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Abstract. Posner and colleagues [38,40] assert that attention comprises
three distinct anatomical areas of the brain responsible for separate
aspects of attention, namely alerting, orienting and executive control.
Based on this view of attention, the work presented here computation-
ally models the attentional networks task (ANT) which can be used to
assess the efficiency and interactions of these disparate networks, collec-
tively responsible for different functions related to attention mechanisms.
The present research builds upon the model of ANT to show the modula-
tion effects of one network on the other and suggests how the model can
be used to simulate neglect conditions related to attention. The model
is evaluated against data sets from experimental studies and the model’s
fit to data is assessed statistically. Building such models of attention
benefits computer vision research, as they are, well informed from both
cognitive psychology and neuroscience perspectives.

1 Introduction

1.1 Theories of Attention and Attentional Networks

There are various psychological theories that try to explain how the mechanism
of attention takes place. The first systematic theories of attention date back to
the 1950s, describing attention as a single phenomenon based on central bottle-
necks or limited processing capacity [7]. Later the focus shifted from attention in
general to specific theories concerning how people chose among multiple objects,
studying specific tasks. A few popular and established theories of attention are
Feature Integration Theory [50], Guided Search Theory [57] Bundesen’s Theory
of Visual Attention [8] and the phenomenon of ‘change blindness’ and Coherence
Theory [45].

Functional neuroimaging has enabled researchers to view many cognitive pro-
cesses in the window of which brain areas are activated when various attention
components are working [12,39,21,15]. There is sufficient evidence to believe that
these networks can be distinguished both at cognitive and neuroanatomical levels
[44]. This has led to a different kind of theory based on separate but collaborat-
ing attentional networks in which attention can be viewed as an organ system
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Fig. 1. The neuroanatomy of attentional networks [41, p. 6] illustrates the cortical
areas involved in the three attention networks. The alerting network (squares) includes
thalamic and cortical sites related to the norepinephrine system. The orienting network
(circles) is centered on parietal sites and the executive network (triangles) includes the
anterior cingulate and frontal areas.

or as a system of anatomical areas that consist of more specialized networks.
Based on these anatomical findings, Posner proposed his three-component the-
ory whereby attention is divided into three separate networks: namely, alertness,
selectivity and processing capacity [38], later revised and renamed as alerting,
orienting and executive control [39,40,41] (see Figure 1). Similarly, LaBarge’s
[28] triangular circuit theory of attention requires simultaneous activity of three
brain regions that are connected by a triangular circuit.

Posner and colleagues state that alerting helps us to prepare for an incom-
ing stimulus so we respond faster and more accurately. Orienting, or selective
attention, helps us deal with information overload so that we can select a tar-
get among distracters in a cluttered visual scene. Finally, control helps us deal
with conflicts in decision making related to attention. Although the attentional
networks are anatomically and functionally independent and subtended by sepa-
rate neural networks in the brain, the three networks operate under the constant
influence of one another and orchestrate together to produce efficient and adap-
tive behavior. At first glance, it may seem that the three-component theory of
attention is primarily supported from a neuroscience perspective; however, there
is also support for three networks from psychophysical studies: the mechanism
of orienting is in line with the classic theories of visual selective attention deal-
ing with tasks like cueing experiments, visual search [50,57,8], and so on. The
component of executive control relates to the phenomenon of cognitive control
and can be supported by theories of cognitive control [47,12]. Finally, alertness
provides a good explanation for theories of enhancement, giving rise to mecha-
nisms like priming and cueing. Hence, the networks theory seems to provide a
more complete view of the cognitive phenomenon of attention.
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1.2 Attentional Network Test (ANT)

There are numerous tasks that have been used to study the efficiency and inter-
actions of these attentional networks separately. For instance, alerting has been
studied using a vigilance task and warning signals. Orienting has been studied
using visual search tasks, spatial cueing experiments, and other visual selective
attention related tasks. Finally executive control, which involves conflict resolu-
tion, is well portrayed by tasks like Stroop, Flanker, Wisconsin card sort, and
so on. However, a more holistic approach would be to look at all three networks
simultaneously, during execution of a single task. One such paradigm discussed
below is the Attentional Network Test (ANT) developed as a behavioral measure
of the efficiencies of the three attentional networks within a single task [16,46].

ANT is a computer based reaction time test which is a combination of cueing
experiments [36] and a flanker task [14]. Each trial begins with a cue that in-
forms the participant that a target is coming soon and also where it will occur.
In the no-cue condition there is no signal of occurrence in time or location. The
target always appears either above or below the fixation point and consists of a
central arrow surrounded by flanking arrows that can either point in the same
direction (congruent) or in the opposite direction (incongruent). ANT uses dif-
ferences in reaction time (RT) between each experimental condition to measure
the efficiency of each network. The design of ANT is illustrated in Figure 2.

