
– All cycles have 100% combustion efficiency
– Polytropic coefficients are equal and constant

• Recommended Application
– Stable operating condition with no partial burns
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Heat Release

Thermodynamic Heat Release
Advantages:
• Thermodynamically  tracks the mass of fuel burned on an 

individual – cycle basis, permitting..
– Quantifying partial burns and misfires
– Quantifying residual fraction and residual composition
– Quantifying heat losses

• Provides accurate statistics on burn rate variability
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Heat release

• Thermodynamic Heat Release
• Assumptions:

– Heat transfer can be modelled by an empirical 
correlation (modified Woschni)

– Pressure data and other inputs are accurate
• Other Inputs:

– Swirl number, fuel flow, stoichiometry,combustion 
efficiency, lower heating value of fuel, combustion 
chamber surface area, valve timing

• Recommendations:
– Combustion evaluation at conditions with high cycle 

variability
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Heat Release
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Heat Release
Thermodynamic Heat Release
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Heat Release
Processing Options for CAS, cont..
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Heat Release
Processing Options for CAS cont.
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Look again at cycle to
cycle differences !!!
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Heat Release

Sample Analysis

• Idle assessment

• Combustion phasing

• Burn rate profile analysis for knock
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Combustion Variability

What is it ?

Variation in combustion (IMEP) from cycle-to-cycle and cylinder-to-
cylinder.

Engine cycles are like fingerprints--- no two are the same.
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Combustion Variability

How does it manifest itself
• Engine roughness

– Cyclic and cylinder-to –cylinder variations in torque 
and engine speed

• Compromised torque/power
• Lower resistance to knock
• Efficiency losses

– Higher emissions
– Lower fuel consumption

• Compromised spark timing
• Compromised dilution tolerance
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Combustion Variability

Causes
• Mixture motion at the location and time of spark
• Variation in the amount of air and fuel inducted each cycle
• Mixing of the air,fuel, and exhaust residuals
• Fuel preparation(droplet size,cone angle,targeting)
• Long burn duration due to poor combustion system 

hardware design
• Low ignition energy,small plug gap
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Combustion Variability

• Combustion variability impacts engine performance at all operating 
conditions:
– Idle

• Instability is typically driven by variations in fuel flow and 
exhaust residuals

– Part-Load
• Variability is driven by fuel flow variations and EGR

– WOT
• Combustion instability is typically dictated by variations in 

airflow
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Combustion Variability
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Combustion Variability
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Combustion Variability
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Combustion Variability

How is it Quantified ?
• The most common methods to quantify cycle-to-cycle and 

cylinder-to-cylinder variability includes:
– Standard deviation of IMEP
– Coefficient of variation of IMEP
– Lowest normalized value of IMEP
– Standard deviation of rev/min
– IMEP imbalance
– RMS of the Delta IMEP
– Variation of burn parameters
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Combustion Variability
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Combustion Variability

Coefficient of Variation of IMEP
• COV of IMEP quantifies variability in indicated 

work per cycle by expressing the standard 
deviation as a percentage of the mean IMEP:

COV of IMEP = STDEV of IMEP  * 100
IMEP

– While opinions vary, a degradation in vehicle 
driveability can typically be noticed when the COV of 
IMEP exceeds 3% - 5%.
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Combustion Variability

Lowest Normalized Value of IMEP
• LNV of IMEP,an indicator of misfires and partial 

burning cycles,is determined by normalizing the 
lowest IMEP value in a data set by the mean:

LNV of IMEP = IMEP min  *100

IMEP
• LNV < 0 for a misfire
• 0<LNV<89 indicates partial burn
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Combustion Variability

IMEP Imbalance
• IMEP imbalance, a measure of cylinder-to-cylinder 

variation, is quantified by subtracting the average IMEP in 
the weakest cylinder from the average IMEP in the 
strongest cylinder, and then normalising by the mean 
IMEP

IMEP imbalance=IMEP i,max – IMEP i,min * 
100

IMEP engine
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Combustion Variability
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Combustion Variability

Some thoughts to ponder
• Do the combustion stability metrics already discussed 

provide the best measure of 
combustion stability?

