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Abstract

Although many researchers feel that an autonomous system, capable of behaving appropriately in an uncertain environment,
must have an internal representation (world model) of entities, events and situations it perceives in the world, research into
active vision, inattentional amnesia has implications for our views on the content of represented knowledge and raises issues
concerning coupling knowledge held in the longer term with dynamically perceived sense data. This includes implications for
the type of formalisms we employ and for ontology. Importantly, in the case of the latter, evidence for the ‘micro-structure’ of
natural vision indicates that ontological description should perhaps be (task-related) feature-oriented, rather than object-oriented.
These issues are discussed in the context of existing work in developing autonomous agents for a simulated driving world. The
view is presented that the reliability of represented knowledge guides information seeking and perhaps explains why some things
get ignored.
© 2005 Elsevier B.V. All rights reserved.
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. Introduction

Traditionally, knowledge representation has been
iewed as a prerequisite to informed action. Represen-
ations have often been assumed to comprise complete
escriptions of the problems solver’s environment.
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Correspondingly, the means by which such repre
tations are constructed and obtain their conten
assumed to be comprehensive. For example,
approaches to vision proposed the construction of c
plete, viewer independent, scene descriptions (cf.[19]).

The development of autonomous agents
changed that view to one which varies from the extr
of denying the existence of representation underl
activity [5,6] to one in which ‘representations’ of a ki
are dynamically generated on a just-in-time (JIT) b
to support interaction with an environment as nee
[2,3]. In this view, the purpose of vision is to active
seek out information pertinent to the agent’s cur
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task, rather than passively absorb information to form
a complete ‘picture’ of the world to be held in mem-
ory and interrogated at will in determining appropriate
courses of action.

Various psychological evidence appears to support
an ‘active vision’ view. The phenomenon ofinatten-
tional blindness[11,18,25]or inattentional amnesia
[25,45] demonstrates the selective nature of vision.
Even though entities are clearly within view, if they
are not central to the task in hand, they frequently re-
main unseen[25]. By visually pursuing the selection
of information about those entities central to the cur-
rent task, other entities in the visual scene are actively
ignored, no matter how conspicuous they may seem to
the non-task-oriented viewer[34].

Guiding this process is the rapid orientation of the
viewer to the nature or ‘gist’ of the situation in which
they find themselves and rapid feature selection for
task-relevant entities. Gist and spatial layout can be
rapidly extracted from visual scenes[4,13,14,36], en-
coded and retained[9,22], with retention of object iden-
tity, recognition, absolute spatial layout, shape, colour,
and relative distance occurring gradually over an inter-
val of between 1 and 4 s.

A related phenomenon ofchangeblindness further
demonstrates aspects of natural vision which result in
failure to notice changes to entities in the visual scene
when these take place during a saccadic eye movement
[10,24]. It appears that change can only be detected
when the changing object is fixated[24,27].
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is evidence that in natural vision, performance reflects
the apprehension of visual information just prior to its
use[3].

As a consequence of evidence of this kind, an active
vision approach of this kind proposes a task-related ba-
sis for the apprehension of visual information. Several
models developed using this approach demonstrate that
with sufficient sensory input during performance of a
task, recourse to internal representation can be avoided
[1,2,5,6]. In this sense, just-in-time representation, un-
like comprehensive and systematic approaches to rep-
resentation, appears to refer to currently available sense
data, pre-processed to some extent into primitive fea-
tures, enabling the rapid visual apprehension of task-
relevant information.

As a consequence of acquiring task-relevant infor-
mation, the information itself (such as the colour of a
block) may be retained, but the visual context for that
information not – that is, just-in-time representation
is transitory and merely sufficient for the selection of
sought information. There is no enduring representa-
tion of the entire scene. It persists only as long as the
scene is viewed and is not open to manipulation or re-
organization.

What the non-representationalist active vision view
appears to be telling us, therefore, is that parsimony
in both acquiring information about the world and re-
taining that information is supportive of appropriate
interaction.