The usability of ANT is very diverse and its value can be gauged from its
wide application in the study of adults with borderline personality disorder
[26], schizophrenia [18,55], and Alzheimer’s disease [17]. Patients with attention
deficits/disorders are shown to have specific deficits in the functions specifically
of alerting and executive control [43,41,6]; autism has been shown to be related
to the orienting network, and Alzheimer’s, borderline personality disorders and
schizophrenia have been shown to be related to executive control [42].

Fig. 2. A sketch depicting the design of the ANT paradigm [53, p. 121]



142 F. Hussain and S. Wood

1.3 Computational Modeling of Attention

Computational modeling, a challenging task, is a quickly growing field in not
only computer vision, but also in general in cognitive science and neuroscience.
With advancements in computational modeling and progress in neuroscience,
it would be insufficient to research a cognitive phenomenon from a psychology,
neuroscience or computer vision perspective alone; rather, synergizing various
disciplines renders tremendous benefits. There are mainly two classes of models
relating to attention. There are models that emerge from the point of view of
neuroscience and also neuropsychology, built to simulate the neural mechanism of
the attentional processes of the brain; the objective is to be able to understand
how cognitive functions like perception, memory, thinking, language, decision
making, and so on arise from their neural bases. Then there is another class of
models that are mainly built to solve computer vision problems. These types of
models aim at building computational attention systems which have applications
in the field of computer vision and robotics. Typical applications include robot
navigation, surveillance tasks, industrial control, and medical imaging.

Based on these needs, there are three broad categories of modeling approaches.
A popular and useful approach is that of filter based models [27,23,24] used
mainly in computer vision applications. Generally this class of computational
model responds to the saliency of components of the visual scene such as bright-
ness, contrast and color, essentially corresponding to bottom-up attentional pro-
cesses. The performance of such models corresponds well with psychophysical
data for attention to natural scenes. Further enhancements to this approach
reflect learnt associations to regularities in natural scenes, thus contributing a
top-down aspect to attention [48,49,32,13]. An alternative approach to modeling
uses a connectionist approach which is claimed to be more biologically plausible.
A classic example of a connectionist model that simulates the Stroop task is the
model of [11] which instead of direct connections uses weight differences which
come through practice. Another example, SLAM (SeLective Attention Model)
[35] is an extension of McClelland and Rumelhart’s [31] model of visual word
recognition which adds a response selection and evaluation mechanism. Selec-
tive tuning and related work [52], is a connectionist model that achieves selective
tuning through a top-down hierarchy of winner-take-all processes. An in depth
survey of this approach can be found in [20].

The third approach uses cognitive architectures which are mainly symbolic in
nature but which may incorporate subsymbolic constructs. According to Howes
and Young [22] (quoted by [19] p302),“a cognitive architecture embodies a sci-
entific hypothesis about those aspects of human cognition that are relatively
constant over time and relatively independent of task.” Cognitive architectures
are widely used to model human behavior, offering a broad theory of human cog-
nition based on a wide selection of human experimental data, and implemented
as a running computer simulation program [2,4,33]. Various popular architec-
tures today are ACT-R [2] Soar [29] and EPIC [25]. There are a number of
examples of cognitive models found in the literature which try to model certain
aspects of attention. For example, Lovett’s [30] implementation of Stroop is a
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good example of an ACT-R implementation of a model of cognitive control. The
ACT-R theory has also been extended to include a theory of visual attention
and pattern recognition whereby production rules direct attention to primitive
visual features in the visual array [5]. The ACT-R theory itself embeds Posner’s
spotlight metaphor [36], Trieisman and Sato’s feature synthesis model [51] and
Wolfe’s guided search model [57]. The advantage of having such a theory is two-
fold: one is to model information processing limitations in obtaining information
from the screen; the second is to “remove the magical degrees of freedom in going
from a description of an experiment to a cognitive model.” [5, p. 65].

1.4 Computational Modeling of Attentional Networks

There are various models found in the literature, such as those cited above,
that are built to study a specific component of attention. However, simulating
the performance of the three together has been sparse. We have come across
two such models that implement the attentional networks, both simulating their
performance on ANT ). The first [56] is a connectionist model based on the
Leabra (local error-driven and associative, biologically realistic algorithm) [34].
The second model [53] is a symbolic model based on the cognitive architecture
of ACT-R 5.0. Wang and colleagues have also attempted to primitively link and
compare the two approaches [54].