• What does the driver feel?
• What about the difference in work from each cylinder 

event in firing order ?
• Is the phasing of the cylinder events important
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Combustion Variability
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Combustion Variability
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Combustion Variability
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Combustion Variability
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Combustion Variability

How is it Quantified ?

• Variations in Burn Duration are sometimes used to quantify 

combustion variability

– A significant amount of combustion instability is driven by 

variation in the development of the flame kernel (0-2.5 to 10% 

mass burn duration)
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Combustion Variability

• Still, none of the combustion stability metrics discussed comprehend 

the physical phasing of the events

– What happens if the cylinder events are unevenly spaced ?
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Combustion Variability

Rules of Thumb ** -
• Combustion stability improves with…

– Increased speed and load
– Higher compression ratios
– Lower overlap cams
– Higher energy (at the gap) ignition systems
– Higher temperature
– Lower humidity
** These generalities do not always hold true !
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Combustion Variability
Trade offs-
•Unfortunately, there is typically a trade off between high airflow for power and high 
in-cylinder motion for increased burn rates and less combustion variability
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Combustion Variability

Steps to improve stability
• Well balanced combustion system hardware

– Equal-length, replicated intake/exhaust runners & ports

– Replicated combustion chambers (fast burning)

– Good EGR, air,fuel,PCV & purge distribution

– Good fuel injectors

• Small droplets

• Good targeting (back of valve, minimize wall-wetting)
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Combustion Variability

Steps to improve stability
• Well balanced combustion system hardware

– Equal-length, replicated intake/exhaust runners & ports

– Replicated combustion chambers (fast burning)

– Good EGR, air,fuel,PCV & purge distribution

– Good fuel injectors

• Small droplets

• Good targeting (back of valve, minimize wall-wetting)
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Residuals
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Residuals – Backflow of exhaust
gas into the intake system occurs during valve
overlap.
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Residuals
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Residuals

Residuals are increased by:-
• Large valve overlap area
• Low engine speed ( more time for back flow)
• Low induction manifold pressure
• High exhaust back pressure
• Low compression ratio
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Residuals – SAE Paper 931025
presents a regression equation derived 
to predict residual fraction as follows:-
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Exhaust Gas 
Recirculation (EGR)
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EGR- Increases net thermal
efficiency by reducing pumping work
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EGR-Output reduced with 
addition of EGR at constant manifold
pressure
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EGR – Must open throttle to
recover load, thereby reducing
pumping loss ( spark ignition only)
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EGR – Performs the same function
as the throttle, with out the associated
pumping work (Spark ignition only)
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EGR – Reduces NOx emissions
by reducing the combustion 
temperatures
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EGR – To much  has distinct
disadvantages !!!!!
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EGR trade offs

• High EGR
– Positive aspects

• Increases efficiency ( improve fuel economy)
• Reduces NOx emissions

• High EGR
– Negative aspects

• Increases HC emissions
• Decreases combustion stability
• Complicates transient control
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Abnormal Combustion

• Incomplete burn ( misfires and partial burns)

• Pre-ignition

• Knock
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Incomplete Combustion

Misfires and Partial Burns occur when flame propagation is either 

never properly initiated, or fails to propagate fully across the

combustion chamber prior to exhaust valve opening.
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``
Flame Initiation

Misfire occurs without proper 
spark discharge

S I Application
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Incomplete Combustion

Flame Propagation

Misfire occurs likewise if the 
rate of conductive heat losses 

exceeds the rate of heat 
production from combustion
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Incomplete Combustion

Complete Burn

Burn is complete when the flame fully 
propagates across the combustion 
chamber
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Incomplete Combustion
Misfire
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Incomplete Combustion
Misfire
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Incomplete Combustion