The active vision view and computational models
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This phenomenon has also been demonstrat
virtual reality setting during activities in which t

hanged feature is central to the task in hand[11]. Par-
icipants asked to pick up blocks, which might be ei
ink or blue, and to place these in a particular loca
ccording to colour, failed to notice when the sele
virtual) object changed colour between initial se
ion and final placement. Most often the object w
laced in the location appropriate for its colour dur

nitial selection, rather than for the colour to wh
t had changed. Hayhoe[11] argues that this demo
trates the ‘micro-structure’ of vision: that fixation
n object is not sufficient for apprehension ofall the vi-
ual information associated with it. It would appear
uring initial selection of the object, participants p
ttention to colour, whilst during subsequent fixati

hey appear to be concerned with location in guid
he object to its resting place[3]. Furthermore, ther
ased on their approach do not appear to account
or phenomena observed for natural vision, howeve
ontrast to the evidence for JIT scene representa
arn et al.[16] describe the ability to search for

each towards an object no longer visible. This ab
s crucial to many perceptual and motor tasks, and
rgue points to the representation of multiple mutu
upportive frames of reference for object location.
epresentation of a viewer independent frame of re
nce for spatial layout, they state, must be built up

ime to support planned activity[12].
This view is not incompatible with notions of J

cene representation, but it does appear to hav
lications for retaining some aspects of informa
bout the scenes viewed. The implication appea
e that the rapidly acquired gist and spatial layou
scene (cf.[36]) is used to support subsequent vis

nterrogation of a situation. Rather than construc
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a description of all that is in a scene, the findings of
Karn et al.[16] and Hayhoe et al.[12] imply that in-
formation retained on visual layout enables indexing
to the scene to further acquire information as needed.
It seems likely that indexing to a situation will be both
viewer-centred and perspective independent (cf.[12]),
but will not describe the visual information available
to the viewer, rather it will support the acquisition of
further information as and when required.

Rensink[26] proposes a theory of attention that fits
in well with this view. He presents an account of the
phenomenon that we experience a rich and detailed
account of our visual world, based on being able to
actively index visually to the world around us, even
though, at any given time, we have access to just that
limited set of visual data within our focus of attention.
The phenomenon arises from the moment by moment
construction of JIT scene representations that give us
detailed information about our visual world whenever
we want it. The feeling of having pre-stored in some
way, the detailed information of all we have ever seen,
arises from our ability to relocate our focus of attention
to any part of the visual scene, as and when we wish,
to ‘re-discover’ all that visual detail in its entirety.

Recent years have seen much progress with
saliency-based computational models of attention
[15,35] but, as their name suggests, these are primar-
ily responsive to ‘attention-grabbing’ scene features.
There has been some success with using scene-based
features associated with context (gist) to further fo-
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go some way towards explaining the findings for hu-
man vision (cf.[11]).

2. The role of representation

In the context of this view, what then are the impli-
cations for the view that an autonomous system must
have an internal representation of the events and situa-
tions it perceives in the world?

In a dynamic environment which changes outside
the individual actions of an agent, that agent is inca-
pable of omniscience with regard to the ‘state’ of the
world; an agent requires access to sense data to support
interactions with its environment[41]. Appropriate in-
dexing to just-in-time representations would appear to
support this need as such; however, many appropriate
interactions with, or responses to, the environment re-
quire access to information not availableat the time of
responsethrough sense data alone[42]. In particular,
some kinds of activity appear to require anticipation
on the part of the viewer, seeming to depend upon the
ability to model events involving complex interactions
between entities and invoking the application of typical
scenario-based knowledge[41,42]. This is a different
kind of problem to needing to access information mo-
mentarily out of view because the information required
is not there to be sensed in the world.

It is unclear to what extent actively indexing to
just-in-time scene representations can satisfy certain
kinds of anticipatory behaviour. Although there is some
e re-
q n
d n re-
q tion
o ent’s
s rop-
e ing
t ion
o ,
i d to
e uring
c cta-
t ems
u can
p

case
f mes
a with
us active vision processes[20,37,38]. However, ther
o not currently appear to be any computational m
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ion acquisition and integration. Evidence for the
ctive nature of perception[21] would appear to poin

o linking an indexical approach to the sensorimo
nteractions of an agent with its environment, altho
xactly how may not be clear cut (cf.[28]). Indeed
agner et al.[39] found that particular changes

erspective occur consistently in consequence of
icular changes in the viewer’s relationship to obje
landmarks) in the scene. The potential for disc
ring perceived regularities in the environment s
orting a viewer-independent interpretation of view
ependent sense data offers exciting possibilities i
laining how an index to the environment may its
e derived from information in the environment a

hus requiring no representational overhead, and
vidence that very simple anticipation does not
uire representation per se[30–32], this has only bee
emonstrated for cases where the visual informatio
uired for generating anticipations (through evoca
f learned associations) remains available to the ag
enses throughout. Statistically based predictive p
rties of such models can be exploited in overcom

he difficulties posed by a limited degree of occlus
f various objects by each other (cf.[29]). However

t is unclear whether these techniques could exten
nable an agent to sustain those anticipations d
hange in its focus of attention, building up expe
ions based on the totality of its observations. It se
nlikely, therefore, that JIT representation alone,
rovide sufficient basis for all purposeful activity.