2 Model of Attentional Networks

The work reported in this paper is based on a reimplementation of Wang and
Fan’s [53] model, extending it to study the modulation effects of the attentional
networks and proposing how this modeling effort can be applied in various at-
tention related neglect conditions. It is implemented in ACT-R 6.0 [3,1] which,
as described earlier, provides support for theory of visual attention [5] and in-
corporates both symbolic and sub-symbolic components.

2.1 Design

The model has six distinct modules which are involved in performing the generic
ANT trial: fixation and cue expectation, ‘cue or stimulus’ processing, cue process-
ing, stimulus expectation, stimulusprocessing and response.These functional com-
ponents are mapped into a number of production rules within the symbolic part of
the architecture that cover all the possible ANT conditions; however not all rules
are fired in any one particular trial, firing depending upon the cue or stimulus.

The ACT-R model interacts with the outside world using perceptual motor
modules for finding and extracting information from its Visicon (Visual Icon). It
mimics the spotlight metaphor in which a variable size spotlight moves across a
visual field, fixating on an object so that its features can be recognized. Once rec-
ognized, the object features become available for higher level processing. The im-
plemented model uses two main buffers in the vision module: the visual-location
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buffer which can see the basic features but cannot recognize the semantics (as in a
pre-attentive stage), and a visual buffer to which attention needs to be moved in
order to do higher level processing (as in the attentive stage). The way the model
deals with the visual input is a good example of the case where both pre-attentive
and attentive processes work together. Capacity limits can be related to the num-
ber of items attended. In the context of ACT-R, finsts maintain a record of the
objects that have been attended to and thus provide a mechanism which allows
one to explicitly specify how many items can be attended to and for how long.
Finsts are limited in number and how long they persist, both controlled by ACT-
R parameters: the default number of finsts is set to four, and the default decay
time is three seconds [1]. The model decides whether a stimulus is a cue or tar-
get on the basis of pre-attention, but requires full attention to process the target
and respond regarding the direction of the arrow. This is in line with ACT-R’s
theory of attention, whereby, in order for it to know what is in the environment;
it must move its attentional focus over the visual scene. It is interesting to note
here that ACT-R has the ability to prevent the system from returning to previ-
ously attended objects, thus implementing the phenomenon of ‘inhibition of re-
turn’. The model achieves this by allowing only items tagged as ‘attended new’ to
be ‘stuffed’ into the visual-location buffer. Buffer stuffing is a mechanism in the
ACT-R architecture that corresponds to the concept of bottom-up processing in
visual attention. However, based on the goals of the model, the buffer is ‘stuffed’
using certain predefined criteria and hence reflects top-down control.

The subsymbolic part of ACT-R is used in the model to implement various
parameters like rule firing time, noise, to induce randomness, utility values set
to deal with conflicting productions in case of incongruency, and so on. In the
case of multiple choices of matching productions, the internal conflict resolution
mechanism of ACT-R is applied. In ACT-R, the utility module provides support
for the productions’ subsymbolic utility value which is used in conflict. This value
is a numeric quantity associated with each production that can be learned while
the model runs or specified in advance for each production. If there are a number
of productions competing with expected utility value Uj then the probability of
choosing production i is described by formula (1).

Probability(i) =
eUi

√
2s

∑
jeUj

√
2s

(1)

In this default ACT-R formula [1], the summation is over all productions which
are currently able to fire; s is the expected gain noise, that is the noise added to
the utility values, and e is the exponential function.

2.2 Results

The model is treated as a simulated human subject in an ANT experiment,
using the same dataset as used in the human studies [16], and interacting with
the same experimental software [5]. The time from the stimulus presentation
to the key press is recorded as the reaction time (RT). The efficiency of each
network is measured using formulae (2)–(4).
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Alerting efficiency = RT(no-cue) − RT(double-cue) (2)

Orienting efficiency = RT(center-cue) − RT(spatial-cue) (3)

Executive Control efficiency = RT(incongruent) − RT(congruent) (4)

Table 1 reports the results produced by the new implementation, comparing
these results with the human data and with Wang et al’s earlier implementation
[16,53] indicating a faithful reimplementation of the original ACT-R 5.0 model,
as well as reproducing a close approximation to the original human data set.