Causes of Misfire
• Insufficient ignition energy ( spark or compression ~ cetane number ! )
• Conditions at the spark plug at time of spark(S.I.Engine)that are not 

conductive to ignition
– Excessive residuals
– Excessive EGR
– Air/fuel ratio ( Too lean or too rich )
– High compression pressures
– Low temperatures
– Mean flow velocity too high (+ 320feet/min)
– S.I.Engine excessive plug fouling
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Incomplete Combustion
Partial Burn
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Incomplete Combustion
Partial Burn
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Incomplete Combustion

Causes of Partial Burns
– Burn duration too long ( slow burn)

• Insufficient charge motion
• Low compression pressures
• Excessive dilution ( residual exhaust, air, EGR)

– Spark timing is too retarded ( Diesel injection is too retarded)
– Fuel/air cylinder contents are not well mixed
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Combustion Variability

Steps to improve stability
• Well balanced combustion system hardware

– Equal-length, replicated intake/exhaust runners & ports

– Replicated combustion chambers (fast burning)

– Good EGR, air,fuel,PCV & purge distribution

– Good fuel injectors

• Small droplets

• Good targeting (back of valve, minimize wall-wetting)
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Knock

Explosive spontaneous ignition of fuel-air mixture ahead of the normal 
propagating flame and the subsequent cylinder pressure oscillations

Flame
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Knock
Knock is not:
• Any combustion-induced noise

– Knock is the result of uncontrolled auto – ignition and 
will respond to changes in fuel octane

– Rumble is the result of high pressure rise rate and will 
not respond to changes in fuel octane

• Detonation
– Typical knock induced pressure oscillations are 

acoustic ( sonic). Detonation is supersonic !
• Preignition

– Preignition is the initiation of combustion prior to spark 
discharge, often the result of a hot spot induced by 
knock
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Knock

Who needs to worry about it ?

• Fuel Formulation Chemists

• Base Engine Designers

• Calibration Engineers
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Knock

• When does knock occur ?
ƒ Temp  d t is high
• Engine speed is low and MAP is high
• Combustion duration is long
• Temperatures are high (ambient,coolant, combustion 

chamber surface)  
• Charge dilution is low
• Many particulate deposits
• Spark ( point of injection) advance is high
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Knock
Why is it a problem ?

Cost if it occurs:
• Potentially destructive
• Annoying to the customer
Cost of prevention:
• Fuel quality costs money
• Reducing compression ratio sacrifices power and fuel 

economy
• Retarding spark ( point of injection) reduces torque and 

fuel economy
• Enriching the air-fuel ratio increases emissions and fuel 

consumption
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Knock
How do we control it ?

Fuel Chemist:
• Blending agents (aromatics and MTBE) to raise octane
• Additive packages to minimise deposits
Base Engine Designer:
• Fast burn combustion chambers
• Low cyclic variability
• Low cylinder to cylinder mal-distribution
• Excellent structural cooling
Calibration Engineer:
• Fuel Enrichment
• Spark ( Diesel Injection ) Retard
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Knock

How does one quantify it ?
• Trained ear(customer, historic development engineer)
• Accelerometer (vehicle ECM)
• Cylinder pressure measurement

( modern development engineer)
– Maximum rate of pressure rise
– Peak and hold on filtered pressure trace
– Peak and hold on smoothed pressure trace
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Knock
Example of cylinder-pressure
based knock analysis
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Knock
Data Processing Options
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Knock
Data Processing Options
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Knock
Data Processing Options
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Knock
Data Processing Options
Comparison
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Knock
System Summary

ACAP:
• Analogue band-pass filter in dedicated module
CAS:
• Smoothing to user-specified width}
• Smoothing to two-period width }user selectable
• Digital FIR filtering }
ALL SOFTWARE—NO DEDICATED MODULE
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Knock
System Summary,continued

How does CAS ( combustion analysis system) determine 
knock

• Encoder decimation allows user to increase or decrease 
encoder resolution within software

• Knock software will reside in it’s own coprocessor, and 
will automatically set the encoder resolution to the 
appropriate level during the user-selected knock window

• Customer will need to purchase a knock coprocessor to 
enable knock calculations
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Knock
Sample analysis, old vs.new