The view presented here then is that there is a
or both views; the focus of concern then beco

matter of integrating JIT scene representation
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more enduring representations of the world and,
fundamentally, identifying when it is appropriate to
prefer one rather than the other for particular aspects
of problem solving.

3. Background

The view presented here draws on earlier work[41]
which takes the view that dynamically constructed sit-
uational models usefully inform the interactions of au-
tonomous agents in rapidly changing multi-agent do-
mains. This view has largely arisen through the devel-
opment of a purposeful computer-based agent which
carries out the actions of a driver in a simulated driv-
ing world [41]. The task domain provides a testbed for
investigating goal-directed activity, such as following
a route to a particular destination, and the integration
of this with dynamically generated responses to situa-
tional changes brought about by events, such as chang-
ing traffic signals and other agents who may be slowing
down for a red light.

A domain such as this imposes demands upon the
agent to respond to events in a timely matter. This is
achieved through mechanisms for anticipating the out-
comes to events. Anticipating outcomes requires the
agent not only to go beyond immediate sense data in
anticipating how events will proceed but also seems to
require the ability to modify expectations in the context
of knowledge about the domain (and how agents typi-
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component outputs information about the current driv-
ing situation. This is stored as Sense Data where it is
accessed by the ‘Vision’ System component.

Each component plays a role in the overall perfor-
mance of the system. The role of each component is
described briefly followed by further discussion of AU-
TODRIVE’s situational modelling capabilities.

The Sense Data Generator is a microworld simula-
tion program for the domain of driving which provides
scenario specific data about what a particular driver can
see at a given point in time, rather like a snapshot of the
world [40]. The Sense Data contains just that informa-
tion which is viewable by the driver at a single point in
time.

The ‘Vision’ System has access to this viewable
Sense Data. It models attention by selectively view-
ing objects that the Attention Director has directed it
to observe and/or which are in some sense ‘attention
grabbing’, such as sudden changes in the information
available. It also models the dual nature of the human
visual system by apprehending information spatially
locating the agent in its surroundings, for example the
vehicle’s position in relation to the edge of the high-
way. The observations made are recorded in Sense Data
Memory.

Sense Data Memory stores the results of selec-
tive viewing. It contains only a subset of the view-
able information – that which has been selectively ‘ob-
served’. (Dual visual system processes spatially locat-
ing the agent provide an additional data stream to Sense
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bserved behaviour of other agents, in a given con
he resulting situational world model characterizes
ynamically evolving sequence of events which p
ide the context for an autonomous agent’s activit

.1. Agent architecture and situational model

The architecture of the AUTODRIVE system[41]
ncorporates components which enable the syste
nteract with a simulated rapidly changing envir

ent. The structure of the agent architecture is cha
erized inFig. 1. System components (in square box
ake inputs, process the input information, and
uce outputs (solid lines). Data components (cylind
tore information output by other components. Th
nformation stores are accessible by other compon
broken lines). For instance, the Sense Data Gene
ata Memory, however.) The information stored c
esponds to the observation of an object or locatio
he end point of a single interval of the simulation
ingle fixation period may span a number of simula
ntervals producing a sequence of data for a partic
bject or location.

A Situational World Model represents the ant
atedoutcometo observed events based on inputs f
ense Data Memory. The relative distance of fi

eatures and how these change over time reflect
river’s expectations about his own movements.
nticipated locations of moving objects are base
bservations of their current behaviour and expe

ions about how this might change inferred thro
ntention Recognition.

Intention Recognition attempts to make meanin
nterpretations of observed vehicle behaviour wi
he situational context in which it takes place, in an
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Fig. 1. AUTODRIVE agent architecture.

tempt to hypothesize driver intentions. These hypothe-
ses can provide insight into the future trajectories and
velocities of other vehicles in the scene and, in some
ways more importantly, identify whenchangesin speed
and direction are likely to occur.