Table 1. Comparison of Results of Fan et al’s [16] Study, Wang et al’s ACT-R 5.0
model [53] and the ACT-R 6.0 model presented here

Human data Wang’s Model ACT-R 6 new model 
neutral congruent incongruent Neutral congruent incongruent neutral congruent incong 

Nocue 529 530 605 527 526 621 520 521 592 
Center 483 490 585 487 486 580 482 483 557 
Double 472 479 574 467 466 562 464 459 531 
spatial 442 446 515 441 441 522 441 441 527 

Correlation Coefficients with human data 0.99 0.97 

3 Modelling Attention Related Disorders

As mentioned earlier, ANT has been widely used to assess which attentional
networks are affected by various attention related deficits [26,55,17,43,41,6]. ANT
is considered a relatively sensitive tool for assessing attention related disorders
because it can closely determine the efficiency of individual attentional networks
corresponding to distinct areas in the brain and can be used to assess which
particular network is affected by a particular condition.

3.1 Design

The model described in Section 2 has been modified to simulate one such study
which uses a modified version of ANT to assess the role of the various attentional
networks in Alzheimer’s disease. The study models the findings of Fernandez-
Duque & Black [17] which assesses attention processes in Alzheimer’s disease
and in aging subjects. Their study uses a modified version of ANT which is
varied to take into account the cost of disengaging from an invalid location. The
modified version of ANT, in addition to a no-cue, cued and double (neutral)
cue condition, also uses an invalid cue condition in which the cue appears in a
location opposite to the target location.

The model was modified to incorporate the new invalid cue condition and,
to reflect the changes in attention network functionality demonstrated in these
studies, the following changes were made. Orienting effect was altered by tuning
the buffer stuffing mechanism of ACT-R by increasing the screen-x values that
determine what will be placed in the visual buffers using the command (set-
visloc-default :screen-x (within 20 180) :attended new). This corresponds to a
slower orienting effect because the screen-x values range wider compared to where
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the target is placed on the screen and there is a higher probability of choosing
a location other than the center arrow. The effect of lesioning the cognitive
control network, which increases the congruency effect, is modelled by using
productions that make the model refocus every time a distractor is picked up by
mistake using production: refocus-again-if-incongruent. This results in an extra
move-attention and thus the reaction time slows down. Similarly, in the case
of an invalid cue, the model calls an extra production which shifts the focus of
attention from the invalid location to the actual location of the target which
takes more milliseconds compared to valid priming. The overall rule firing time
(that is the ACT-R parameter :dat, the default activation time) is reset to 50 ms
rather than 40 ms as used in the Wang et al model [53] and its reimplementation.

3.2 Results

The overall reaction times recorded by the model and compared with human
data are given in Table 2. The model seems to fit the human data well with a
correlation of 0.95.

Table 2. The reaction times for Alzheimer’s disease(AD) subjects and model

Congruent – AD Subject Incongruent-AD Subject Congurent-Model Incongurent-model 

Nocue 851 947 545 680 
Uncued 817 982 545 680 
Cued 729 889 488 599 
Alert 761 958 520 614 

Fig. 3. The efficiencies of all three attentional networks are plotted for human data
[17] vs the model simulation in ACT-R 6.0. The correlation of the efficiencies is 0.99.
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Fig. 4. A sketch of the design of the adapted version of ANT [10]

The efficiency of each network is measured using formula (4) from the original
experiment and formulae (5)–(6). Figure 3 compares the model generated results
with the human study results. As reported in the human study [17], the alerting
cue increased the congruency effect but the presence of a spatially valid cue was
ineffective in reducing the cost of incongruency.

Alerting efficiency = RT(no-cue) − RT (neutral) (5)

Orienting efficiency = RT(uncued)− RT(cued) (6)

The results reproduced by the model are in line with the findings of experiments
studying attention related deficits in Alzheimer’s patients. The model may po-
tentially be used to see how the networks modulate each other and whether
enhancing one network could make up for deficit in the other [9]. These results
can be compared with the simulated results of the un-lesioned model, to demon-
strate the inhibitory efffect of the attentional networks.

4 Modulation Effects of Alerting, Orienting and
Executive Control

In the original ANT it is difficult to study the interactions of networks since
the alerting and orienting effects have been measured using the same variable;
that is, spatial cueing is used for orienting whereas temporal cueing is used for
alerting. In order to clearly identify the modulating effect of one network on the
other, Callejas and colleagues [9,10] modified the ANT using a separate tone
for alerting whilst retaining cueing for orienting, as illustrated in Figure 4. An
alerting sound was added to the original design of Fan et al. [16], and the new
cueing variables used were: no-cue, where the stimulus is not preceded by a
cue; cued, where a spatial cue is presented in the location where the stimulus
is expected; and un-cued, where a cue appears in a location opposite to the
location of the stimulus (invalid priming).
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Callejas et al. found that both auditory signal and visual cue exert an influence
on congruency; alerting having an inhibitory effect whereas orienting has an
enhancing effect.