Problem:Excessive low-speed knock
Solution:Lower compression ratio

WRONG !
Correct Solution
1. Is knock excessive in all cylinders?
2. Is combustion variability dictating knock? 
3. What is the true knock limited torque?
4. Is the burn rate profile conducive to good knock limited 

performance?
5. Can we adequately detect knock?
6. Is the compression ratio too high?
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Preignition –ignition in the
combustion chamber prior to spark
discharge. Where will NOx start ?
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Preignition

Preignition is undesirable because:
• Rapidly produces very high pressures and temperatures in the 

combustion chamber
• May cause piston to melt or break in the middle of the piston crown ( 

top)
• May lead to some other form of catastrophic failure ( crankshaft, 

connecting rod, valves etc,….)
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Advanced Calibration
Methodology (17x103)x4 data points
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Advanced Calibration
Methodology (17x103)x4 data points
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Advanced Calibration
Methodology (17x103)x4 data points



Engine Testing and Instrumentation 149

Advanced Calibration
Methodology (17x103)x4 data points
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Advanced Calibration
Methodology (17x103)x4 data points
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Advanced Calibration
Methodology
Calibration Optimisation, Constant Speed Dilution 
Utilisation
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Advanced Calibration
Methodology

Calibration Optimisation, Constant Speed Dilution Utilisation



Engine Testing and Instrumentation 153

Advanced Calibration
Methodology
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Advanced Calibration Methodology

Calibration Optimisation, Constant Speed Dilution Utilisation



Engine Testing and Instrumentation 155

Advanced Calibration
Methodology
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Advanced Calibration
Methodology
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Advanced Calibration
Methodology
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Advanced Calibration
Methodology
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Advanced Calibration
Methodology
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Advanced Calibration
Methodology
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Advanced Calibration
Methodology
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Advanced Calibration
Methodology
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Advanced Calibration
Methodology
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Advanced Calibration
Methodology
FTP City Cycle    Engine out HC
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Advanced Calibration
Methodology FTP City Cycle
Engine out NOx
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Advanced Calibration
Methodology FTP City Cycle
Engine out Emissions Summary
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Advanced Calibration
Methodology
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Degrees of 
crankshaft advance
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Advanced Calibration
Methodology

Sensitivity Summary

Lean off Retard

COV COV
HC         == engine out == HC

Temp.exh* = light off =        Temp.exh*

*Heat flow



Engine Testing and Instrumentation 173

Advanced Calibration
Methodology

Cold Start Calibration – What to do ?
• Calibrate to a specific combustion stability limit
• Operate at the highest engine speed acceptable from a 

noise and vibration perspective during the cold idle
• Optimise trade off between spark retard and air-fuel en-

leanment to minimize cumulative HC emissions prior to 
catalyst light off
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Advanced Calibration
Methodology

Combustion as a Calibration Tool
• Combustion Phasing:map to an optimum phasing value ( crank angle 

(CA) 50 of around 10deg.),use CA50 to check calibration ‘precision’
• Combustion Stability:map within acceptable driveability limits, use 

COV of IMEP and IMEP imbalance to check calibration drivability
• Knock and Preignition Monitoring:map within acceptable knock 

and pre-ignition limits
• OBDII Misfire Diagnostic Tuning:tune diagnostic to trigger only on 

true misfires
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Data Integrity

How is it achieved ?
By understanding the magnitude and causes

of variation present in the combustion data

acquisition process and then using that 

knowledge to identify and remove causes that 

do not occur naturally
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Data Integrity

Understanding sources of variability
• Daily checks

– Daily checks provide the information necessary to understand 
variability

– Record combustion data daily at the same test condition
– Control all variables to the greatest extent possible
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Data Integrity

Daily Checks
• Ideally,record data under both firing and motoring conditions

– Select a firing condition representative of the majority of actual 
test conditions

• If most of your testing is done at low speeds and loads, select 
the daily check condition accordingly

– Perform the motoring test at the same speed and WOT ( Full rack)
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Data Integrity
Daily checks: Maintain consistent engine
and environmental conditions

• Engine:
– Follow the same warm-up 

procedure
– Constant speed
– Constant load

• Brake,torque,MEP,  
MAP

– Always conduct motoring 
and firing tests in the same 
order  ( Always firing first)

• Environment:
– Temperatures

• Inlet air, coolant,oil, 
fuel

– Pressures
– Inlet air humidity
– Same fuel type
– Same test technician 

running the test if possible
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Data Integrity

Daily Checks
• Now that you are conducting daily checks and gathering lots of 

interesting data, what are you going to do with it ?