Stored Knowledge contains long term information
which is not continually updated by new observations.
This includes the driver’s map-like knowledge about
the domain such as the major routes connecting towns
and the road networks within towns. On the basis of
this the driver is able to identify the route he must fol-
low upon his journey and the turns he must make. (The
agent is also able to dynamically follow routes and di-
versions based on sign information en route.) Stored
Knowledge also includes procedurally embedded in-
formation about vehicle control, for instance, identi-
fying the speed at which a vehicle may safely take a
corner and knowing when to start slowing down. The
driver’s knowledge about the behaviour of other drivers
is similarly founded and provides the basis for identi-

fying constraints on action within specific contexts and
hypothesizing intentions.

The Route Planner accesses the route information
in Stored Knowledge in formulating a high level Route
Plan for reaching the driver’s destination. The Dynamic
Goal Generator specifies the driver’s immediate aims
(dynamically generated goals) for realizing the main
high level steps of the plan and so ultimately reaching
this destination. These immediate aims reflect the time
course of constraints on action identified through the
Situational World Model. Information to support the
generation of appropriate responses is either readily
available from the Situational World Model or must
be obtained through further observation initiated by
specific Attention Requests to the Attention Director.

Requests are sent to the Attention Director in a task-
directed manner to obtain information about the world
for the purposes of planning and intent recognition. For
example, when planning to make a turn, information
about oncoming traffic may be sought to supplement
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that held in the situational model. The Attention Direc-
tor prioritises requests in directing the ‘Vision’ System;
only a limited number of observations can be made in
the time available for viewing the scene so the Attention
Director ensures information required by the Dynamic
Goal Generator and Intent Recogniser is weighed up
against other important scene features which need at-
tention. Viewing road junctions, for example, may be
prioritised when the driver seeks a particular turning,
but without sacrificing the need to keep tabs on the
movement of other vehicles.

The overall process is one whereby the Situational
Model provides interim information whilst the up-
dated results of focused attention are awaited. Simi-
larly, whilst attention is diverted, the situational model
maintains the agent’s ‘awareness’ of ongoing events
elsewhere in the scene.

The Action Executor translates the immediate aims
identified by the Dynamic Goal Generator into brake
and accelerator depressions and turns of the steering
wheel. These Actions are then relayed to the Sense
Data Generator (the world simulator) for their effects
to be modelled. The Sense Data generated reflect the
driver’s altered view of the driving scenario one simu-
lated interval later.

3.2. Situational modelling

The driver may attend to a certain part of the scene
over more than one simulation interval or may switch
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to other agents and objects in the world in which it
is situated, even though it may be unable to directly
sense those agents and objects at that precise moment
in time. Because the situational model is predictive,
snapshots of future moments in time enable the viewer
to anticipate its future relationships to other agents and
objects in the world. A sequence of snapshots there-
fore describes the way in which the current situation is
changing and predicts the outcome to current events.

The situational world model informs the actions of
the agent by extending its knowledge of its world into
the future. Where the agent’s proposed activities con-
clude some time hence, the world model clearly identi-
fies the constraints on action imposed by future events,
enabling the agent to take account of these in realising
its goals.

Intent recognition plays a crucial role in informing
the accuracy of predicted events. Simple projective an-
ticipation assumes the way the world will change from
moment to moment is essentially the same: if another
agent is observed travelling at 2 mph over one time
interval, simple predictive modelling assumes it will
continue to travel at that pace over subsequent time in-
tervals. Intent recognition allows one to insert into that
simple calculation the effects of knowledge-based con-
straints (such as the other agent’s inferred goals) that
enable prediction of qualitative changes in what hap-
pens over one time interval compared to another. For
example, in the driving domain, an accelerating vehicle
might be expected to cease acceleration when it reaches
t
t as-
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ttention to something else. Consequently, a situat
orld model is constructed incrementally as the a
bserves various aspects of its environment. It t