4.1 Design

The experimental design used to model this study involves 2 (auditory signal)
x 3 (visual cue) x 2 (congruency) conditions. The symbolic component of the
architecture implements each condition using rules such as detect-sound, notice-
stimulus-at-cued-top-location, and so on. The model determines whether there
is a high frequency tone produced by the auditory module of ACT-R and a
flag is set indicating whether alerting is present or absent. Also, depending on
the cue type, the model presents it on the screen; if its nocue, then the target
appears without being preceded by a cue. In the case of the cued condition, the
arrows are presented in the expected correct target location and, in the case
of un-cued, the model presents the arrows in the incorrect location opposite to
that of the expected target location. In the nocue condition, the model has an
extra production which handles the ‘surprise’ condition where the target appears
without any priming effect.

In the case of no alerting sound, the model implements an extra produc-
tion which makes the system do an additional state change which increases the
overall reaction time. In the case of an alerting signal, no such state switch-
ing is required. Similarly, in the uncued condition, an extra move-attention is
required to move focus to the actual target location, whereas in the cued con-
dition, the focus is already at the target location which saves milliseconds. The
sub-symbolic component of ACT-R implements the attentional networks by us-
ing utility values and noise to help the model resolve conflicts and also make
human-like errors. Incongruency is handled by two identical productions namely
refocus-again-if-incongruent and harvest-target-directly-if-incongruent with dif-
ferent utility values (utility values are described in section 2.1).

4.2 Results

The overall reaction times recorded by the model compared with human data
are given in Table 3. Pearson correlation coefficient was used to measure the
degree of linear correlation between the two results. The coefficients came out
to be 0.89 giving a good fit to the data.

The efficiency of each network is measured using formulae (4), (6) and (7).

Alerting efficiency = RT(no-alert) − RT (alerted) (7)

The model showed similar interactions between the networks as in the original
experiment in which the alerting network has an inhibitory influence on the
congruency effect (cf.“clearing of consciousness” [37] p7401). Also, the orienting
network had an influence on the control network; that is, when the location of
the target was cued correctly, the congruency effect was smaller compared to the
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Table 3. Results generated by the ACT-R model along with human data from Callejas
et al. [9] in brackets

Mean Reaction Times  for each condition for the experiment and (the model simulation)
No alerting tone Alerting tone
No cue Cued Uncued No cue Cued uncued

Congruent 573 (577 ) 533 (527) 561( 595) 530 (545 ) 519 (475 ) 547 (545 ) 
Incongruent 644 (690 ) 617 (597 ) 648 (710 ) 625 (680 ) 603 (543 ) 659 (680 ) 

Fig. 5. Interactions between the variables. Congruency effect as a function of cueing
and alerting; Orienting effect as a function of alerting.

condition in which the location of the target was cued in the opposite location.
Interestingly, alerting speeded up the orienting of attention. The modulation
effects of the attentional networks are illustrated in Figure 5.

These results can help us to understand not only how our attentional systems
work but also explain how they function in a coordinated way to produce ef-
fective behavior. We are able to see how the control network can benefit from
the work done by the orienting network in order to resolve conflict better and
faster; the alerting system helps us prepare for a task and hence prevents the
control network from doing processing work. Also, the orienting network can
take advantage of this preparatory state of the system to speed up the orienting
process. This clearly shows that, although these networks may be anatomically
and functionally independent, they function under the influence of each other to
produce effective behavior.

5 Conclusion and Future Work

The work described in this paper is based on the assertion that the whole atten-
tional process comprises operations that help us to select a target found among
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distracters, to prepare ahead for an incoming stimulus so response is fast and
correct, and to be able to resolve conflict and exert control whenever required. In
the paper, through modeling the three components of attention, namely alerting,
orienting and executive control, to jointly explain the cognitive phenomenon of
attention, it seems we are approaching a more holistic view of the mechanisms
of selective attention. The purpose of ACT-R models described in this paper is
three-fold: (1) to facilitate simulating the behavioral study so that further pre-
dictions can be made; (2) to determine which networks may be affected or be
functioning abnormally in attentional disorders in clinical patients, by simulat-
ing the effect of Alzheimer’s on attention related conditions; and (3) to assess the
behavior and efficiency of attentional networks and to study their modulation
effects.

This work is still in progress and there are several areas that we would like to
look into in further depth. For example we have plans to model other attentional
related disorders, such as schizophrenia, in a similar fashion which may enable us
to make further predictions about the behavior and efficiencies of the networks
and potentially also suggest non-clinical methods of attention training.
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