Plot it on a Control 
Chart
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Data Integrity

What is a control chart ?
• A statistical tool used to distinguish naturally occurring 

variation in a process from variation due to special causes.
– Naturally occurring variation is inherent to any 

process over time and effects all outcomes
– Special causes, or assignable causes, such as a failed 

pressure transducer or an air leak in an emission 
sampling tube,are not always present and do not 
affect all outcomes
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Data Integrity

What will a Control Chart do for me ?
• Control charts are useful in identifying

– Engine problems
• Scuffing pistons, leaking rings, damaged camshaft lobes…

– Insufficient break-in
• Stability of emissions, friction…

– Instrumentation problems
• Dirty,damaged transducers
• Failing emissions analyzers
• Equipment ‘drift’
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Data Integrity

Control Charts
• Two types of control charts prove most useful for 

understanding variation in combustion data
– X-bar

• Tracks the value of a particular variable ( engine 
average IMEP in following example)

– Range
• In this example, it quantifies the range ( maximum 

value –minimum value) of IMEP between six 
cylinders
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Data Integrity: Control Charts
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Data Integrity: Control Charts
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Data Integrity

Control Chart Set up and Maintenance
• Be diligent and keep good records

– When you detect a value ‘out of control’ record the findings in a 
log

– Review the charts regularly
– Recalculate the limits only when a change has been made to the 

engine/data acquisition system
• New camshaft,cylinder head, new fuel batch etc….
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Data Integrity

Interpreting Control Charts
• The control chart provides the basis for taking action to 

improve a process
– A process is considered in control when there is a 

random distribution of the plotted points within the 
control limits

– If there are points outside the limits, or if the process is 
unstable

• Take action to remove the special cause of 
variation !
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Data Integrity
Interpreting Control Charts



Engine Testing and Instrumentation 188

Data Integrity
Interpreting Control Charts

NEW FUEL ?LIGHT 
ENDS CHANGE ?
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Data Integrity

What data should one put on a Control Chart ?
• Firing Checks

– IMEP, PMEP, NMEP, BMEP, FMEP, MAP,rev/min
• All load  should be in agreement
• Variation may indicate dirty transducers,recalibration for 

torque meter.. Your conclusions can be supported with fuel 
flow or emissions data

– HC, NOx, CO, CO2

– Carbon and Oxygen balance, A/F ratios, A/F from O2 sensor, fuel 
flow rate, air flow rate, BSFC

– Polytropic coefficients, PP, LPP, CA50
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Data Integrity

What data should one put on a Control Chart ?
• Motoring Checks

– IMEP, PMEP, NMEP, BMEP, FMEP, MAP, rev/min
• IMEP is a good indicator of transducer ‘health’

– PP, LPP
• Motoring peak pressures and their location are relatively 

consistent.PP provides a good transducer check while LPP 
confirms encoder phasing

– Polytropic coefficients
• These coefficients typically do not vary much and a little 

change will cause them to exceed the control limits, you must 
use your judgement and cross reference.
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Data Integrity

Good test practises
• Make redundant measures a part of normal testing !

– Typically, any one measurement can be supported by several 
devices or other measurements- an example being Air Fuel Ratio
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Data Integrity

Redundant Measures
• How many ways can you quantify/qualify your air fuel ratio ?

– Carbon and oxygen-balance air fuel ratio
– Exhaust O2 sensor
– Inlet air and fuel measurement
– CO emissions
– Specific fuel consumption, cylinder pressure, torque,..