he form of a sequence of snapshots of previousl
ended objects. Each snapshot provides a collecti
iewer-centred descriptions of objects and other ag
n the surrounding environment at a single momen
ime (rendering continuous processes discrete). Th
criptions are based in initial observation of obje
nd agent behaviour. They are used to predict the
equences of the activities of other agents, and o
iewer’s changing perspective on the world. The
ictive interval is brief: long enough to inform t
iewer’s own activities, but necessarily short to refl
he dynamically changing nature of the situation
he extent to which information rapidly becomes ou
ate. The situational world model enables the vie

o be aware, at any given moment, of its relations
he speed limit for the highway. Ferguson[8] was able
o demonstrate the effect of removing this crucial
ect of anticipation in predicting future events. Us
hybrid, layered agent architecture (consistent
Brooksian[7] subsumption architecture having

trict hierarchical or prioritised flow of control throu
ayers), it was possible to switch off the intent recog
ion layer forcing a breakdown in the appropriate tim
ehaviour of the simulated driving agents.

.3. A typical scenario

A model of the processes described has been im
ented[41,42] and used to simulate various drivi

cenarios[41] characterizing a range of driving sit
tions. An illustrative example is given below. Ea
ehicle in the scenario is modelled by a clone of
gent architecture described above. Each vehicle t
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fore receives visual sense data based on its unique po-
sition in the scenario corresponding to its own personal
perspective. Each vehicle constructs its own personal
situational model, attends to whatever is deemed ap-
propriate in achieving its aims, and decides upon its
own personal actions. The Sense Data Generator sim-
ulates the scenario based on the collective actions of
all vehicles at timet, generating Sense Data for each
cloned agent, viewable by individual drivers at timet
+ 1.

The scenario described here demonstrates the in-
terplay of situational modelling and viewing strategy
(as determined by spontaneous and task-directed atten-
tional mechanisms) underlying the ability of a driving
agent to modify the behaviour of his vehicle when an
obstacle comes into view. The obstacle in this case is a
black cat which is crossing the road causing the driver
to brake sharply. The ability of the intent recogniser to
modify the behaviour of the driver following this car is
also demonstrated as he realises that the driver ahead is
not behaving as expected. The entire scenario lasts ap-
proximately 6 s, reflecting the rapidly changing nature
of the situation and interplay of processes for attention
and situational modelling. Simulated intervals are set
to model 100 ms of real time and the situational model
to 8 s.

Time: 0.1–3.6 s. For the purposes of exposition, the
scenario involves only two vehicles, a blue car which
is positioned 40.0 m along the northern carriageway of
a highway and a red car which is 10.0 m behind it at
3 vel
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intervals until sufficient Sense Data Memory has accu-
mulated for them to determine each others’ speed and
trajectory.

With no evidence to the contrary, each agent’s Intent
Recognition processes hypothesize a similar intention
for each other: to follow the highway whilst accelerat-
ing towards the speed limit. Spatial layout indicates the
immediate aims of the other driver to achieve this intent
within the spatial constraints of the road environment
and the context of known obstacles and other vehicles
(observed and modelled earlier). As the first objects
to be attended, neither of whom at these low speeds
poses an obstacle for the other, the drivers situationally
model each other pursuing unobstructed acceleration
following the known course of the highway.

The driving agents are inhibited from fixating each
other again straightaway on the basis that each driver’s
situational model provides sufficient information about
that aspect of the scene for attentional processes to fo-
cus upon less central aspects of the scene. In turn, over
the space of the next few seconds, the drivers notice a
road crossing island, a pair of no-entry signs to a nearby
side turning, lane markings and various side turnings
as they come into view. The situational model incre-
mentally incorporates each in turn as it is fixated and
the relative distance to each object over time is calcu-
lated according to the driver’s own intended sequence
of behaviour.

The overall process is one of an emerging situational
model contextualizing new sense data and enabling as-
p on-
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0.0 m along the same highway. Their initial high le
lan step is to traverse the road ahead until the

urning on their route comes into view. Both vehic
egin from a stationary position accelerating towa

he speed limit on their way to their destinations
ccordance with their immediate aims.

Scene gist (driving domain) is given by the Se
ata Generator which generates task-specific S
ata only. Spatial layout, situating the vehicle in
hysical surroundings, is provided in the Sense D

The drivers, as yet, have not begun to construct
ituational models of events and so attentional m
nisms are applied on the basis of task only – see
ther vehicles, primarily, and searching the road ah

or obstacles. Spatial layout is apprehended thro
imicked parafoveal visual processes. The driver

he red and blue cars notice each other and proce
fixate’ each other over a sequence of 100 ms simu
ects of what is viewed not only to endure but to c
ribute to the emerging model of how the situation
hange. The model does not describe the scene
letely, only attended aspects of it which together c
titute an ‘awareness’ of the situation. So, for exam
he relationship over time of the observed vehicle
ay, a specific side-turning would be captured, as w
he driver’s own relationship to them both.