Take the time to understand and apply redundant measures 
wherever possible
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Data Integrity

Good test practices
• Whenever possible, perform test replications-do not make a decision 

based on a single test
• Random test points
• Support your data by understanding the variability present in your 

equipment
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Data Integrity

How many cycles of combustion data should one record ?
• Rules of thumb:

– As variability increases, record more data
• Idle-very low speed and light load >500-1000 cycles
• Part-load-better combustion stability>300-500 cycles
• High load,high speed >300 or fewer cycles-balance the number 

of cycles against things like propensity to knock..
• Motoring- very repeatable pressure traces>less than 300 cycles
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Data Integrity

• Daily checks, control charting, and redundant measures require a small 
investment of time to establish and maintain, but save many times the 
capital investment by reducing development and test time through
improved data quality
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Compression Ratio
Optimisation ( S I Application)
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Compression Ratio
Optimisation

Advantages of Maximising Compression Ratio
• Increased full-load torque through most of the engine speed range
• Reduced full-load combustion-induced engine noise
• Lower peak full-load combustion pressures
• Improved part-load fuel economy(approx 1.5% per 0.5\ratio)
• Increased dilution tolerance through faster burn
• Improved idle stability via lower residuals
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Compression Ratio
Optimisation

Disadvantages of Maximising Compression Ratio
• Higher part-load hydrocarbon and NOx emissions
• Greater reliance on knock sensing system
• Higher full-load exhaust temperatures
• Increased likelihood of pre-ignition
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Compression Ratio
Optimisation

Enablers of High Compression Ratio
• Precise fuel control
• Good cooling of the chamber and combustion chamber
• Reliable knock sensing and control methodology
• Low engine – out emissions
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Full Load 
Performance Optimisation

• Example from a NASCAR Winston Cup race engine development 

exercise, which demonstrates the clear advantages of utilising 

combustion analysis techniques to enable accelerated development.
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Full Load 
Performance Optimisation
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Full Load 
Performance Optimisation

Ignition timing is set to the value that maximises output from each individual cylinder, 
leading to a 10 BHP increase in total engine power

5.7 litre 
push rod
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Peak Power:Sensitivity to
Air-Fuel Ratio

Individual cylinder air-fuel ratio mal-distribution also reduces total engine peak power
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Peak Power: Air-Fuel Ratio
Distribution

This amount of mal-distribution costs about 7 BHP when global spark timing is 
used and 4 BHP when individual cylinder spark optimisation is used.
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Individual Cylinder
Spark Optimisation

Even with individual cylinder spark timing optimisation,power contributions 
of the individual cylinders differ significantly
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Peak Power 
Cylinder Replication

Goal is to have each cylinder perform as well as the best cylinder ( potential 22 
BHP gain)
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Replicated Chambers,
Ports & Runners
Cylinder-to-cylinder imbalance in any of a variety of areas degrades the 

combustion system performance:
• Air fuel ratio ( air flow / fuel flow )

– Intake restriction
– Exhaust restriction
– Tuning lengths
– Fuel distribution

• Mixture motion
• Valve timing
• Compression ratio



Engine Testing and Instrumentation 208

Combustion System
Replication

Design issues to achieve

• Pastry cutter design replication of the combustion system, 

inlet runners, and exhaust runners

• Even firing intervals

• Control of the manufacturing process
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Combustion System
Replication

Volume of runners not 
the length is the critical 
factor
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Combustion Variability

Steps to improve stability
• Well balanced combustion system hardware

– Equal-length, replicated intake/exhaust runners & ports

– Replicated combustion chambers (fast burning)

– Good EGR, air,fuel,PCV & purge distribution

– Good fuel injectors

• Small droplets

• Good targeting (back of valve, minimize wall-wetting)
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Trapped Mass
Replication
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Sources of Trapped 
Mass  Assymetries
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Trapped Mass
Single Cylinder

Trapped mass varies as a function of engine speed due to induction system 
tuning
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Trapped Mass & IMEP,
Single Cylinder

Not surprisingly,trapped mass is an extremely accurate measurement of 
individual cylinder indicated torque (IMEP)
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Trapped Mass & IMEP
Two Cylinders
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Trapped Mass &
Knock Propensity
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Trapped Mass, Corner &
Centre Cylinders :In this example,
trapped mass is dictated by manifold tuning (primary intake runner 
length); thus, corner cylinders and centre cylinders behave differently
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Torque Curve 
Optimisation
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Torque Curve Optimisation
Average torque curve is broad and non-optimum
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Torque Curve Optimisation
Torque curve optimisation causes the torque curve
to become ‘peaky’,exhibiting significantly increased
torque over specific speed ranges
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Power Optimisation
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Power Optimisation
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Tuning for Power
Summary
• Power and torque from a multi-cylinder engine are dictated by the total 

contributions of the individual cylinders
• Some design features,such as single point air throttling and or single 

point fuel injection,lead to inherent mal-distribution
• Mal-distribution causes the torque curve to be broad and low. All 

cylinders suffer compromised performance
• Trapped mass mal-distribution is the single largest source of mal-

distribution in other parameters
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Tuning for Power
Summary cont…

• Compensating for mal-distribution in trapped mass by optimising inlet 
valve closing reduces the amount of compensation required for other 
parameters such as ignition timing

• Achieving maximum individual cylinder performance by reducing 
mal-distribution substantially increases overall engine output
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Automatic mapping

The trend toward automatic mapping  is a ongoing 
cause for concern.
There are many and disparate variables to be considered, for 
example

Fuel and ignition timing and duration
Variable valve timing
Variable Induction length
Variable EGR
Variable boost
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Automatic mapping

Changing many parameters simultaneously runs contrary to the engineers 
training , the mantra was change one thing at a time.

Times have changed, and we must use the available tools effectively

In order to be able to identify major errors in Automatic mapping data, it is 
essential that the engineer has a deep understanding of the effect of individual 
parameter changes on all the associated outputs.

Steady state loop studies in the running envelope are still required, and again 
when running the tests, warning bells should ring if the results are too good
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Thermal

Energy

Mechanical Energy

Thermal Energy

(exhaust)

Chemical

Energy

(fuel,air)

Engine: an energy 
conversion device that 
converts thermal energy 
(heat) to mechanical energy
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Exhaust Gas 
Recirculation (EGR)
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EGR- Increases net thermal
efficiency by reducing pumping work
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EGR-Output reduced with 
addition of EGR at constant manifold

pressure
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EGR – Must open throttle to
recover load, thereby reducing

pumping loss ( spark ignition only)
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EGR – Performs the same function
as the throttle, with out the associated
pumping work (Spark ignition only)
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EGR – Reduces NOx emissions
by reducing the combustion 

temperatures
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EGR – To much  has distinct
disadvantages !!!!!
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EGR trade offs
• High EGR

– Positive aspects
• Increases efficiency ( improve fuel economy)
• Reduces NOx emissions

• High EGR
– Negative aspects

• Increases HC emissions
• Decreases combustion stability
• Complicates transient control
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Compression Ratio
Optimisation ( S I Application)
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Compression Ratio
Optimisation

Advantages of Maximising Compression Ratio
• Increased full-load torque through most of the engine 

speed range
• Reduced full-load combustion-induced engine noise
• Lower peak full-load combustion pressures
• Improved part-load fuel economy(approx 1.5% per 

0.5\ratio)
• Increased dilution tolerance through faster burn
• Improved idle stability via lower residuals
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Compression Ratio
Optimisation

Disadvantages of Maximising Compression 
Ratio

• Higher part-load hydrocarbon and NOx 
emissions

• Greater reliance on knock sensing system
• Higher full-load exhaust temperatures
• Increased likelihood of pre-ignition
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Compression Ratio
Optimisation

Enablers of High Compression Ratio
• Precise fuel control
• Good cooling of the chamber and 

combustion chamber
• Reliable knock sensing and control 

methodology
• Low engine – out emissions
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Full Load 
Performance Optimisation