Owing to the simulated nature of the visual p
esses, all aspects of the objects viewed are retain
he model (largely positional information, object ty
recognition) and identity) rather than selective asp
nly (cf. [11]).
Time: 3.6 s. A black cat suddenly appears in the c

re of the road presenting an obstacle 55.0 m alon
ighway. It moves from the centre of the road cros

he drivers’ paths to the kerb, a total distance of 6.
t a speed of 3.0 mps. (It is modelled by the Sense
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Generator and is not a cloned agent.) When deemed
viewable by the Sense Data Generator the cat comes
into view. The ‘cat’ appears to the driver of the blue car
but is obscured from the red car as it crosses the blue
car’s path.

Time: 3.8 s. The red car is now 38.11 m along the
highway, the blue car, 48.11 m and the black cat 5.4 m
from the kerb.

The driver of the blue car is not currently attend-
ing to anything in particular owing to inhibitory pro-
cesses because everything of a task-relevant nature has
been observed during the last few seconds. He remains
‘aware’ of his situational surroundings through his sit-
uational model which determines, moment by moment,
his immediate aims. The sudden appearance of the at-
tentionally salient black cat elicits a response from the
driver becoming the very next thing to be fixated. There
is a natural time delay of several milliseconds as the
cat is viewed and the consequences of its appearance
modelled, and so there is no immediate modification
of behaviour at this point. In the meantime, neither
driver’s expectations about each other have been re-
vised: each expects the other to continue accelerating
towards the speed limit and to maintain speed there-
after.

Time: 4.3 s. As the situational model contextualizes
this latest observation, anticipating the movement of
the black cat, the driver of the blue car ascertains they
are on a collision course. He consequently modifies
his immediate aims and brakes as hard as possible to
a the
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Time: 4.9 s. Until now the driver of the red car has
been informed by his situational model-based expecta-
tions of the blue car’s behaviour as he observes other
aspects of the driving situation. Having re-observed the
blue car’s changing position, he detects a serious dis-
crepancy with his earlier anticipations and so analyses
the blue car’s behaviour. The overall behaviour of the
blue car fails to comply with the immediate aims previ-
ously identified and the expectations these gave rise to,
and so the red car attempts to identify the other driver’s
reason(s) for behaving unexpectedly.

The driver of the red car uses his situational model
to explore possibilities. This provides immediate infor-
mation, reflecting his general awareness of the current
situation, without the delay of re-observing the sur-
roundings of both agents, various parts of which might
now be occluded. He considers possible causes, such as
obstacles or vehicles emerging from side turnings, but
none are known about. He himself is unaware of the
black cat and therefore unable to identify this as the
probable cause of the blue car’s behaviour. The inten-
tion of the driver to make a turn is considered but his
behaviour does not appear to comply with executing
turns at any of the known side-turnings. In this case,
therefore, the driver’s behaviour is not consistent with
anything that is already known about the prevailing sit-
uation.

As the situational model fails to provide evidence
of a cause for the blue car’s behaviour, so the absence
of information initiates visual processes and directs at-
t , for
e ings.
T king
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void collision. (It just so happens the driver of
ed car is also braking as he reaches the speed
nd needs to adjust his velocity.) By this time h

ess than 5.0 m from the cat with a minimum stopp
istance of 5.54 m. There is insufficient space to b

n time to save the cat (in fact, the cat emerged wi
he minimum braking distance of the blue car mak
he delay in noticing it irrelevant).
Time: 4.4 s. Attentional inhibition expires and th

ttention of both drivers switches to each other o
gain. For the red car, the blue car is a significant
tacle in its pathway; for the blue car, there are no c
eting vehicles to view so attention naturally falls

he red car as a significant task-relevant entity.
During this time the goals hypothesized for e

ther are still in effect. The behaviour of the driv
emains unvaried: the blue car is braking hard and
ed car continues to drive at the speed limit.
ention to potentially relevant aspects of the scene
xample previously unseen obstacles or side turn
he situational model guides this process of see

nformation in relevant locations in relation to the o
erved driver. The situational model, therefore, not
dentifies what attentional processes should be dire
o but also where to seek that information. Howeve
ide-turnings can be found in the vicinity of the b
ar’s projected position, nor obstacles seen.