• Example from a NASCAR Winston Cup 

race engine development exercise, which 

demonstrates the clear advantages of 

utilising combustion analysis techniques to 

enable accelerated development.
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Full Load 
Performance Optimisation
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Full Load 
Performance Optimisation

Ignition timing is set to the value that maximises output from each 
individual cylinder, leading to a 10 BHP increase in total engine power

5.7 litre 
push rod
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Peak Power:Sensitivity to
Air-Fuel Ratio

Individual cylinder air-fuel ratio mal-distribution also 
reduces total engine peak power
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Peak Power: Air-Fuel Ratio
Distribution

This amount of mal-distribution costs about 7 BHP 
when global spark timing is used and 4 BHP when 
individual cylinder spark optimisation is used.
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Individual Cylinder
Spark Optimisation

Even with individual cylinder spark timing optimisation,power 
contributions of the individual cylinders differ significantly
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Peak Power 
Cylinder Replication

Goal is to have each cylinder perform as well as the 
best cylinder ( potential 22 BHP gain)
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Replicated Chambers,
Ports & Runners

Cylinder-to-cylinder imbalance in any of a 
variety of areas degrades the combustion 
system performance:

• Air fuel ratio ( air flow / fuel flow )
– Intake restriction
– Exhaust restriction
– Tuning lengths
– Fuel distribution

• Mixture motion
• Valve timing
• Compression ratio
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Port/chamber 
replication ?
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Port/chamber 
replication ?
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Manifold Approach
Replication ?
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Combustion System
Replication

Design issues to achieve
• Pastry cutter design replication of the 

combustion system, inlet runners, and exhaust 

runners

• Even firing intervals

• Control of the manufacturing process
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Combustion System
Replication

Volume of runners 
not the length is the 
critical factor



Engine Testing and Instrumentation 253

Combustion Variability

Steps to improve stability
• Well balanced combustion system hardware

– Equal-length, replicated intake/exhaust runners & ports

– Replicated combustion chambers (fast burning)

– Good EGR, air,fuel,PCV & purge distribution

– Good fuel injectors
• Small droplets

• Good targeting (back of valve, minimize wall-wetting)



Engine Testing and Instrumentation 254

Trapped Mass
Replication
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Sources of Trapped 
Mass  Assymetries
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Trapped Mass
Single Cylinder

Trapped mass varies as a function of engine speed due 
to induction system tuning
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Trapped Mass & IMEP,
Single Cylinder

Not surprisingly,trapped mass is an extremely accurate 
measurement of individual cylinder indicated torque (IMEP)
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Trapped Mass & IMEP
Two Cylinders
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Trapped Mass &
Knock Propensity



Engine Testing and Instrumentation 260

Trapped Mass, Corner &
Centre Cylinders :In this example,

trapped mass is dictated by manifold tuning (primary intake 
runner length); thus, corner cylinders and centre cylinders 

behave differently
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Torque Curve 
Optimisation
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Torque Curve Optimisation
Average torque curve is broad and non-optimum
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Torque Curve Optimisation
Torque curve optimisation causes the torque curve
to become ‘peaky’,exhibiting significantly increased

torque over specific speed ranges
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Power Optimisation
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Power Optimisation
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Tuning for Power
Summary

• Power and torque from a multi-cylinder engine are 
dictated by the total contributions of the individual 
cylinders

• Some design features,such as single point air 
throttling and or single point fuel injection,lead to 
inherent mal-distribution

• Mal-distribution causes the torque curve to be 
broad and low. All cylinders suffer compromised 
performance

• Trapped mass mal-distribution is the single largest 
source of mal-distribution in other parameters
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Tuning for Power
Summary cont…

• Compensating for mal-distribution in 
trapped mass by optimising inlet valve 
closing reduces the amount of compensation 
required for other parameters such as 
ignition timing

• Achieving maximum individual cylinder 
performance by reducing mal-distribution 
substantially increases overall engine output