Eventually, after failing to identify an alternati
ause, the driver of the red car assumes by defau
lue car is intending to come to a halt and modifies
xpectations accordingly. (The blue car driver’s be
bout the constraints applying to the red car rem
nchanged as the red car has given no indicatio
ot conforming to these. However, his reassessme

hose constraints in the current context of the situati
odel include himself as an obstacle to the red ca
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Time: 5.3 s. The driver of the blue car has almost
reached the black cat now and continues in his attempt
to avoid it by braking as hard as possible; it looks like a
lost cause as his minimum stopping distance (2.22 m)
exceeds the distance within which he is able to stop
(0.35 m). The driver of the red car, aware he is on a
collision course with the blue car, is also braking.

Time: 5.5–6.0 s. The driver of the blue car, despite
braking as hard as possible, passes the cat. The location
of the cat is captured in the driver’s situational model;
his awareness of this change in constraints on his action,
enables him to resume his immediate aim to accelerate
towards his destination. (Were he to look in his rear
view mirror, perhaps he would see the black cat, having
made a last minute dash, narrowly escape his wheels.)

The driver of the red car, however, has no such
change in expectations based on his own situational
model; he continues to expect the blue car to stop, and
therefore continues to brake. He will not alter his expec-
tations until he re-observes the blue car a few seconds
later and detects the change in circumstances.

3.4. Limitations

Overall the scenario is interesting in the way we see
a breakdown of the intent recognition processes in a sit-
uation where the unexpected and unpredictable takes
place; such an event enables the demonstration of the
interplay between situational modelling and the agent’s
viewing strategy as an adjunct to spontaneous and oth-
e nal
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t the
a lling
o ect
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probabilistically guided approach[44]. However, the
model implemented is capable only of mimicking the
attentional processes evident in viewing natural scenes.
Although conceptually compatible with JIT models of
scene interpretation, AUTODRIVE’s model of atten-
tion is designed to work with the output of a simulated
world. A model of attention showcasing the partnership
between JIT scene representation and situational mod-
elling would be more appropriately based on the pro-
cessing of natural image data streams to demonstrate
the role of situational modelling in overcoming sens-
ing limitations and supporting problem solving based
on anticipation of events not yet taken place. A model
of this kind may provide insight into the successful
indexing of attention to relevant parts of the scene in
seeking information, of a kind afforded in the scenario
above. This is the focus of current work.

3.5. Integrity and completeness of the situational
model

As the scenario helps to demonstrate, situational
modelling provides an informed context for analyzing
current sense data, and a platform for realizing its impli-
cations for future scenarios[41–44]. Of course, the ad-
vantages gained through situational modelling depend
upon the quality of the knowledge held in the model.
As a model of current events based in previously sensed
data, its validity diminishes over time. Uncertainty in
the sensed data and its implications contributes to this
e ithin
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t pon
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v
fi ness
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s ac-
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rwise more straightforward task-directed attentio
rocesses. The scenario provides a good demo

ion of the value of situational modelling. Other e
ities encountered in the scenario contribute to
gent’s awareness of the situation, and the mode
f these is supportive of the agent’s ability to dir
ttention to that aspect of the scene that most
ands it: the blue car. The situational model, in r
ering other aspects of the scene predictable, a

he agent in addressing the unpredictable. Fur
ore, it is the discrepancy between earlier predi
ehaviour and subsequent observations that highl

he need for attention to be focused, perhaps m
han otherwise, on understanding the behaviour o
lue car.

Attentional inhibition in the original model of a
ention[41] is relatively inflexible and further develo
ent of the model involved a more dynamic, flexib
ffect. Therefore, objects and agents remaining w
iew must be repeatedly observed if the integrity of
ituational model is to be maintained.

Typically the viewer is limited in the rate at whi
t can apprehend new information. Consequently

odel cannot provide a ‘complete’ description of
gent environment, rather it is selective in the infor

ion described. The incompleteness of the model u
hich an agent relies in order to interact effectiv
ith its environment is not inherently problematic, p
ided the model is good enough[33,44]. Indeed, the
ndings on inattentional amnesia and change blind
learly support this view. It is the inherent ‘goodness
ntegrity of the model which can guide us here: ra
han seeking ‘information about the world’ an ag
ight seek ‘information to maintain the integrity of

ituational model’, as it relies upon this to inform
ion. Identification of lapses in the integrity of know
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edge held in the model can be used to guide sensing
priorities, informing focus of attention and selective
perception, with the aim of maintaining the quality of
knowledge held[44].

4. To represent or not to represent is not the
question

Viewing the situational model as not only a means of
informing action but also of informing viewing strategy
would also appear to offer a basis for understanding
perhaps why some things get ignored.

We have already considered the phenomenon of
‘change blindness’ when a change in a central aspect
of a scene remains undetected owing to attentional lim-
itations[24]. What is intriguing is that a similar phe-
nomenon is observed even though the changed feature
is central to the agent’s activity, as in Mary Hayhoe’s
[11] experiments. Participants behave in accordance
with having apprehended the colour of the objects to
be manipulated, so this information would appear to
be held in memory; why then failure to observe subse-
quent changes to this feature?

Hayhoe (in conversation) made a further observa-
tion that on occasions when participantsdid notice the
new colour of the held object, they would frequently
conclude they had mistakenly picked up another object
to that intended, rather than that the object’s colour had
changed (even though this possibility had been men-
t

ro-
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c ctual
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a ange
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to be at least possible that experience might also play
this role in guiding viewing strategy (cf.[26]). Expec-
tations regarding persistence effects would point to it
being safe to ignore some aspects of our world over
others, once the crucial information required has been
initially apprehended.

This alternative interpretation of the data indicates
the possibility that the evidence for ‘change blindness’
may not always point to a failure to represent sensed
data, but rather a failure to question the validity of
sensed data when used in later problem-solving and in
informing action which then results in ignoring subse-
quent change through failure to reinterrogate the scene
for validation.

The implication of this view is that sensing the
world is primarily an information-maintenance ac-
tivity, rather than an information-discovery activity.
Agents sense, but ignore not only what they don’t need
to know, but what they think they already know, choos-
ing to notice not what needs to be noticed but what is
believed to be unknown.

The observation, if correct, that visual behaviour is
consistent with experience, might also guide us in de-
termining where and when an autonomous agent would
be best advised to situationally model, and when not:
one size need not necessarily fit all – model where ex-
perience indicates modelling works, but do not model
for situations where there is no information advantage
in modelling; or, where experience tells us the situa-
tion is difficult to anticipate, adopt alternative tactics
s ent
m

5

to
r em
i at
w an
s orted
t new
p eful
w ing
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ioned in instructions to participants).
Both phenomena described: (i) failure to inter

ate the visual scene for object colour following
nitial designation, and, (ii) when the objectwas re-
nterrogated for colour, the assumption that co
hange was a result of misperception rather than a
hange, could be explained through a particular c
cteristic of visual information seeking. It would see

hat knowledge about our visual world, learned thro
xperience, tells us that certain aspects of a visual s
re more enduring than others. Objects rarely ch
olour; following initial identification, therefore, the

s little reason for checking an object’s colour ag
onsequently, a change in colour is more attribut

o an error in its initial perception or, more likely still
cluttered scene, the failure to direct an action tow

he intended object. Experience is a powerful dete
ant of visual experience[17,23] and it would seem
uch as combining minimal prediction with frequ
onitoring instead.

. Summary

Purposeful autonomous agents would seem
equire the ability to model the world around th
f they are to be able to interact effectively with th
orld. On the other hand, evidence from hum
tudies suggests that much activity can be supp
hrough JIT scene representation. This poses the
roblem of how to integrate in a coherent and us
ay, knowledge reflecting situational understand
tored in memory, with transitory information fro
ur visual surroundings. Ontologically, the knowled
epresentation techniques used should suppor
atural task-based feature-oriented way in which
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environment is interrogated and reasoned about in
problem solving activities.

The problem of identifying where and when it is
preferable to construct more enduring representations,
and the problem of identifying when to update them,
appear to be related. It is suggested that evidence from
human studies on the relationship between learned ex-
pectations and the likelihood that change will be ig-
nored, could guide further investigation of these diffi-
cult but interesting and challenging problems.
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